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Abstract 
In view of the nonlinear characteristics of chaotic signal, a threshold denoising method of noisy 

chaotic signal based on empirical mode decomposition (EMD) is presented. Firstly, noisy chaotic signal is 
decomposed into several intrinsic mode function (IMF) by empirical mode decomposition. Secondly, the 
intrinsic mode functions of high frequency are respectively processed using threshold method. Finally, we 
add these IMFs with IMFs of low frequency to achieve denoising signal. The noisy Lorenz chaotic signal is 
chosen to perform noise reduction. Taking the noisy Lorenz chaotic signal as an example, the proposed 
method is used. The simulation results show that this method is an efficient method. 
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1. Introduction 

In the chaotic signal processing, the presence of noise has a severe impact on the 
calculation of system invariant parameter. Reference [1] points out that when calculating chaotic 
characteristic parameters such as fractal dimension, Lyapunov exponent, and so on, even if 1% 
of the noise, we calculate the dimension meaningless. Thus, the noise reduction effect will 
directly affect the result of chaotic signal processing. 

Chaotic signal has broadband spectrum and the autocorrelation function of fast decay. 
Therefore the traditional filtering method not only can not remove the noise, but also will make 
the original chaotic signal distortion [1, 2]. This increases the complexity of signal, so the filter 
will be meaningless. In order to effectively reduce the noise interference, people have proposed 
some noise reduction methods, such as shadow noise reduction method [3], using the 
maximum likelihood estimation method of noise reduction [4], noise reduction of ship signals 
based on the local projective algorithm [5], self-adaptive decomposition level de-noising method 
based on wavelet transform [6], a quantum-inspired noise reduction method [7], An intelligent 
noise reduction method [8], and so on. 

In view of the nonlinear characteristics of chaotic signal, a threshold denoising method 
of noisy chaotic signal based on empirical mode decomposition is presented in this paper. 
Firstly, chaotic signal polluted by noise is decomposed into several intrinsic mode function (IMF) 
by empirical mode decomposition. Secondly, the intrinsic mode functions of high frequency are 
processed using threshold method, and we add these IMFs with IMFs of low frequency to 
achieve denoising signal. The noisy Lorenz chaotic signal is chosen to perform noise reduction. 
Simulation results show that the proposed method is efficient to denoising noises and a much 
more cleaned signal can be obtained from this method. 
 
 
2. Empirical Mode Decomposition 

EMD [9], originally put forward by Huang et al. in 1998, is a signal processing method 
based on local characteristics of data in the time domain. It decomposes a signal into 
components of different frequencies by looking for local extrema so that different layers of the 
signal can be processed, respectively. It can be used to analyze nonlinear and non-stationary 
data. Different from common time-frequency analysis methods such as the short-time Fourier 
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transform, the wavelet transform (WT), and so on, EMD is a totally data-driven method, 
independent of any basis functions. 

EMD [10, 11] could be implemented as follows. 
(1) Identify all the local maxima in the signal ( )x t , and then connect them by a cubic 

spline as the upper envelope max ( )x t . Repeat the procedure for the local minima to produce the 

lower envelope min ( )x t .  

(2) The mean 1( )m t is calculated by using the equation as: 
 

1 max min( ) [ ( ) ( )] / 2m t x t x t  .                                                                            (1) 
 
Calculate the difference between the ( )x t  and 1( )m t : 
 

1 1( ) ( ) ( )h t x t m t  ,                                                                                   (2) 

 

1( )h t is treated as the data, then: 
 

11 1 11( ) ( ) ( )h t h t m t  .                                                                                   (3) 
 
Repeat the sifting process k  times until 1 ( )kh t  becomes an IMF which satisfies the IMF 

stop criterion. 
 

1 1( 1) 1( ) ( ) ( )k k kh t h t m t  ,                                                                                  (4) 

 
Define 1 1( ) ( )kc t h t , where 1( )c t is the first IMF component from the data. A stop criterion 

can be accomplished by limiting the size of the standard deviation, SD, computed from the two 
consecutive sifting results. Here a typical value of SD can be set between 0.2 and 0.3. 
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(3) The residual component after the first sifting process is: 
 

1( ) ( ) ( )ir t x t c t  ,                                                                                         (6) 
 

1( )r t  is considered as a new signal and subjected to the same sifting process as 
described above. 

 

1

( ) ( ) ( )
n

n i
i

r t x t c t


   ,                                                                                     (7) 

 
Where ( )nr t  is the residue of the signal ( )x t and ( )ic t  stands for the ith IMF. The whole 

sifting process can be stopped by any of the following criteria: either when the component ( )nc t  

or the residue ( )nr t  becomes smaller than the predetermined value, or when the residue ( )nr t  

becomes a monotonic function from which no more IMF can be extracted. ( )x t can be express 
as: 

 

1

( ) ( ) ( )
n

i n
i

x t c t r t


  .                                                                                      (8) 

 
Each IMF has to meet the following two conditions: 
(i) The difference between the number of extremes and the zero crossings must either 

be less or equal than one point. 
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(ii) For any point of the signal, the mean value between the upper envelope and the 
lower envelope is zero.  
 
 
3. A Threshold Denoising Method of Noisy Chaotic Signal Based on EMD 

In the frequency domain, reference [12] studies the relationship of the instantaneous 
frequency for each IMF by EMD: (i) The first IMF has the highest instantaneous frequency 
component. (ii) The instantaneous frequency of the i-th IMF is twice of the i+1-th IMF almost 
everywhere. Therefore, each IMF can be regarded as a bandpass filtering for the original signal 
by EMD. In view of the above, Reference [13] introduces empirical mode decomposition (EMD) 
to interferogram filtering. With the first two intrinsic mode functions (IMFs) removed, phase noise 
can be reduced to some extent, but the detailed information is liable to be lost.  

Based on the above, a threshold denoising method based on EMD shown in Figure 1 is 
proposed. Firstly, noisy signal is decomposed into several intrinsic mode function (IMF) by 
empirical mode decomposition. Secondly, the intrinsic mode functions of high frequency are 
respectively processed using threshold method. Finally, we add these IMFs with IMFs of low 
frequency to achieve denoising signal. 

 
 

( )x t ( )y t

 
 

 Figure 1. Diagram of Threshold Denoising Method with EMD 
 
 
4. Example of Noise Reduction of Chaotic Signal 

Lorenz model is as follows: 
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Taking parameters a = 10, b = 3, c = 28, and using Runge-Kutta method to calculate 

the integral whose step is 0.01, and removing the unstable transition processes initially, we get 
x component. Using the x component signal whose data length is 1000 and adding Gaussian 
white noise, we get noisy Lorenz signal whose SNR is respectively -10dB and 0dB. The noisy 
Lorenz signal is shown in Figure 2 and Figure 5. IMFs derived from the noisy Lorenz signal by 
the EMD method is shown in Fig. 3 and Fig. 6. It is obvious that the number of high frequency 
IMF is 3 from Figure 3 and Figure 6. The IMF1~IMF3 are respectively processed using 
threshold method. Then we add these IMFs with IMFs of low frequency to achieve denoising 
signal shown in Figure 4 and Figure 7. Comparing Figure 2 and Figure 4, Figure 5 and Figure 7, 
we find that the proposed method is an efficient method. 

 

 
 

Figure 2. The Time-domain Waveform Before Noise Reduction when SNR is -10dB 
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(a) IMF1~ IMF5 

 
(b) IMF6~ IMF8 and residue component r 

 

Figure 3. IMFs Derived from the Noisy Lorenz Signal by the EMD Method when SNR is -10dB 

 
 

 
 

 

Figure 4. The Time-domain Waveform  After 
Noise Reduction when SNR is -10dB 

Figure 5. The Time-domain Waveform  Before 
Noise Reduction when SNR is 0dB 

 
 

 
(a) IMF1~ IMF5 

 
(b) IMF6~ IMF8 and residue component r 

 
Figure 6. IMFs Derived from the Noisy Lorenz Signal by the EMD Method when SNR is 0dB 
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Figure 7. The Time-domain Waveform After Noise Reduction when SNR is 0dB 
 
 
5. Quantitative Analysis of the Result 

In order to quantitatively analyze the effect of noise reduction by using threshold 
denoising method based on EMD, we describe the effect of noise reduction by using the 
amount of SNR improvement before and after noise reduction which is proposed in reference 
[14]. The traditional definition of SNR is as follows: 

 

10SNR = 20log s

n


 ,                                                                                        (10) 

 
Where s  and n  respectively represent the standard deviation of the signal and noise. 

The amount of SNR improvement between the original time series 1x ， 2x ， ，… nx and 

the time series after the noise reduction 1y ， 2y ， ，… ny is defined as: 
 

10SNR = 20log y

x y


 

 ,                                                                                     (11) 

 
Where y  and x y   respectively represent the standard deviation of the time series 1y ，

2y ， ，… ny  after the noise reduction and the noise sequence 1 1x y ， 2 2x y ， ，… n nx y . The 
variance of the time series after the noise reduction and the variance of the noise are shown in 
Table 1. It can be seen from Table 1 that noise reduction effect for noisy chaotic signal by using 
empirical mode decomposition noise is obvious.  

 
 

Table 1. The Variance of the Time Series After the Noise Reduction and the Variance of the 
Noise 

SNR y  x y   SNR  

-10dB 68.9734 8.9102 17.8 dB 
0dB 69.7438 1.2778 34.7 dB 

 
 
6. Conclusion 

Noise reduction of noisy chaotic signal is chaotic signal processing foundation. A 
threshold denoising method based on EMD is proposed. The noisy Lorenz chaotic signal is 
chosen to perform noise reduction. We obtained satisfactory results by calculating the amount 
of SNR improvement before and after noise reduction. Simulation results show that the 
proposed method is efficient to denoising noises and a much more cleaned signal can be 
obtained from this method. 
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