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Abstract 
On account of the complex application environment and the large number of uncertain conditions 

for the palletizing robot, we do path-planning for the multiple joints robot by the algorithm based on 
Hierarchical Markov Decision Process. First, according to the actual working environment, we set the 
range of the robot’s motion and select the conventional movement combination as the basic set of the 
robot’s behaviors. We can get the possible reward of various situations. We divide the state space in 
accordance with the location information of the obstacle space into a small number of state clusters, sub-
level step by step to determine the precise trajectory of palletizing robots. We simulate 3D robot motion 
trajectory, including barrier-free and spherical obstacle conditions. Finally, experimental verification is 
carried out, the algorithm has been proved to control the compatible movements of each joint effectively 
and keep the error within the allowed range. The experiment results meet the requirement well. 
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1. Introduction 

Robot path planning is to solve the optimal movement trajectory problem from the initial 
position to the given target position in the environment of the obstacles. The planned path can 
be safe, which can make the robot passing all obstacles, can make the robot moving without 
collision, and ensure the shortest path of obstacle avoidance.  
            According to the different the states of the environment, path planning can be divided 
into global path planning and local path planning [1, 2]. Global path planning methods mainly 
have grid method, visibility graphs and free space method. Local path planning methods mainly 
have artificial potential field method, fuzzy logic control algorithm, the ant colony algorithm and 
particle swarm algorithm. Global and local path planning technology are just deal with 
independent mobile robot path planning problem, and lack of the description of the interaction 
between each mechanical arm of the multiple joints robot, so the above planning technology are 
not suitable for palletizing robot path planning. 

The real work environment is complex, in which there are the large numbers of 
uncertain conditions for the palletizing robot. In this paper, our contribution is that based on 
Markov Decision Process (MDP) [3-5] we introduce state clustering to establish   Hierarchical 
Markov Decision Process (HMDP) model [6, 7] to perform the path planning of the palletizing 
robot. According to the spatial position of obstacles, we condense palletizing robot's working 
space for several state clusters, as the state space of HMDP model. Using HMDP algorithm, we 
can search for the optimal path. After establishing HMDP model, the states clearly reduce, to 
search for the optimal path is more rapid, the complexity of the algorithm can also be reduced. 
HMDP algorithm can effectively overcome the problem of large number of uncertain conditions 
for the palletizing robot. 

 
 

2.  Hierarchical Markov Decision Process 
2.1. Markov Decision Process 
              MDP is the most useful model in planning application based on decision theory, and it 
is a model descriping interaction between Agent and the environment. Agent will put state of the 
environment as input, and an action for output, and these actions will affect the state of the 
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environment. Although the influence of Agent's actions to the environmental state with a lot of 
uncertainty, Agent's perception of the state of the environment is without any uncertainty, that is, 
it has complete perception. 

A Markov Decision Process can be described as a tuple <S, A,P, R>, where  
  S is a finite set of states, 

             A is a finite set of actions,   
             P : S×A×S → [0,1], is the state-transition function, that describes the probability                   

( ' | , )p s s a  when the system move from state s to s' after the action ( )a a A . 
 

1( ' | , ) Pr{ ' | , }t t tp s s a s s s s a a                                                          (1)  

  
 R : S × A ×S → R,is the reward function, is real bounded function, the expected 
immediate reward gained when the system move from state s to s'  after the action ( )a a A . 
 
             In this model, the next state and the expected reward depend only on the previous state 
and the taken action; even if we consider all previous states, the transition probabilities and the 
expected reward would remain the same. This is known as the Markov property, which is that 
the state and reward at time t +1 is dependent only on the state and the action at time t.     
 
2.2. Hierarchical Markov Decision Process 

Our method extends the standard MDP framework by adding hierarchical structure. 
There are two types of MDPs making up a complete hierarchical system [8-10]. They are both 
derived from a given standard, flat MDP.  

The first type, nM , a tuple , , ,n n n nS A T R   (0≤n≤N-1),represents the given MDP at a 

particular level of abstraction. n  indexes the level in the hierarchy, N  is the number of levels in 

the hierarchy. The given flat MDP is 0M . nM  for 1n   is constructed from 1nM   by clustering 

the states in 
1nS 
. Each cluster of states from 

1nS 
 becomes a single state in nS . 

The state transition function nT , which defines ( | , )n n n
m kp s s a , is constructed by 

determining, for all states 1 1n n
is S   that belong to one cluster and correspond to state n

ks ,the 

cluster labels of successors 1n
js   that belong to other clusters and correspond to state n

ms . The 

probability ( | , )n n n
m kp s s a  is estimated by averaging over the corresponding probabilities

1 1 1( | , )n n n
j ip s s a   . Similarly, the reward function nR , which defines ( , , )n n n

k mr s a s , is constructed by 

determining, for each state transition from n
ks  to n

ms , the corresponding 1 1 1( , , )n n n
i jr s a s   , and 

averaging over them. As before, the action set nA  is defined as the set of successors n
ms  for 

each state n
ks . 

The second type of MDPs making up the complete hierarchical system is defined only 

for 1n   and is denoted by 1

,n n
k m

n

s s
M  . 1

,n n
k m

n

s s
M   is an MDP that represents the lower level (n-1) task of 

navigating from higher level (n) state n
ks  to n

ms . It is essentially a subset of 1nM  , whose states 

are only those states 1 1n n
is S   that correspond to state n

ks , combined with those state 
1 1n n

js S   that are successors of states 1n
is
  and that correspond to state n

ms . The states 1n
js   

are terminal states.  
 

2.3. Hierarchical Markov Decision Process Model Algorithm 
Hierarchical Markov Decision Process model of layered model value iteration algorithm 

as follows: 

            Step 1 Initialization. Construct hierarchical MDP model nM  (0≤n≤N-1), component 

elements of 0M  and nM are given, the target state 0
gs  for 0M is given, set value function 

iterative end conditions . 
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            Step 2 for 0 n N  , the hierarchical MDP model Mn determine the MDP target state n
gs  

for Mn. 
Step 3  Definite function Solve(M,n), whose value is the value of state function V(s). 

                  while   , do 
            for  all s S , do 

   
'

max ( ' | , )[ ( ' | , )+ ( ')]new
a

s

V p s s a r s s a V s  , 

   if ( )newV V s   , then 

      ( )newV V s   , 

      ( ) newV s V . 

Step 4   For n>0, to all states s S , 

(1) If the current state s= n
gs , then  

Mn-1 construct 1

1

,n n
g g

n

s s
M 

 , and   

1 1

1 1

, ,
( , 1)n n n n

g g g g

n n

s s s s
V Solve M n 

   . 

(2) If the current state s≠ n
gs ,  then 

    
'

* arg max ( ' | , )[ ( ' | , )+ ( ')]
a

s

s p s s a r s s a V s  , else 

                          Mn-1 construct 1
, *

n
s sM  , and 

1 1
, * , *( , 1)n n

s s s sV Solve M n   . 

      Step 5   1n n  , 
 if n=0, then iterative end, return the values of the states function V, else  

turn to Step 4. 
     Step 6 By Step 5 solve optimal strategies * ( ) arg ( )s V s  . 

 
 

3. Palletizing Robot’s Kinematics Model 
The mechanical structure of the palletizing robot is simplified as 3D structure diagram 

shown in Figure 1. The point A is thought as end actuator. There are three connecting rods, the 
connecting rod 1, the connecting rod 2, the connecting rod 3. The connecting rod 3 rotates 
around point B up and down, the connecting rod 2 rotates around point C up and down, the 
connecting rod 1 carries the mechanical arm around the base rotation in horizontal plane.  

Each of the robot joints are rotary joints. To solve the robot kinematic analysis problem 

of we establish the D-H robot coordinate systemt. The nq , n , n , nd (n=1, 2, 3) are the robot D-

H parameter.The D-H parameter table of palletizing robot coordination system is shown in  
Table 1. 

The notation nq  is the length of the connecting rod n, n  is the axis angle of the 

connecting rod n and the connecting rod n+1, n  is the rotation angle between the connecting 

rod n-1 and the connecting rod n, and nd  is the relative position distance between the common 

common perpendicular lines of the joint n-1 and the joint n. 
Robot kinematics model is obtained based on D-H coordination transformation method. 

In the palletizing robot structure diagram, connecting rods establishes the rear coordination 
system based on D-H coordination transformation. The two adjacent connecting rods 

coordination system transformation relationship can be used by matrix 1n
nT  , in which n-1 

denotes the connecting rod n-1 coordination system; n denotes the connecting rod n 
coordination system. 
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Figure 1. Palletizing Robot Structure Diagram 

Table 1. Palletizing Robot D-H Parameter 
Table 

connecting rod 
n  nq  n  nd

 

n  

1 0 2
  1l  1  

2 2l  0 0 2  

3 3l  0 0 3  
 

 
 
            Multiply coordinate transformation matrix of end stem can be expressed as  
Equation (3).  
 

0 0 1 2 0 1 2
3 1 2 3 1 1 2 2 3 3( ) ( ) ( )T T T T T T T                                                            (3) 

 

               By Equation (4), 0 1 2
1 2 3T T T， ， can be written out. 

 

1 1

1 10
1

1

cos 0 sin 0

sin 0 cos 0

0 1 0

0 0 0 1

T
l

 
 

 
  
 
 
 

                                                                (4) 

 

2 2 2 2
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                                                   (5) 
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 
 
 

                                                    (6) 

 

Uniting equation (3-2), (3-3), (3-4), (3-5), we can attain the transformation matrix 0
3T  of 

palletizing robot end position relative to the base coordinate system. 
 

2 3 3

2 3 30
3

1 2 3 3

1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 1 2 3 1 2 3

2 3 2 3 2 3 2 3 0 2 2 3 2 3

0 0 0 1

c c c c s s c s c c c s s l c c l c c c l c s s

s c c s s s s s c s c s c l s c l s c c l s s s
T

s c c s c c s s l l s l s c l c s

     
       
     
 
 

    (7) 
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By Equation (7), we can attain end actuator's space position relative to the base 
coordinate system. 

 

2 3 3

2 3 3

1 2 3 3

1 2 1 2 3 1 2 3

1 2 1 2 3 1 2 3

2 2 3 2 3

x

y

z

p l c c l c c c l c s s

p l s c l s c c l s s s

p l l s l s c l c s

  
   
    

                                                              (8) 

 
Among Equation (7), (8), sin , cos ( 1, 2, 3)i isi ci i    . 
 
 

4. Palletizing Robot’s Motion Trajectory Simulation 
In the actual control system, mechanical arm of palletizing robot is driven by the servo 

system, the controller can accurately control servo system's rotation angle and the angular 
velocity. To palletizing robot, the external environment of the state, the position and the size of 
the obstacles in the controller are known, namely the system state is completely visible. The 
movement planning system of palletizing robot as shown in Figure 2. 
 
 
 
 
 
 
 
 
              
 
 
 
 
 

Figure 2. Palletizing Robot Motion Planning System 
 
 

 4.1. Basic State Set 
Based on the designed mechanical structure of palletizing robot, the range change of 

joint variables 1 , 2  and 3  is sure, such as 1

2
0

3
   , 2

5

6 6

    , 3

7 11

6 6
    . 

According to the control requirements of the palletizing robot and the drive system needs, we 
choose movement step of 1° to discrete its working space. 

 
 4.2. Basic Action Set 

The connecting rod 1, 2 and 3 all have three movements. The connecting rod 1 around 
the base can do clockwise and counterclockwise rotation, or not move. Connecting rod 2 and 3 
around the node C and B do clockwise and counterclockwise rotation, or not move. The 
combination actions of a palletizing robot have 27 kinds. In the movement process of palletizing 
robot from the starting position to the target position, only a fraction of the combination actions 
is effective. As shown in Figure 1, when on the path an obstacle is detected, the connecting rod 
1 does counterclockwise movement, and the connecting rod 2 or 3 does counterclockwise 
movement  to  evade the obstacle, when the obstacle is passed by, the connecting rod 2 or 3 
does clockwise movement to come back the original trajectory. All the effective combination 
actions in 7 groups are shown in Table 2. 

 
4.3. State Transition Function 

By probability theory, the sum probability of all palletizing robot actions is 1, namely,

1 2 3
t

1t t ta a a   . 1 2 3, ,a a a  are the actions of connecting rod 1, 2 and 3, 1 2 3a a a   is the 

1 , 2 , 3  
Mechanical arm 

environment 
states 

HMDP decision 
algorithm controller 

Obstacles 
 position 

Manipulator 
trajectory 
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combination action of the connecting rod 1, 2 and 3. The connecting rod 1, 2, 3 action sets and 
the probability of state transition is shown in Table 2. 

 
4.4. Reward Function 

For a certain behavior combination, the reward function is shown in the following. 
 

                           10,   close to the target position 
R =        6,    close to the obstacle                                                       (9) 

                        -20, hit the obstacle 
 
 

Table 2. The Movements of Connection Rod 1, 2, and 3 and the State Transition Probability 
Serial number Connection rod 1 Connection rod 2 Connection rod 3 probability 

1 counterclockwise counterclockwise counterclockwise 0.06 
2 counterclockwise counterclockwise no move 0.15 
3 counterclockwise no move counterclockwise 0.25 
4 counterclockwise no move no move 0.01 
5 counterclockwise clockwise clockwise 0.03 
6 counterclockwise clockwise no move 0.15 
7 counterclockwise no move clockwise 0.35 

 
 
4.5. Trajectory Simulation 

We set the initial position 1 2 3

5 7
=0 = =

6 6
    ， ， , the target position 

1 2 3

2 11
= = =

3 6 6

    ， ， . The starting position is x=1100mm, y=0,z=750mm, and the 

target position is x=-1850mm,y=3200mm,z=750mm. 
(1) Trajectory simulation with no obstacle 
Without placed obstacles, palletizing robot grabs objects and moves according to the 

above HMDP algorithm. The biggest reward simulation trajectory is shown in Figure 3 below. In 
Figure 3, the starting position is x=1100mm, y=0, z=750mm, the simulation arrival position is  
x=-1850mm, y=3200mm, z=750mm. The error between the simulation arrival position and the 
target position is 0 mm, which is in the allowable error scope. The object can be putted to the 
correct position.  

(2)  Trajectory simulation with obstacles 
With a spherical obstacle, palletizing robot grabs objects, whose position is (0, 320mm, 

1300mm) and radius is 400mm, and moves. Due to the speed of palletizing robot is fast, in 
order to completely avoid obstacles, robot can only moves in more than 50mm outside from 
spherical obstacles, namely, the avoided spherical obstacles is bigger than the actual radius 
50mm. The simulation trajectory is shown in Figure 4 below. In Figure 4, the starting position is 
x=1100mm, y=0, z=750mm, the simulation arrival position is x=-1850mm, y=3198mm, 
z=752mm. The error between the simulation arrival position and the given target position is 3 
mm, which is in the allowable error scope. the object can still be putted to the correct position.  

 
4.6. Algorithm Performance Comparison between MDP and HMDP  

Table 3 lists comparison of the combination states, planning time and path cost using 
MDP model algorithm and HMDP model algorithm, from which based on HMDP model the path 
planning can make planning time more short, path cost less. With no obstacles using MDP 
model algorithm, combination states are 3, planning time is 64ms and path cost is 7500. With 
no obstacles using HMDP model algorithm, combination states are 3, planning time is 64ms 
and path cost is 7500, too. With no obstacles using MDP model algorithm and HMDP model 
algorithm, the computing effectiveness of the combination states, planning time and path cost is 
the same. With an obstacle using MDP model algorithm, combination states are 5, planning 
time is 92ms and path cost is 8943. With an obstacle using HMDP model algorithm, 
combination states are 4, planning time is 65ms and path cost is 7515. With an obstacle 
comparing MDP model algorithm and HMDP model algorithm, the combination states reduce 
20.0%, planning time reduces 29.3% and path cost reduces 16.0%. 
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Figure 3. Trajectory Simulation with no 
Obstacle 

Figure 4. Trajectory Simulation with Obstacles 

 
 

Table 3. Comparison between MDP and HMDP 
The simulation 

experiment 
Combination 

states  
Combination states 

reduction 
percentage 

Planning 
time (ms) 

Planning time 
reduction 

percentage 

Path 
cost 

Path cost 
reduction 

percentage 
No additional 

obstacles 
MDP 

HMDP 
3 
3 

- 
0 

64 
64 

- 
0 

7500 
7500 

- 
0 

Additional 
obstacles 

MDP 
HMDP 

5 
4 

- 
20.0% 

92 
65 

- 
29.3% 

8943 
7515 

- 
16.0% 

 
 
5.  Experiment and Discussions 

The controller of palletizing robot is made up of ARM chip and peripheral expansion 
interface circuit. The pulse signals are produced to drive servo system with mechanical drive 
joint operation. We choose Fuji 1.5KW AC servo motor, GYG152CC2-T2E and the relevant 
servo driver RYC152C3-VVT2. The experimental settings of palletizing robot are that the initial 
position is  (1100mm, 0,750mm) and the target position is (-1850mm, 3200mm, 750mm). The 
center of the spherical obstacle is (0, 320mm, 1300mm), the radius of the spherical obstacle is   
400mm. Through HMDP algorithm, the two path trajectories are generated with no obstacle and 
with an obstacle, respectively. The error is calculated between the target locations and actual 
position. With no obstacles the error range is below 3mm, with an obstacle it is not more than 
6mm, which can satisfy the real requirements of palletizing robot operation. The experiment 
results are shown in Table 4. 

 
 

Table 4. Obstacles or No Robot's Position and Error  
Serial 

number 
Existence of 

obstacles  
Initial 

position 
(x, y, z)/mm 

Target position(x, y, 
z) /mm 

Actual position(x, 
y, z) 
 /mm 

 
Error 
 /mm 

Whether meet 
requirement or 

not 
1 no (1100,0,750) (-1850,3200,750) (-1849,3200,751) 1.4 meet 
2 no (1100,0,750) (-1850,3200,750) (-1851,3202,749) 2.4 meet 
3 yes (1100,0,750) (-1850,3200,750) (-1853,3200,746) 5 meet 
4 yes (1100,0,750) (-1850,3200,750) (-1854,3198,754) 6 meet 

 
 
6.  Conclusion 

(1)  To adopt the standard Markov Decision Process to perform the palletizing robot 
path planning problem can appear the explosion problem of state space that influences on the 
planning efficiency. We introduce Hierarchical Markov Decision Process algorithm, which can 
greatly increase the efficiency and the speed of the palletizing robot path planning. 

(2)  The kinematics model of palletizing robot is established based on the D-H method. 
We can reach the space position of end actuators through the coordination transformation 
matrix of various connecting rods.  
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(3)  According to the obstacles space information, the state space of palletizing robot is 
divided into state cluster. We roughly plan the path of end actuators, and then gradually finely 
plan the movement trajectory of end actuators in layers. 

(4)  In order to validate the ability to avoid obstacles of the palletizing robot, we should 
increase the number of obstacles in the movement path, or change the shape of the obstacles 
in the experiment environment to further test the effect of the Hierarchical Markov Decision 
Process algorithm. 
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