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Abstract 
Intelligent Transportation Systems (ITS) applications require a thorough understanding of drivers' 

route choice behavior in a complex network under real-time information. The purpose of this paper is to 
describe and model driver route choice behavior in a road network based on real time traffic information at 
the disaggregate individual level and from a psychological decision-making process perspective. The 
framework of routing choice and driver dynamic route choice behavior model that uses concepts from 
Decision Field Theory (DFT) and Bayesian belief network (BBN) is proposed. A real-time planning 
algorithm for route choice processes is discussed in great detail. Using this algorithm, a driver develops his 
route dynamically until he reaches his destination. The simulation results show that the combination of 
DFT and BBN can effectively describe the driver's travel dynamics behavior. 
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1. Introduction 

The effect of ITS ultimately depends on drivers' response on real-time traffic 
information. Understanding drivers' response to this information is therefore critical to the design 
and implementation of ITS. It is evident that the Microeconomic Theory approach to route 
choice modeling is dominant in the literature [1]. Although several modeling attempts have 
departed from the formal utility-maximization paradigm and adopted more behaviorally realistic 
frameworks [2-3], there remains a lack of an explanatory mechanism of the decision process 
itself. Modeling of drivers' choices is mainly perceived from a structural-oriented perspective 
wherein a relationship is formulated between a set of inputs and outputs without a realistic 
understanding of the underlying psychological process. The deliberation time dimension seems 
to have been completely ignored. 

The complexity of drivers’ route choice decisions stems from two main contributing 
factors. On one hand, drivers' route choice decisions are the outcome of complex deliberation 
processes involving uncertainty. Uncertainty is a typical characteristic of any traffic network, 
even under real-time congestion information. There is uncertainty on the demand side as well 
as the supply side of the network [4]. Moreover, there is another dimension of uncertainty within 
traffic information sources. The reliability of disseminated information is never guaranteed. On 
the other hand, choice decisions are not instantaneous but rather time- consuming. The direct 
influence of the length of a deliberation process on choice decisions cannot be ignored. Drivers 
are commonly faced with divergence decisions while driving. The length of the deliberation 
process is restricted to a time frame prior to tentative bifurcation or divergence points. Available 
time frames might vary according to many factors, such as driver familiarity with the network 
geometry, daily traffic conditions, and the timing and location of information dissemination. 
Limited deliberation time frames pressure drivers to make choices possibly before their 
preferences mature to a satisfactory level.  

As such, we realize the need for a scientifically sound behavioral decision theory that 
attempts to abstract the deliberation process rather than focusing on formulating a relationship 
between inputs and outputs. This need motivates crossing the engineering borders to the 
behavioral science seeking an appropriate ground for modeling drivers' route selection 
processes. DFT [5], recently developed in psychology, is used to study drivers' multi-attribute 
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cognition and decision process under real-time traffic information and construct the model of 
dynamic route choice behaviors. Bayesian belief network is chosen to describe drivers' 
prediction, judgment, and dynamic updating of travel time and weights on each attribute for 
routes. Thereby, the model of driver route choice behavior in a road network under real-time 
traffic information is obtained and a real-time planning algorithm for route choice behavior and 
processes is discussed in great detail. Using this algorithm, a driver develops his route 
dynamically until he reaches his destination. 

 
 

2. Dynamic Route Choice Model Frameworks 
Drivers' route choices are outcomes of complex interactions of several psychological 

processes. On one hand, drivers make their choices through a mental deliberation process that 
includes a trade-off between the perceived attributes of available alternatives. Drivers form 
perceptions about these attributes based on previous experiences, day-specific experiences, 
and, in many cases, traffic information sources. Driver characteristics influence the operation of 
the underlying psychological processes and the resulting choices. On the other hand, drivers' 
route choices are performed within a unique choice environment. The complexity of the choice 
environment stems from several contributing factors, the most prominent of which are 
uncertainty and time pressure. In addition, situational conditions (such as road works), and 
environmental conditions (such as weather-related obstructions) further impact drivers' 
perceptions of the decision attributes. The highly intertwined aspects of the overall route choice 
behavior mandate the abstraction of the main underlying processes/factors for understanding 
and modeling purposes. Figure 1 illustrates an abstract representation of the main contributing 
processes/factors and their interrelations. 

For the route choice problem, our alternatives are naturally a number of available routes 
between a given Origin Destination (OD) pair. During the deliberation process, drivers compare 
and trade off alternatives based on the expected payoffs of some attributes. During the past 
decade, extensive research was focused on the analysis of factors influencing drivers’ route 
choice decisions. While considered attributes could differ from driver to another, specification of 
a set of measurable attributes is obviously essential. For the proposed model, two main trade off 
aspects or attributes are represented; Travel Time (T) and Distance (D). Specification of these 
two aspects is based on extensive review of relevant literature as well as informal discussions 
with a large number of drivers. 
 
 

 
Figure 1.  Route Choice Behavior Abstraction 

 
 

2.1. BBN Inferring Travel Time and Weights on Each Attribute for Routes 
BBN is a cause and effect network that captures the probabilistic relationship, as well as 

historical information. BBN contains prior and conditional probabilities that can be used to infer 
the posterior probability through the Baye’s theorem [6]. The major advantage of BBN is its 
ability and flexibility to handle uncertain and dynamic environments. 
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Figure 2. BBN Inferring Travel Time and Time Weight for a Route 
 
 

Figure 2 depicts a BBN used to infer the belief of a driver under the route choice 
processes. The beliefs inferred by BBN given environmental information (e.g. road works, 
weather and ATIS time) include 1) evaluation of values for attribute (travel time) for the 
considered option (a route from an intersection) and 2) weights on each attribute. The weights 

on each attribute at time t, , is obtained from ‘Time Weight’ node of BBN in 

Figure 2 by defining ‘Time Weight’ and ‘Distance Weight’ = 1- ‘Time Weight’. 

Similarly, the evaluations of available options on Travel Time attribute, , can 

be obtained from ‘Travel Time’ nodes of BBN by assigning  = ‘Travel Time’ and from = 

‘Distance’ for route i. The inferred belief from BBN is intended to be similar to that of real 
human. In this research, this similarity can be obtained by constructing BBN based on the data 
from human-in-the-loop experiments. 

 
2.2. DFT for Dynamic Route Choice 
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Figure 3. Connectionist Network Model of DFT 

 
 

DFT was developed based on psychological principles drawn from two different lines of 
psychology, approach-avoidance theories of motivation and information processing theories of 
choice time. As a behavioral decision theory oriented about decision-making process, it 
dynamically approaches the cognition of human's decision-making process based on 
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psychological rather than economic principles. DFT differs from most mathematical approaches 
to decision making in that it is stochastic and dynamic rather than deterministic and static. 
‘‘Dynamic” here denotes that DFT considers ‘‘time” as a factor affecting the decision. In 
contrast, ‘‘dynamic” in this paper means that multiple and interdependent decisions are made in 
an autonomously changing environment. DFT was initially applied to the study of decision 
making under uncertainty, and then to the research of decision-making behaviors such as multi-
attribute decisions, multi-alternative choices, and multiple measures of preference [7]. Figure 3 
provides an interpretation of the Decision Field Theory as a connectionist network that has three 
layers [8]. The first layer computes the weighted utility according to the attributes of different 
options and attention weights as formulated in (1). 

 

 (1) 
 

Where,  is the weighted utility for option i at time t,  is the evaluations for 

attribute j of option i.  is the momentary attention weights linked to attribute j. The average 
value of the attention weights corresponds to the weight in deterministic utility theory.  

The outputs of the second layer are valences which represent the advantage or 
disadvantage being considered for each option at a particular time point. These valences 
change stochastically over time as the decision maker's attention shifts unpredictably from one 
attribute to another. 

 

 (2) 
 

 (3) 
 

Where,  is the valence for option i. >0 indicates that the option i has an 

advantage under the current focus of attention while <0 indicates that the option i has a 

disadvantage under the current focus of attention. is the average utility of the other (n-1) 
options and n is the number of options. 

The third layer is a competitive recursive network. The outputs of this layer are the 
evolving accumulative preferences for the options at a particular time point. The accumulative 
preference is formed by the integration of the preference at previous time points and the 
temporal input valences. The preference state for option i is computed according to the linear 
dynamic system. 

 

 (4) 

 (n-elements vector) represents a preference state for all options at time t+h, 

is the valence vector for all options at time t+h, and h is a time step. The feedback 

matrix  of (4) represents the effect of the preference from the previous state (the memory 
effect) in the diagonal elements and the effect of the interactions among the options in the off-

diagonal elements. For the stability of this linear system, the eigenvalues of  are assumed 

to be less than one in magnitude ( |).Equation (4) can be further expanded as: 
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Where is the preference state for option i at time t+h. Equation (4) can be 

used for the model of dynamic route choice behavior [9]. As described above,  and 
can be inferred from BBN in our research. For example, if we have three options in our route 
choice processes, the corresponding DFT formula, by definition of Equation (4), is following: 

 

 (6) 
 

In model (6),  and  for . 
 

2.3. Decision Making Rules of Route Choice  
There are two DFT decision-making rules [5]:  

(1) The stopping of decision-making process is controlled by stopping time: Set  as 

the stopping time. The decision process begins at  and stops at . If 

 at that moment, alternative , with the maximum 

preference state at , is chosen.  

(2) The stopping of decision process is controlled by threshold : Set a threshold . If

, , , alternative , the first one to reach the threshold, is 
chosen. It worth mentioning that a decision-maker threshold bound is not fixed but rather varies 
according to the choice situation and time constraints. 

 
 

3. Real-time Planning Algorithms for Route Choice  
This section discusses the planning algorithm implemented within Matlab and Netica in 

a greater detail. Using this algorithm, a driver develops his route dynamically until he reaches 
his destination. The preferences of routes which are directly accessible from the current position 
are obtained via BBN and DFT. 

 

 
 

Figure 4.  The Example Road Network 
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2, 6, 11 and 12 for route F. The travel times and the distance for each link on the road network 
are shown in Table 1.  In this example, it is supposed that a driver in node 1 is searching for a 
route to the destination node 9. A series of selection process (of a route) can be described as 
following: 

 
 

Table 1. Link Characteristics  
Link Travel Time(min) Distance (km) 

short medium long 
1 14 20 36 15 

10 
22 
17 
30 
35 
16 
27 

2 9 14 24 
3 20 29 53 
4 16 23 41 
5 27 40 72 
6 32 47 84 
7 15 21 38 
8 25 36 65 
9 26 37 67 28 

10 14 20 36 15 
15 
22 

11 
12 

14 20 36 
20 29 53 

 
 

Step 1: At node 1, the driver evaluates each route (A, B, C, E, F, G) in terms of weather, 
road works, ATIS time and distance to the destination. 

Step 2: Based on his observation, the driver infers evaluation matrix M, 

, and weight vector W(t), , via BBN (see Fig. 2), where  

represents the evaluation of route A on the Travel Time (T) attribute, and is the weight on 
the Travel Time (T) attribute at time t. 

Step 3: M and W (t) obtained in Step 2 is provided to Equation (1), which generate the 

choice preference , , , , , ,  for each route.  
Step 4: Now, the route with maximum choice preference is selected. Suppose route A 

has been selected. Then, the same process (see Steps 1, 2, 3, and 4) is used to pick a route 
before the driver approaching node 2 (intersection 2).  

Step 5: Before approaching node 2 (intersection 2), the driver repeats Step 1 to 
evaluate each route (links 3, 5and 10 for route A; links 4, 9 and 12 for route B; links 4, 8 and 10 
for route C.). However, this evaluation is for the updated travel time to the destination (travel 
time to node 9 from nodes 2). Then, the driver repeats Step 2 to infer evaluation matrix M and 
weight vector W (t) via BBN, where BBN uses the updated travel time to the destination. Then, 

the driver repeats Step 3 to obtain the choice preference , , . Then, the driver repeats 
Step 4, selecting route C. 

Step 6: Before approaching node 5 (intersection 5), the driver repeats Steps 1, 2, 3, 4. 
However, as shown in Figure 4, the available routes are route B (links 9 and 12) and route C 

(links 8 and 10). Then, the driver selects a route based on the choice preference and . 
This way, route C is selected again. 

 
 

4. Simulation and Analysis of Route Choice Behaviors 
The preference model shown in Equation (6) has been simulated. Figure 5 presents the 

evolution of a driver preference with time before approaching node 2. At the beginning of the 
deliberation, process, the driver’s preference oscillates back and forth among the three options 
before it matures in the direction favoring route C over route A and B. Terminating the 
deliberation process is either performed by specifying an upper threshold bound, or by 
externally imposing stopping time. 
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The threshold ( ) is the level of preference that terminates the deliberation process 
when reached for any of the available alternatives, i.e. if the driver preference to a given 
alternative peaks beyond this threshold, the corresponding route is taken, regardless of the 
length of deliberation time. This bound is expected to be individual dependent as it may vary 
according to the driver’s characteristics, such as age, gender, and personal profile. Researchers 
have discovered that cautious drivers often use higher thresholds but impetuous ones tend to 
use lower values. In addition, it is also expected to be situational dependent as decision-makers 
could alter there level of acceptance according to the prevailing conditions: weather conditions, 
road works, trip purpose, and most importantly, time pressure constrains. Threshold is an 
important parameter to reach a trade-off between the decision-making speed and quality. This is 
because the driver cannot search and evaluate all consequences at the beginning of route 
choice, resulting in an often slow and time-consuming decision-making process (unless the 
intuition or other initial tendency is rather intense or the time stress is too high). The driver often 
recalls, evaluates, and consolidates various results (including the examination of conflicts) step 
by step and the entire decision-making process will last until the choice tendency (preference 
state) exceeds the threshold at a certain time instant. If the threshold is set so low that the there 
are too little cycles of repeated calculations on model (6), the deliberation time will be short, 
resulting in insufficiently profound processing of information. Two values of , a high value ( = 

5) and a low value ( = 3), are to be tested in our worked example to illustrate the threshold’s 
effect. 

In many route choice situations, an externally imposed stopping time terminates the 
deliberation process even before it matures. An example could be approaching a bifurcation 
point on a freeway, where a decision must be made regardless of the level of maturity of the 
deliberation process. The direct influence of time pressure constraints can be clearly depicted in 
figure 5 where low threshold bound and short time frames may result in an immature decision. 
On the other hand, relaxing the time pressure constraint is expected to result in a better, well-
informed choice decision. 

 
 

 
 

Figure 5. Preference State Evolution Before Approaching Node 2 
 
 

5. Conclusion 
The dynamic nature of drivers' choice behavior together with the uncertainty of the 

choice environment and the high variability of human preferences motivated the adoption of 
DFT as a theoretical foundation of our framework of the routing choice. DFT offers a sound 
theoretical ground for modeling the psychological process underlying drivers' choice decisions. 
In this paper, we create a drivers' dynamic route choice model through DFT research and build 
a model of drivers' prediction, judgment and dynamic updating of travel time and weights on 
each attribute for routes via BBN. The simulation results show that the combination of DFT and 
BBN can effectively explain the driver's travel dynamics behavior in a road network based on 
real time traffic information. The approach provides a new thought for describing and studying 
the effect, as well as the mechanism of action, of real-time traffic information on driver route 
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choice behavior. It can be used not only to analyze the effect of real- time traffic information on 
drivers' route choice behaviors, but also to describe more complex cognitive behaviors of 
drivers.  
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