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Abstract 
Image’s registration includes 2D-2D, 3D-3D and 3D-2D registration. This paper only concentrates 

on the 2D-3D registration, the image’s attitude is represented by a rotation matrix R, while the position is a 
translation vector T. Traditional approaches mainly focus on points correspondences, and state-of-the-art 
approaches concentrate on high-order structures, i.e. lines, rectangle, parallelepiped etc. Mathematically, 
most existing solutions adapt either linear optimization or iteration methods. However, they need the 
position, attitude initialization, which is not always available in real scene, and they do not guarantee to 
find global solutions. In this paper, instead of solving these polynomials directly, we introduce a novel 
approach (say qLR), which treat these multivariate polynomial equations as “monomials” and express R in 
a quaternion vision, resulting in dramatic decrement of the number of equations. We continue to utilize line 
correspondence since it commonly appears in real-scene and is easy to extract. Experiments on both 
simulation and real dataset attest qLR’s robustness and efficiency. Overall, our approach shares the 
following advantages: do not need any initialization and guarantee to find the global optimality if it exists; 
computational-cost is only linear to the number of measurements; robust to noise and separate the 
calculation of rotation from translation.  
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1. Introduction 

With the popularization and mushroom of camera, smartphone, and other relevant 
facilities, countless images have been produced everyday by different people from all over the 
world. The ever-increasing amount of images have brought us a problem:  how to classify, store 
or manage these images? At the same time, modern technological development enables us to 
reconstruct various objects’ 3D model (like historical architectures, street scene, artificial 
buildings) by either applying multiview geometry, range scanner [1] or other relevant 
equipments or technologies. This motivates us to classify, store or manage these images 
according to their position and attitude with respect to the 3D model they have taken. The 
process to retrieve the position and attitude is called image registration.  

Image registration can be coarsely divided into three categories: 2D-2D registration, 2D-
3D registration and 3D-3D registration. 2D-3D registration can be simply understood as: given a 
set of correspondences between the 2D images and their responding 3D model, and the 
camera’s2  intrinsic parameters, namely {f, p(p1, p2)} (f : focal length, p: principle points ), are 
known, with these information, we have to acquire image’s location and its pose, namely {R, T }, 
with respect to the 3D model. 

The whole process roughly consists of four steps: 1) Feature extraction and matching: 
find the correspondence between 2D image and 3D model. 2) Camera intrinsic-calibration: get 
the camera’s intrinsic parameters. 3) Position and pose computation and estimation: get the {R, 
T }. 4) Follow-up  operation: refine the results and eliminate the outliers.  

This paper mainly focuses on the third step. The actual methods used in the third step 
differs according to the different features extracted in the second step. Previous work has 
harnessed different types of features: point features, rectangle features, parallelepiped features, 
line features [2], shape features, shadow features, silhouette features and so on. Point-based 
registration stayed as the center most previous research, while state-of-the-art researches 
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transferred to high-level structures as listed above.  At the same time, “too-high-level” structures 
raise critical requirements to real scenes that few real scenes satisfy to represent them.On the 
contrary, those not too-high-level structures, like lines, truly exist in most natural scenes, and 
avoid point-feature-based registration’s excessive abundance and uncertainty. That’s why we 
still choose line features for our qLR algorithm. 

In both computer vision and photogrammetry, or other relative subject area, the position 
is presented as a 3×1 matrix T=[Tx,Ty,Tz]T, the pose is presented as a 3×3 rotation matrix R 
and R is orthogonal matrix.  Formally, our input consist of a set of correspondences {C(M), C(I)}, 
in which the C(M) and C(I) represent the line features extracted from the 3D model and the 2D 
image respectively. Our output is {R|T}. Note that the key to qLR’s success is that there must be 
enough overlap between 3D model and the 2D image, that is, both of them must capture the 
same part of the scene. The challenge of qLR is the retrieval of R since R induces a system of 
multivariate polynomial equations, and its orthogonality must be fulfilled by introducing extra 
polynomials multivariate equations. Solving these multivariate polynomials requires either 
iteration or linearization, which unavoidably influences final solutions’accuracy and sometimes 
cannot find the right solution. On the contrary, our qLR algorithm can successfully address 
these drawbacks by presenting R in a quaternion-based parameterization and treating these 
multivariate polynomial equations as “linear monomial equations”. What’s more, qLR also do not 
need any initialization or iteration, these significant characteristics guarantee the its efficiency 
and accuracy.  

The following of this paper is organized as: In the second part, a mathematical 
framework is briefly introduced before describing our qLR algorithm since this mathematical 
frame serves as the pillar of qLR. The third part is the core of this paper, in which we try to 
illustrate our qLR algorithm systematically and comprehensively. In the forth part, a large 
amount of experiments are executed. 
 
 
2. Mathematical Framework 

We begin this part by introducing two brief necessary algebraic geometry concepts that 
will be used in our following qLR algorithm. we consider a system of n quadratic equations of m 
variables xi as the form: 
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Note that the right hand of (1) is homogeneous in xi. If the solution of (2.1) is a singlepoint in Rn, 
we try to linearize (1) by introducing xij=xixj and ρ=1.Then (1) can be rewrite as: 
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As xij =xji, the new system monomials consist of variables xij can be solved by singular 
decomposition. The number of variables then is m(m+1)/2+1, {xi,j,ρ|1≤i≤j≤m}.we continue rewrite 
(2) as: 
 

0 xM  (3) 
 

Where x=[x11,x12...x1n,x22...xnn,ρ]T. M indicates the coefficients of (3). We apply SVD 
decomposition, if M = SΣVT, define x∈Ker(M), Ker(M)=span({vi}), where {xi} are the columns of 
D corresponding to zero singular value in V.  When Ker(M) is one dimensional, we recover x to 
a scale, and the scale can be calculated by the condition ρ = 1.  

If the dimension of Ker(M) is larger than 1 (say N>1), we must go on to dig more inner 
relationship in (1) and (2). Since x ∈ Ker(M), according to algebraic theory, there exist real 
numbers {λi} such that: 
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 (4) 

 
Actually, the elements in x are not independent, we may find that any two elements in x, 

like xi,j  and xi′,j′, there product equates to another two elements in x, say xi,j′ and xi′,j , since xi,jxi′j′ 

=xixjxi′ xj′=xixj′xjxi’=xij′xi′j .So we can easily get then conclusion that: For any integers {i, j, k, l} and 
their random permutation {i′, j′, l′, k′}, xi,jxkl  = xi′j′ xk′l′.Substituting individual rows of the right hand 
of (4) into relations of these results discussed just now, through some algebra, we can safely 
get the constraints on {λi} 
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In (2.5), for any integers a and b, we take the notation λab  = λaλb, λab  = λba. vaj  refers to the row 
of va corresponding to the variable xij  in x. Then we can get a new system of linear equations 
concerning new variables {λab}. the (5) can also be rewritten as: 
 

0K  (6) 
 
K is the matrix of coefficients of (5) and λ is the vector [ λ11...λab...λnn ]

T, the number of λ 
is N (N+1)/2. Again we solve (6) by applying SVD decomposition, where K=SΣVT. Note that 
Ker(K) must be one dimensional since two independent solutions would cause two solutions to  
(1), which contradicts the original assumption.This means that we can recover λ up to a scale.  

We briefly summarize what discussed above and try to present a more formal treatment 
of our approach. Let HQ(Rn) and HL(Rn) be a set of quadratic and linear equations on Rn  
respectively.  These equations are homogeneous in its variables. Our qLR algorithm linearizes 
the quadratic system listed in (1) to homogeneous system listed in (2) by applying a map f : 
HQ(Rn) → HL(Rn), where the f is defined as: 
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This linearization increase the dimension of our solution to solution space N≥1 by 

artificially disambiguating the related quadratic terms. If V0=Ker(M), we treat V0 as an N 
dimensional affine variety in Rn.To recover the single solution to (1), we should impose 
additional constraints by using the equation xi,jxkl=xi’j’xk’l’, where {i,j,k,l} and {i’,j’,k’,l’} are each 
other’s permutation.Note that there are many constraints like this, let eq1 be one such equation, 
and V ar(eq1) is its corresponding algebraic variety in Rn.Then we denote V1=V0 �V ar(eq1) as a 
subvariety of V0 defined by Equation (1)  and system (2). Given an appropriate sequence of 
such constraints {eqi}, we can obtain a nested sequence of variables V0⊃ ⊃V1 V2...in a 
dimension decreasing order. We guarantee to arrive at a desired solution since there are more 
constraints than the dimension of V0 itself.  

 
 

3. qLR Algorithm  
3.1. Problem Formulation 

Let{Li
3D=(ni,Pi)} be the input 3D lines, in which ni denotes Li

3D’s normalized direction and 
Pi denotes any point in the 3D line Li

3D.At the same time, let {li
2D=(Pbegin(Xb,Yb),Pend(Xe,Ye))}, in 

which Pbegin and Pend denote the two endpoints of the liD respectively. Given pre-known focal 
length f , all of these 2D lines can be represented in the camera’s frame, that is, PA={Xb, Yb, f}, 
PB={ Xe, Ye, f}. 
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Figure 1. Geometric Constraint on Line-based Registration 

 
 
According to image-forming principle, 3D model line lCD  should 1): lies in the plane P . 

and 2): after re-projection, any point lies in lCD  should be mapped into lADB . we translate 
these two conclusion into mathematical languages and then get (8) and (9). 
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Given a system of measurements, together with a pre-known focal length f, we can 

calculate a system of (8) and (9) equations. And these equations are bases for the { R, T }’s 
retrieval.  

Notice that the normal vector N  of plane P  can be directly calculated by focal length f 
and 2D line {li

2D=(Pbegin(Xb,Yb),Pend(Xe,Ye))}, et Ni = [Nix, Niy , Niz ], then its elements can be 
calculated in (10). 
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In real scene, the focal length and the 2D lines, together with their corresponding 3D 

model lines we received do not share the same measurement. Say, in most cases, the 2D lines 
and the 3D lines are expressed in pixel, while the focal lengths presented in mm. This force us 
to transform these data into one measurement. The paper provides us with an available step to 
achieve this.  

 
3.2. Quaternion-based R Representation 

As we said in aforementioned sections, qLR derives from three words’ initials 
(Quaternion-based-Line-Registration).We notice that all of these R’s expressions suffer from 
unavoidable drawbacks since they are either computational-cost-high or calculation-difficult.  
Thus, in this paper, we introduce a novel expression of R, namely Unit Quaternion. Unit 
Quaternion, also called versers, holds much convenience and significance for representing both 
orientation and rotation, which are often used to describe 3D objects. Comparing with Euler 
angles, unit quaternion is not only simple to comprise, but also successfully avoid the problem  
of gimbal lock. What’s more, unit quaternion is numerically stable and efficient. 

Unite Quaternion can be expressed as a four-elemental normalized vector q=[q0, q1, q2, 
q3 ], whereq0

2+q1
2+q2

2+q3
2=1.Then R can be represented by: 
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Notice that in order to get R, we only need to calculate q2,qiqj ,not the qi itself. that R’s 
orthogonality is inherently-contained and we do not need to add extra constraints to describe it.  

Based on (8) (9) and (11), we can construct a system of equations that can retrieve R 
and T  respectively. Given a system of input ∑{ Li

3D ,li
2D , f }, the constraint equations can be 

built as M(n+1)11×L11=0, where L = [ q0q1, q0q2, q0q3, q1q2, q1q3, q2q3, q
0, q1, q2, q3, 1 ]Tthe last row of 

M is always [ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, −1 ], and the last column of M is always [ 0..., −1 ]T. 

whatever the measurements are. Actually, other elements in M can be easily calculated as 
Figure 2. 

Since we get M, the SVD decomposition is applied to get the Ker(M), if the dimension of 
M is  1, the scale of Ker(M) can be recovered by the last row of L. Otherwise, more constraints 
should be induced to retrieve L. Assume the dimension of Ker(M) is N , that is, 
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For any integer { i, j, k, l } ∈ { 0, 1, 2, 3 } and its corresponding permutation { i′, j′, k′, l′}, 

we could easily get the equation qiqj qkql =qi′ qj′ qk′ ql′ , and further get Lij Lkl= Li′j′Lk′l′, where Lmn 
indicates the element pmpn  in L. 

We then introduce new parameters λab= λa λb  = λbλa, with the constraints expressed in 
(3.5), we can get another system of linear equations.  
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Where Q=[λ1, λ1λ2,..., λ2, λ2λ3,..., λN λN]T, the dimension of Q is u =N(N−1)/2+N, the row 

of matrix K is s=21. We again apply the SVD decomposition to K, and find the Ker(K), the 
dimension of Ker(K) must be  1  since the dimension that more than one would cause more than 
one value to Q, which obviously contradicts the proposition that only one single solution exists.  
In practical experiment, we do not have to calculate all these 21 constraints, since we note that 
the dimension of matrix U is s ?u, and Ui,i  is decreasingly sorted, we sorely care about the 
member Ui,i  = 0 ( i = 1,...,N(N−1)/2+N), that is, we can only choose u constraints among all 
these 21 constraints, which on the one hand let the matrix U be a square matrix, and on the 
other hand guarantees only the last diagonal element in U is zero.  

Since the dimension of Ker(M) is one, the Q is recovered to a scale, we define the  
scale as λs, all the elements in Q can be expressed with only one coefficient λs.  Now, we can 
square the last row of (12): 

  

1)( 2
11,11,2211,11  NN 

 (14) 
 
By solving  (14),  we can easily get the λs,  then the Q is recovered,  which means λi

2( i 
= 1 ???N ) is recovered. the sign of λi  can be decided by re-harnessing the following equations. 
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This process of determining the sign of λi  is a little tough since many conditions should 

taken into consideration, especially when the number of λi is high, once λi ( i = 1, ...N ) is 
retrieved, the R can be solely computed. 

 
 



TELKOMNIKA  ISSN: 2302-4046  

A novel Quaternion-based 2D-3D Registration Algorithm with Line… (Xinghang Zhang) 

1871

3.3. Translation Calculation 
The calculation of T to merely solve a system of non-homogeneous linear equations [5]. 

The system of linear equations as Ax=b.· if rank(A) = rank(A| b), there exit no solution; if rank(A) 
= rank(A| b) = n, there exist one and only one solution; if rank(A) = rank(A| b) < n, there exist 
infinite solution. If rank(A) = rank(A| b) > n, there exist no solution.  
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We note that, in most cases, the number of measurements outnumbers 3, which is the 

least requirements for the accurate calculation of T, since, usually, we can extract a large 
number of line-correspondences regarding an 3D image and further find their correspondences 
in the 3D model. Theoretically speaking, there is no solution to these linear equations. 
However,we can treat this problem as a least-square issue [6], which helps us to find a seemly-
ideal solution that minimize the measurement errors. 

 
 

 
 

Figure 3. The Main Algorithm Flowchart of our qLR 
 

 
4. Experiments 

We take the matlab simulated dataset in [4] as our experimental data and further 
simulate more data based on [4]. In order to test qLR’s robustness and sensitivity to noise, we 
mainly focus our experiments on three parts  

Experiment on the various number of line correspondences. 
Experiment on the impact of various degree of noise.  
Experiment on the relationship between the degree of noise and the number of line 

correspondence.  
We Let R and T indicate the original rotation and translation respectively and R* and T* 

indicate the experimental-results (R* for R and T* for T). Then the relative error of R and T is 
defines as: 
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Where ǁǁ indicates the F-norm of a matrix. 
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4.1. Number of Line Correspondence  
We first use all these dataset free of noise to teat the robustness of our qLR by varying 

the number of line correspondences. 
 
 

Table 1. The Relative Error of Registration Based on Different Line Correspondences 
Lines Number 4 5 6 7 8

R’s Error 0.0690 0.0162 3.7509×10−6 0.0226 3.7555×10−6 
T’s Error 0.0690 0.0162 2.7104×10−9 0.0226 2.4487×10−9 

 
 

 
 

 

Figure 4. The Relative Error of R and T wrt to the Num. of Line Correspondence that Free of 
Noise 

 
 
From the table and the figures, we can conclude that, the accuracy and precision 

improve dramatically while the number of line correspondences increase.  When the number of 
line correspondences is no less than 4, relative error of both the R and T is within 0.025, which 
indicates good registration results. Besides, we note that the relative error of R accords with that 
of T,they share the same trend with the increasing of number of line correspondences.  

 
4.2. Tolerance of Noise 

In order to testify out algorithm qLR’s robustness in the appearance of noise, we 
deliberately add image noise to the dataset in [4]. Note that the noise added to the image 
disturbs the normalized normal vector of the projection plane, thus, if the noise level is 
measured in terms of standard deviation of zero mean Gaussian Distribution, the noise-suffered 
normal vector N*  is: 

  

noiseNNN  
 (18) 

 
Where ξ indicates the percentage of noise we would like to add, and Nnoise indicates 

the original noise we generated. We use five number of measurements for our noise-tolerance 
experiments, and the results are shown in Figure 5 and Table 2.  

 
 

Table 2. The Impact of Various Noise Level on qLR  
Noise Level 0.01% 0.03% 0.05% 0.07% 0.1% Noise Free 

R’s Error 0.0203 0.0585 0.0798 0.0983 0.1244 0.0162 
T’s Error 0.0104 0.0290 0.0392 0.0460 0.0548 0.0162 

 
 

From the figure and table, we can safely say that with the disturbance of noise, both the 
relative error of rotation and translation increase with different speed trend: the R’s relative error 
increase much faster than that of T. At the same time, we note that the increase of R’s (the 
same as T) is linear to the percentage of noise, which indicates that the registration’s result is 
tolerable within a scale of proper percentage of noise. 
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Figure 5. The Impact of Various Random Noise Level on Rotation R and Translation T 

 
 

4.3. Noise Combats with Line Number 
The aforementioned experiments show that more number of measurements indicate 

higher accuracy and precision, while the higher level of noise deteriorates them. Then more 
exploration on the actual relationship between the number of measurements and the level of 
noise is desirable and requisite. We try to further the experiment in the noise level section to 
explore whether the involvement of more measurements would combat with negative impact of 
noise.  

Based on the noise level set above, we extend the number of measurements five to 
eight and all of them share the same noise level. Table 3 and Figure 6 show our experimental 
results.  

 
Table 3. Relative Error of Various Noise Level on Eight Measurements 

Noise Level 0.01% 0.03% 0.05% 0.07% 0.1% Noise Free 
R’s Error 0.0051 0.0156 0.0265 0.0379 0.1415 3.7555×10−6 
T ‘s Error 2.8745×10−4 0.0015 0.0037 0.0069 0.1184 2.4487×10−9 

 

 
Figure 6. Results of Number of Measurements Combat with Various Noise Level 
 
 
We can safely get that the involvement of more measurements can significantly soften 

the negative impacts caused by noise, especially when the noise level is relatively low.  
Comparing the two figures, we also note that the Translation T benefits more from the add of 
measurements than that of rotation R, however, the control of relative error caused by 
involvement of more measurements would eventually shadow its significance when the noise-
level is relatively high, thus qLR’s robustness mainly depends on its measurements’s purity and 
clearness, rather than on the number of measurements.  
 
 
5. Conclusion and Future Work  

In this paper, we have conducted an innovative and efficient algorithm for precisely and 
accurately registering a camera with respect to its corresponding 3D model. Contrary to 
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previous relative work, which focusing on either solving a system of nonlinear equations by 
iterative algorithms, which cannot guarantee to find the global optimal solution or, even worse,  
a feasible solution, or extracting high-order features, high-requirements of facilities, which do not 
commonly exist in real scene or is beyond most people’s affordability, our qLR formulation 
reversely accounts for the universality of line correspondence and tactfully treat it as a 
quaternion-based problem, which enable us to address these multivariate polynomial equations 
in a “linear monomial equation”  vision. Moreover, the complexity of our algorithm is only linear 
to the number of measurements and it does not require initialization. Various experiments both 
on simulation dataset and real scene dataset attest the robustness and wide applicability of our 
algorithm. The appearance of image noise can even be successfully handled. 

Note that a system of 2D-3D registration framework consists of several steps, but our 
algorithm focus on mere one step, this motivates us to concentrate our future work on the whole 
framework, especially the auto-extraction and auto-matching of line features. Besides, the 
precise focal length and principle points play a vital role on the registration’s results, thus, an 
accurate intrinsic-parameter-calibration approach is necessary, which also seems to be one of 
our future work. With the trend of highly intellectualization and modernization, we could easily 
get the initializations from the smartphone someday. Accordingly, a novel registration algorithm 
that is extremely robust to noise is requisite, to some extent, we can feel free since we can 
utilize these initializations.  
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