
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 32, No. 3, December 2023, pp. 1664~1677 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v32.i3.pp1664-1677      1664  

 

Journal homepage: http://ijeecs.iaescore.com 

Ensemble model for accuracy prediction of protein secondary 

structure 
 

 

Srushti C. Shivaprasad1, Prathibhavani P. Maruthi1, Teja Shree Venkatesh1, Venugopal K. Rajuk2 
1Department of Computer Science and Engineering, University Visvesvaraya College of Engineering (UVCE), Karnataka, India 

2IEEE Fellow, Former Vice Chancellor, Bangalore University, Bengaluru, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Feb 17, 2023 

Revised Jul 24, 2023 

Accepted Sep 26, 2023 

 

 Predicting a protein’s secondary structure is crucial for understanding the 

working of proteins. Despite advancements over the years, the top predictors 

have achieved only 80% Q8 accuracy when sequence profile information is 

the sole input. An ensemble approach is proposed using convolutional neural 

network (CNN) and a classifier known as support vector machine (SVM) on 

both the partial and the whole CullPDB datasets. The protein secondary 

structure (PSS) has a complex hierarchical structure, as well as the ability to 

take into account the reliance between neighbouring labels. A detailed 

experiment yielding high levels of Q8 accuracy with scores of 97.91%, 

85.13%, and 78.02% using 20%, 80%, and 100% respectively of the protein 

residues on the new predicted dataset CullPDB6133 which is better than the 

accuracies predicted by similar models. The proposed methodology highlights 

the use of CNN as a general framework, for efficiently predicting eight-state 

(Q8) accuracy of secondary protein structures with a low time and space 

complexity. 
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1. INTRODUCTION  

Proteins are the driving force behind all biological processes since they represent the genetic code’s 

immediate expression. To ensure the normal operation of every living being, proteins serve as catalysts for 

reactions in physiological processes like digestion, deoxyribonucleic acid (DNA) replication and cellular 

metabolism. Proteins also have a role in the development of complex structures like bone and collagen and the 

upkeep of systems like the immune system [1]. In a variety of biological issues and disease detection techniques 

connected to identifying drug resistance, proteins perform a variety of roles. It is crucial to comprehend its role 

in the development of efficient diagnostic techniques [2], drug target identification/discovery [3] and 

therapeutic interventions [4]. 

Proteins made of amino acid sequences are bound together by peptide bonds. All proteins that are 

known are composed of about 20 distinct amino acids. Each amino acid (AA) is composed of an atom carbon-

centered backbone (Cα), a COOH functional group that represents the carboxyl group, a NH2 group that 

represents an amino group and a side chain or R-group. A carbon atom (C) bonds to an oxygen atom (O) 

through a double bond (C=O) and to a hydroxyl group (OH) via a single bond in the COOH functional group. 

The nitrogen atom in the centre is bonded to two hydrogen atoms to form the amino group. Because each AA 

has a unique R-group, they all exhibit different chemical properties. Proteins perform a variety of tasks 

attributed to the variability in the R group among the 20 amino acids. The simplest R group, consisting of just 
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one hydrogen atom, is found in glycine. Determining the folded, or tertiary, structure of the thousands of newly 

found protein sequences each year is essential to understanding their biological significance [5]. 

Protein secondary structure (PSS): The primary motivation behind the protein secondary structure 

prediction (PSSP) is that most protein folding prediction methods rely on information about the PSS. This is 

because knowledge of the PSS is a crucial prerequisite for accurately forecasting the protein’s native or 3D  

(3-Dimensional) structure [6]. The accurate PSS identification helps comprehend the intricate dependencies 

between protein sequences and tertiary structures. Thus, PSS is relied upon for its application in protein 

structure modeling, protein function prediction, protein folding studies, annotating a protein’s functions, and 

changing proteins (protein engineering) [7].  

The PSS encompasses the α-helix, the β-sheet (also known as a pleated sheet) which was first 

introduced in [8] and random coil. Helix (represented as H), strand (represented as E), and coil (represented as 

C) are the three states (Q3) that characterize PSS. The Q3 was then evolved into 8 states represented as Q8. 

The 8 states are α-helix (represented as H), β-strand (represented as E), isolated β-bridge (represented as B), 

310-helix (represented as G), π-helix (represented as I), bend (represented as S), turn (represented as T), and 

Others (represented as L), to provide a more precise description of the PSS [9]. The more difficult Q8 prediction 

can provide more exact and highly detailed information on the proteins’ structural characteristics. Figure 1 [10] 

depicts a typical sequence and the corresponding secondary protein structure in 2D visualization. 

 

 

 
 

Figure 1. A typical example of structural protein sequences 

 

 

The significance of PSSP in accurately determining the tertiary structure of proteins, coupled with the 

high costs and high time complexity of experimental methods, there is a growing demand for computational 

approaches to handle these predictions efficiently. Q3 and Q8 accuracies, which respectively assess the 

proportion (%) of residues for three-state and eight-state secondary structures (SS) are used to evaluate PSSP. 

The proposed study makes substantial contributions. The fundamental framework is an ensemble architecture 

of deep convolutional neural network (DCNN) with support vector machine (SVM) and is utilized to ascertain 

the Q8 accuracy of the PSS. Q8 accuracy obtained is higher than the models using SVM with only sequence 

features. The proposed technique with the custom CullPDB6133 dataset has an improved accuracy of 3% over 

earlier work. 

The paper is organized into six sections. The scope and context of the study are highlighted in section 1. 

The literature survey is presented in section 2. In section 3, a comprehensive explanation of the materials and 

methods is detailed. Section 4 provides an in-depth description of the proposed model and algorithm. In  

section 5, experimental setup, data, outcomes and comparative analysis are presented. The summary of the 

research article is outlined in section 6. 

 

 

2. RELATED WORK 

PSSP is now feasible with advanced deep learning (DL) algorithms that outperform machine learning 

techniques. Due to this, there is clear productivity in accurate prediction. The algorithms used are based on 

convolutional neural network (CNN) [11], and recurrent neural networks (RNN) [12]. DeepCNF [13] makes 

use of deep hierarchical design to find the interdependency between neighboring secondary structure labels. 

To efficiently process local and non-local interactions between amino acids, MULFOLD-SS [14] uses 

hierarchical deep inception blocks. The ensemble model of generative stochastic network (GSN) architecture 

and CNN for PSSP has been proposed in the study [15]. To combat the loss of detail in the data brought on by 

CNN’s convolution and pooling stages, MUST-CNN [16] has made use of Multilayer-Shift-and-Stitch for 

PSSP. The method based on SVM RBF kernel was introduced in [17]. The inputs for this study are sequences 

of AA and position specific scoring matrix generally known as PSSM. The prediction of PSS using ensemble 
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techniques, such as DL models based on AdaBoost and Bagging is described in [18]. A two-stage hybrid 

classifier known as ROSE predicts PSS in two stages. It uses a 1D bidirectional recurrent neural network 

(BRNN) and SVM in the first stage and last stage respectively [19]. A novel technique is introduced for 

forecasting one-dimensional structural characteristics of proteins. It relies on an ensemble of various neural 

network models, including long short term memory (LSTM)-BRNN, residual network (ResNet), and fully- 

connected neural network (FC-NN), with input from predicted contact maps provided by SPOT-contact [20]. 

There are many servers that are used in predicting the PSS such as Porter [21], JPred4 [22]. Table 1 provides 

an overview of the most recent developments in predicting PSS. 

 

 

Table 1. Table summarizing relevant research 
Author & year 

of publication 
Concept and model 

Performance 

(Q8 Accuracy) 
Advantages Disadvantages 

Yuan et al. 
[23] 

 

2022 

DLBLS_SS: PSSP using DL 
and broad learning system 

73.35% on CB6133 
dataset 

Strong feature extraction 
potential with the ability 

to predict using both 

local and global optimal 
features, improving the 

identification of 

secondary structure (SS). 

The model does not 
explore complex 

sequence-structure 

relationship. 

Yang et al. 

[24] 

 
2022 

ShuffleNet_SS: The network's 

capacity to learn unusual 

classes is improved by using 
label distribution aware 

margin loss and modified 1D 

batch normalisation 

ShuffleNet_SS 

(LDAM): On CB513 

dataset: 71.87%. 
Loss used is label 

distribution aware 

margin (LDAM) 

The domain of 8-state 

deep Secondary Structure 

Prediction (SSP) is 
incorporating the loss for 

imbalanced datasets. 

Imbalanced 

classification methods 

to raise the accuracy 
of the rare classes is 

not considered. 

Yuan et al. 

[25] 

 
2023 

Bidirectional temporal 

convolutional network 

(BTCN), BLSTM, with 
proposed network 

Multi-scale bidirectional 

temporal convolutional 
network (MSBTCN) 

 

73.89% on CullPDB 

dataset 

Strong stability and 

feature extraction 

capabilities, which 
successfully address the 

drawbacks of inadequate 

capture of long-range 
(distant) dependencies in 

sequences 

When interacting 

with additional real 

sequence data, BTCN 
might overlook 

certain information 

whereas MSBTCN 
might add irrelevant 

information. 

Srushti et al. 

 

Proposed 
system 

Obtain well-curated 

dataset 

“CullPDB6133Filtered” 
Deep CNN to generate 

feature maps from the 

processed dataset and 
given as input to SVM 

classifier. 

(i) 97.91% of Q8 

accuracy on 20% of 

CullPDB6133 filtered 
dataset 

(ii) 85.13% on 80% of 

CullPDB6133 filtered 
dataset 

(iii) 78.02% on 

CullPDB6133 dataset 

The proposed technique 

is the first to employ the 

filtered CullPDB6133 
dataset and it has 

improved accuracy of 

3% over previous 
research on the same 

dataset. 

 

 

 

The objective and goal of this research are to find the Q8 Accuracy of PSS when provided with an 

unprocessed protein dataset with low computational resources. Thus, the focus is on preparing a clean dataset 

or filtered dataset from the CullPDB6133 dataset that contains duplicate, to train a deep neural network for the 

classification using a blend of the CNN model, providing a model with a classification accuracy of more than 

80% for PSS prediction using 20% of the CullPDB6133 filtered dataset. 

 

 

3. METHOD 

This section outlines the dataset and network architectures in the proposed system. The protein dataset 

contains the essential information required for training and evaluation of ensemble model. The network 

architectures shed light on the intricate designs that underpin the core functionality of the proposed system. 

 

3.1.  Dataset description 

In order to determine a protein’s secondary structure, one must have access to protein sequences, 

protein data, and protein databanks. Mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy, 

exclusion chromatography is some of the techniques used to progressively and persistently uncover the structure 

of proteins. Newly identified proteins deposited in databanks like the protein data bank (PDB) [26] have been 

used as a default dataset by researchers for decades. When it comes to protein data, including 3D structure, the 

PDB is a de-facto standard.  
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To ensure consistency in benchmarking, the proposed system relied on the validated dataset from 

Princeton University hosted on the Princeton University official portal. The dataset utilized is the CullPDB6133, 

which has 6,133 proteins, with a total of 39,900 characteristic features and 700 amino acids along with 57 

characteristics. The peptide chain length is indicated by the number 700, while 57 denotes the number of 

characteristics for each position of AA. Although it might vary with fewer or greater numbers of amino acids, the 

protein’s polypeptide chain typically consists of 200-300 amino acids.  

In this dataset, a protein chain’s average length is 208 amino acids. Out of the total of 57 features, 22 

pertain to the protein’s fundamental structure, and 9 to its secondary structure. Rather than relying on amino acid 

residues, protein profile residue was used. The original CullPDB6133 file uploaded by Princeton University 

contains duplicates. Thus, to fix the issue and provide a well-curated dataset, subsequently called 

“CullPDB6133Filtered”, the original dataset is transformed using principal component analysis (PCA) to reduce 

dimensionality. 

 

3.2.  Network architecture 

The neural nework layers which are utilized in the model are the CNN, MaxPool layer, Flatten Layer, 

Dense Layer, Activation Function, Dropout Layer, Learning rate as well as SVM. The description of each is 

mentioned below. The next section describes the model’s overview. 

 

3.2.1. The convolutional layer 

CNN’s components are often the same size as the final product of the computations. The hidden units 

perform a dot-product operation on the data, storing information about the connections between the data points. 

Each piece of information generated by a hidden unit is recorded on a feature map, and there will be as many 

feature maps as hidden units. Next, the existing feature maps undergo the pooling stage, which retrieves 

detailed information from the feature maps. The function Conv2D(filters, kernel size, stride, padding, 

activation) performs convolution operation. 

Non-linearity is a crucial concept in CNN. The max-pool layer’s non-linear function is used in this 

model to guarantee that the greatest possible number of non-overlapping regions was chosen. The max-pooling 

procedure MaxPooling2D(poolsize, strides, padding) can obtain the best value of any region of interest (ROI) 

in a m*n dimensional image, as explained by a function represented as k and stride size as illustrated in (1). 

 
𝑚−𝑘

 𝑠𝑟+1
∗

(𝑛−𝑘)

𝑠𝑟+1
 (1) 

 

The input image is further down sampled by max-pooling() layer as shown in Figure 2. This is envisaged in [27]. 

 

 

 
 

Figure 2. Max-pooling operation using a 2𝑥2 filter 

 

 

3.2.2. Dropout layer, learning rate 

The dropout layer was first proposed in the study [28]. To avoid complex co-adaptations on the 

training data and improve generalization, the dropout method randomly excludes half of the feature detectors 

through every instance of training. The function Dropout(dropout-rate) prevents overfitting in neural networks. 

The use of a learning rate was initially suggested in [29]. Since the learning rate is a component of the overall 

weight update rule and is computed at the end of the backpropagation layer, it determines the extent of the 

feedback required. The value is between 0 and 1. 
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3.2.3. Activation function 

The model becomes non-linear when an activation function which is a mathematical function, is 

applied to a neuron’s output. Since they aid in the modelling of complicated interactions and provide neural 

networks the ability to learn and make non-linear judgments, activation functions are a crucial part of neural 

networks. The example would be to mention functions including Sigmoid, rectified linear unit (ReLU), Leaky 

ReLU, Tanh (Hyperbolic Tangent), Softmax [30] as activation functions in the model. 

 

3.2.4. Fully connected layer 

The layer referred to as the FC layer is a Fully Connected layer in which each individual neuron or 

node is coupled to every neuron in the preceding layer. They identify images using the convolved features, just 

as conventional NN. Loss functions are calculated and then propagated through backpropagation. The 

suggested model has five levels, all of which are coupled to one another and result in an output layer. SoftMax 

is the activation function used by each of the four nested layers. Each independent label seeks to predict the 

probability within 0 and 1 generated by one of the activation functions known as the sigmoid activation 

function. This is defined in (2). 

 

𝑆𝑖𝑔𝑛(𝑥) =
1

1+𝑒−𝑥   =
𝑒𝑥

1+𝑒𝑥 (2) 

 

Where x=input vector 

The deep CNN is an extension of basic CNN architecture with the addition of dilated layers of dropout 

regularization. A convolution, pooling, and FC layers make up the three main layers of a CNN. The image is 

then fed to the convolution layer, where feature extraction neurons are located. Convolving a filter, which is a 

matrix of size f*f with the input images results in an activation map; a constant called stride length which is 

used to move the filter across the images. When applied to an image of size m*n, convolution with a filter 

represented as fr, padding pa and stride represented as sr produces the corresponding result. 

 

(𝑂𝑈𝑇𝑖𝑚𝑔) =
(𝑚−𝑓𝑟+2𝑝𝑎)

𝑠𝑟+1
∗

(𝑛−𝑓+2𝑝𝑎)

(𝑠𝑟+  1)
 (3) 

 

Also, the training images have a huge impact on the filter's accuracy. Nonlinearity was introduced to the model 

via the standard SoftMax((xa)) in (4) as: 

 

 𝜎(𝑥𝑎) =
𝑒𝑥𝑎

∑  𝑒𝑥𝑎𝑛
𝑏=1          

 (4) 

 

for a = 1,…,n; x= (x1,x2,…,xn) € Rn 

where n =the sum of all the elements of the input vector x and xi depicts each element of the vector space. 

 

3.2.5. Flatten layer 

Although the spatial structure of the CNN hides the nature of the underlying matrix multiplication, 

one may flatten this spatial structure to conduct the multiplication and then "reshape" it again using the 

elements’ recognized spatial positions [31]. A flatten layer is a layer that converts multi-dimensional data into 

a one-dimensional array or vector. This is frequently done in order to get the data ready for more processing, such 

as feeding it into fully connected layers or other neural network topologies that need one-dimensional input. 

 

3.2.6. Support vector machine 

SVM are a type of classifier used for both binary classification and multiclass classification tasks. It 

employs separating hyperplanes (decision borders) to distinguish between classes. The SVM aims to maximise 

the separation between the classes to make the decision boundary as remote as possible. Some of the 

applications including image recognition, bioinformatics, computer vision, natural language processing (NLP), 

text and document analysis are shown to benefit from the use of SVM. 

 

 

4. PROPOSED METHOD 

In order to address spatial issues, CNN model has been developed. In order to retrieve useful 

characteristics from the data, CNN is employed to perform feature extraction and enrichment, thus transforming 

the data into a higher dimension. The dependability between AA residues across a long distance in AA sequences 

were captured with the help of the CNN. To prevent overfitting, an approach proposed in [32] is used. Later, 

SVM was used because of its capacity to classify high-dimensional data.  
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4.1.  Overview of the model 

An ensemble strategy enhances the performance and accuracy of the deep learning models. An extension 

of the CNN model is DCNN and with an additional SVM classifier, an ensemble model known as DCNN_SVM 

is proposed in this work. The Figure 3 gives the architecture of the DCNN which consists of convolution layer, 

fully connected layer, flatten layer, dropout layer, learning rate, activation function, max pool layer and these 

have been described in the previous section.  

 

 

 
 

Figure 3. DCNN architecture 

 

 

4.1.1. Data preprocessing 

The initial stage of PSSP is to transform a set of proteins into feature-based representations from 

alphabetic strings of capital letters, which correspond to the twenty naturally occurring amino acids. In this 

study, the feature-based representation used for protein sequence is one hot encoding, where each AA is 

represented by a binary vector indicating the presence or absence of it. Principal component analysis (PCA) is 

one of the extensively used techniques for reducing the dimensionality of a dataset. PCA uses the covariance 

matrix, along with its eigenvectors and eigenvalues, to determine the major components in the data. These 

primary components are uncorrelated eigenvectors that each contribute to a portion of the data's variance.  

Using sums of squares and cross products, the eigenvalues and eigenvectors of a square symmetric 

matrix are solved, and this is the mathematical method utilized in PCA. The direction of the first principal 

component is associated with the eigenvector connected to the biggest eigenvalue. The second principal 

component's direction is determined by the eigenvector connected to the second-largest eigenvalue. The 

maximum count of eigenvectors is equal to the number of rows (or columns) of this matrix, and the sum of the 

eigenvalues equals the trace of the square matrix. The function for the same is described below [33]. 

Function: PCA (protein dataset) 

Begin 

Step (i) Get the protein dataset  

Step (ii) Subtract the mean  

Step (iii) Compute the data sets’ covariance matrix 

Step (iv) Compute the covariance matrix's eigenvectors and eigenvalues 

Step (v) Choose Components and form Feature Vector  

Step (vi) Derive new dataset  

Step (vii) Get old data  

Return transformed protein dataset 

End 

 

4.1.2. Feature extraction 

Because irrelevant features frequently have an impact on how well the machine learning (ML) 

classifier performs classification, the extraction of the significant features is a crucial step. The process which 

performs data analysis to obtain informative features from raw data is known as feature extraction. The model’s 

training time is shortened and classification accuracy is increased with the right feature extraction technique.  
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4.2.  Algorithm for the proposed model 

The proposed algorithm for Q8 Accuracy prediction of PSS from an ensemble model of DCNN and 

support vector machine (DCNN_SVM) is given below. The proposed algorithm consists of 2 algorithms. They 

are Preprocessing and Build_DCNN_SVM_Model. Algorithm Preprocessing performs preprocessing 

operation on the protein dataset. It has two procedures: procedure DataPreprocessing and procedure Find. In 

the preprocessing operation defined in procedure DataProcessing, the dataset is handled for missing values 

and categorical data for every instance in the dataset. The output is the preprocessed protein dataset which is 

an input to the procedure Find. The Find procedure selects the appropriate dataset (CullPDB6133 or 

CullPDB6133Filtered). In order to reduce dimensionality and duplicates in the dataset, PCA is applied to the 

original protein dataset to obtain transformed dataset known as CullPDB6133Filtered. The algorithm 1 for the 

same is mentioned below.  

 

Algorithm 1: Preprocessing 
Begin 

 Input: protein dataset  

 Output: protein dataset 

 

Procedure DataPreprocessing (protein dataset) 

Begin 

for every instance in the dataset do 

   Handle missing values 

   Handle categorical data  

  End for 

  Return protein dataset 

 End       //End procedure DataPreprocessing 

 

Procedure Find(protein dataset) 

 Begin   

  Input: Protein dataset 

  Output: Protein dataset // preprocessed or transformed protein dataset 

 

Switch (protein dataset) 

  Begin 

    Case 1: Return protein dataset 

    break 

     Case 2: //Reduce dimensionality by applying PCA to original dataset 

    PCA(protein dataset) 

    Return transformed protein dataset 

End  //End switch 

 End    //End procedure Find 

End     //End Algorithm Preprocessing 

 

The algorithm Build_DCNN_SVM_model builds the model by taking the protein dataset generated from 

the previous algorithm as input. It consists of two sub-procedures DCNN and Forward_SVM. An ensemble 

architecture of DCNN with SVM is used to ascertain the Q8 accuracy of SSP. The introduction of drop-out and 

batch normalization layers with One-Hot Encoding yields improved results in terms of Q8 accuracy and the 

model under consideration achieves higher Q8 accuracy than using only SVM [34] with sequence features. 

The process for training entails using a few of the initial settings of 125,005 trainable parameters. Among 

the main problems with this strategy is the padding it requires for shorter sequences, nevertheless affecting the 

loss on the complete sequences. The outputs from the padding region are unique in shape for each case. The 

algorithm for the proposed model is highlighted for Q8 accuracy as illustrated in the Algorithm 2. The DCNN 

network consists of two 128-filter length convolution layers and one each of 64, 32, 16-filter lengths convolution 

layers for classification. All of the layers were generated using a 2x2 kernel. In this design, the 2x2 max-pooling 

layer is taken into account and the stride length is set to 2. The last pooling layer’s 2D output will generate feature 

maps and is flattened in a flattening layer, turning it into a 1D layer. Padding is the same for all convolution layers. 

To divide the data into two groups, a SoftMax activation function is applied to a fully linked layer of size 1024. 

Adam is the optimization function that is employed. The value of learning rate (lr) is set to 0.0001.  

The sub-procedure will return detailed information from the generated feature maps which will then 

be forwarded to the sub-procedure Forward_SVM. In this sub–procedure, the output from the sub-procedure 

DCNN will then be used to compute the Q8 accuracy of PSSP. The Q8 accuracy is computed when the 

condition argmax() prediction <0.5 is met. The window size is selected to be above 11 as the typical length of 

an α-helix is about 11 residues and the β-strand is approximately six residues. Various even sizes of 11 through 

23 were examined, with 17 offering the best accuracy. The model summary is presented in Figure 4. 
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Algorithm 2: Build_DCNN_SVM_model 
Begin 

 Input: protein dataset 

 Output: Q8 Accuracy 

 

Procedure BuildModel(protein dataset) 

Begin  

Sub-procedure DCNN( protein dataset) 

Begin 

 Input: protein dataset 

 Output:Generated feature maps 

For every input in dataset do 

   Add Conv2D layer, Maxpooling Layer 

   i=0 

while i<3 do 

Step (i) Add Conv2D Layer, Maxpooling Layer 

Step (ii) Generate Feature Maps 

Step (iii) Activation(Relu) 

Step (iv) Padding(same) 

Step (v) Dropout(25%) 

End while 

Add Conv2D Layer, BatchNormalization 

Add Conv2D Layer, BatchNormalization 

Add Flatten Layer, Add Dense Layer 

Dropout(25%) 

   Add Dense(1) and activation(softmax) 

  End        //End for 

  Return predicted feature maps 

 End   //End sub-procedure DCNN 

 

//Forward to SVM model 

    

Sub-procedure Forward_SVM(predicted feature maps) 

Begin 

 Input: protein dataset 

 Output: Q8 Accuracy 

 

If argmax() prediction <0.5      

  Compute Q8 Accuracy 

   Else 

    BuildModel( protein dataset) 

   End if 

   Return Q8 Accuracy 

End  // End subprocedure Forward_SVM 

End            //End procedure BuildModel 

End          //End algorithm                                          

 

 

 
 

Figure 4. Model summary 
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5. EXPERIMENTATION AND DISCUSSION 

Since the available experimental approaches to address the PSSP problem are exceedingly expensive 

in terms of both money and time the attempt to do so was substantial. PSSP seeks to provide as precise structure 

predictions as possible, given only the blueprints. The metric Q8 accuracy measures how well a protein's 

secondary structure was predicted using an eight-state model. The principal aim of this study is to implement 

and design an ensemble of deep CNN and SVM model capable of predicting the PSS based on its foundational 

structure. CullPDB6133 and a sliced version, CullPDB6133Filtered is utilized to as the dataset for this study. 

CullPDBFiltered dataset is obtained by applying PCA algorithm to the original CullPDB6133 dataset. In order 

to facilitate training and evaluation, the dataset is partitioned as per Table 2. 

 

 

Table 2. Distribution of the CullPDB6133 dataset 
CullPDB6133 dataset 80% of CullPDB6133Filtered  20 % of CullPDB6133Filtered  

Training: 80% vs 

Val: 20% 

Training: 80% vs 

Val: 20% 

 Training: 80% vs 

Val: 20% 

 

 

The experiment was performed using two approaches. First, the CullPDB6133 dataset was used 

completely and second, only partial slices of them are used. The model was subsequently trained in phases, viz:  

Case 1: 80% of the sequences are sampled. For the training, 80% of the sampled sequences is used, whereas 

20% is used for testing.  

Case 2: 20% of the sequences are sampled. For the training, 80% of the sampled sequences is used, and the 

remaining (20%), reserved for testing. 

To ensure that the suggested model can correctly interpret protein structures including helices, sheets, 

and loops, it is trained on proteins.  

 

5.1.  Experimental setup 

The following describes the experimental setting for the aforementioned findings. 

Hardware: The model is trained on a Windows 10 computer featuring an Intel(R) Pentium(R) Core i7 8 th 

Generation processor, operating at a clock frequency of 2.30GHz, and utilizes a dedicated graphics accelerator 

card, the GeForce GTX 1060. 

Input features: A two-part input feature for a sequence is considered. They are position-specific scoring 

matrices (PSSM) and one-hot vectors for a sequence. One-hot vectors of length 21 (20 different types of amino 

acids, and an unknown AA) represent each AA in the protein sequence. The PSSM is a representation of the 

occurrence with which different types of amino acids appear at various locations in the protein sequence. 

 

5.2.  Model performance metric 

The efficiency of the suggested model for predicting the Q8 accuracy of PSS was evaluated using the 

quantitative standard metrics stated in (5). A system’s accuracy (Acc) can be thought of as the proportion of 

properly labelled instances relative to the sum of instances. The corresponding equation is mentioned. 

 

𝐴𝑐𝑐 =   
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+ 𝐹𝑃+𝐹𝑁+𝑇𝑁
 (5) 

 

5.3.  Results and discussion 

5.3.1 Model performance 

The accuracy of the proposed model at various epochs is mentioned in Table 3. The train and 

validation accuracy when using 80% of the CullPDB6133Filtered dataset is 83.91% and 85.13% with the 

highest at the 20th epoch. Using the filtered dataset, the model is trained for 4 epochs with an early stoppage 

hyperparameter. Keeping the learning rate constant (0.00001), with a bias factor of 0.01 and momentum at 

0.009, a training and validation accuracy of 98.62% and 97.91% is recorded as illustrated in Figure 5. 

It can be noted that for the complete CullPDB6133 dataset, although the model is trained for 38 epochs 

using early stoppage, the highest accuracy was recorded at the 35th epoch, and the model improved no further 

even with the patience factor of 3, which was the main reason the accuracy vs epoch curve stopped at 35 th 

epoch. This behavior is illustrated in Figures 6 and 7 respectively. Fifty-five training epochs are used to perfect 

the DCNN_SVM on the CullPDB6133 dataset (on CPU in approximately 14 hours). It can be inferred that the 

approach in the proposed system yielded an improvement over the previous research because of 

hyperparameter tuning. The learning rates and epochs alongside variations of batch normalization were 

carefully chosen.  
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Table 3. Model accuracy across epochs 
CullPDB6133 #Epochs Training Acc. (%) Val Acc. (%) 

 
 

 

 
 

10 68.93 70.01 
20 73.67 76.29 

30 75.99 77.56 

35 77.90 78.02 

38 77.59 76.89 

 20% of CullPDB6133Filtered 

 

#Epochs Training Acc. (%) Validation Acc. (%) 

4 98.62 97.91 

20 98.20 97.13 

 80% of CullPDB6133Filtered 

 

#Epochs Training Acc. (%) Validation Acc. (%) 

4 68.45 70.23 
20 83.91 85.13 

 

 

 
 

Figure 5. Accuracy vs Epoch of the DCNN_SVM (20% of CullPDB6133Filtered) 

 

 

 
 

Figure 6. The DCNN_SVM model Q8 accuracy 

 
 

Figure 7. DCNN_SVM model loss 

 

 

5.3.2. Performance analysis 

The model’s performance analysis with other authors is presented in Table 4. The results of the 

proposed research are highlighted in bold. Chopra andBender [35] employed cellular automaton for PSSP. It 

was provided with AA sequence as an input and the rules evolved via a genetic algorithm for updating states 

to compute Q3 accuracy. The accuracy obtained was 56.51% for the CB513 dataset. Because it tried to replicate 

the folding determinants prevalent in nature, accuracy was reduced. The approximate Q8 accuracy presented 

by Asgari and Mofrad [36] on PDB dataset is around 93%. The proposed model has better accuracy since it 

uses an ensemble of DCNN and SVM. 
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Table 4. Comparison with other authors 
Year Authors Dataset/Methods Accuracy 
2007 Chopra et. al [35] CB513 56.51% 
2015 Asgari and Mofrad [36] PDB 93%±0.06 

2023 (20% of the dataset) Proposed (DCNN_SVM) CullPDB6133Filtered 97.91% 

2023 (80% of the dataset) Proposed (DCNN_SVM) CullPDB6133Filtered 85.13% 

2023 (100% of the dataset) Proposed (DCNN_SVM) CullPDB6133 78.02% 

 

 

The performance comparison with other models is tabulated in Table 5. The proposed model 

DCNN_SVM is compared with DeepACLSTM [37], PS8-Net [38], OneHotEncoding with LSTM [39] which 

are trained with CullPDB6133 dataset. They have achieved Q8 accuracy of 74.2%, 76.89% and 77.8%. In 

DeepACLSTM, asymmetric convolutional neural networks (ACNNs) with BLSTM are combined and the 

advantage of the protein feature matrix’s feature vector dimension is taken. The long-distance 

interdependencies between AAs are captured by BLSTM neural networks, while ACNNs extract the intricate 

local contexts of AA. The PS8-Net module operates with skip connections to collect global information during 

SSP by extracting long-term interdependencies from deeper layers and retrieving local contexts from previous 

levels. In Onehot encoding and LSTM-based method, the model uses the OneHotEncoding approach. The 

entire protein sequence is transformed using this technique into the input feature vector and it is then provided 

as input to the LSTM model for PSSP as DCNN_SVM uses feature maps generated from DCNN as input to 

SVM and then computes Q8 accuracy of PSSP.  

 

 

Table 5. Proposed model performance comparison with other models on CullPDB6133 
Sl. No Model Dataset Accuracy (%) 

1 DeepACLSTM [37] CullPDB6133 74.2(Q8) 
2 PS8-Net [38] CullPDB6133 76.89%(Q8) 

3 OneHotEncoding and LSTM [39] CullPDB6133 77.8(Q8) 
4 *DCNN_SVM [Proposed] CullPDB6133Filtered 97.91(Q8) 

 

 

The performance comparison of different models with the said model is represented in Figure 8. The 

average of the Q8 Accuracy of DeepACLSTM and OneHotEncoding and LSTM-based model across 25 epochs 

is plotted. The labels proposed_80% and proposed_20% refer to the DCNN_SVM model trained using 80% 

and 20% of the CullPDB6133Filtered dataset. 

 

 

 
 

Figure 8. Performance comparison with other models on CullPDB6133 

 

 

6. CONCLUSION 

In the proposed work, an ensemble model deep CNN with SVM (DCNN_SVM) for predicting Q8 

accuracy of PSS was proposed. To store detailed contextual information, two stacked layers of deep neural 

networks alongside an SVM classifier block was proposed. It was able to extract protein information using the 
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DCNN. The proposed model was able to attain an accuracy of 97.91% on the filtered dataset of 20% of the 

CullPDB6133Filtered dataset. According to the results of several testing, DCNN_SVM suggested method, was 

found to be generalizable, and suited for both sequence-labelling tasks and PSS activities. 

Despite using lower computation and processing resources, accuracy comparable to certain cutting-

edge techniques was reached. However, the work is limited as the performance of the proposed approach on 

other available large PSS datasets could not be investigated. The future enhancement will be to incorporate 

other benchmarked datasets and high-end computing systems to predict Q8 accuracy in PSS. 
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