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 The integration of distributed generations (DGs) into distribution system 

networks has seen a significant increase owing to the depletion of 

conventional energy resources and the growing power demand. However, a 

high penetration of DGs can adversely affect the stability of the distribution 

networks due to the intermittent nature of their generation capabilities. Hence, 

it is crucial to design DGs optimally to support grid voltage regulation and 

improve distribution networks performance. This study utilizes a particle 

swarm optimization (PSO) with time-varying acceleration coefficients (PSO-

TVAC) technique to optimize the location and size of various distributed 

generation units while minimizing the total active power loss. The initial 

system power loss was determined using a distribution load flow analysis 

based on the backward-forward technique. The PSO-TVAC algorithm was 

then employed to identify the optimal placement and sizing of DGs within the 

standard IEEE 33-bus radial distribution network. To assess the proposed 

algorithm's effectiveness, photovoltaic (PV) and wind turbine (WT) were 

considered as the DGs. In comparison with other algorithms, PSO-TVAC 

achieved the lowest power loss, measuring 72.79 [kW] and 12.14 [kW] for  

3-PV and 3-WT installations, respectively. Furthermore, the optimal 

installation of 3-PV and 3-WT improved the distribution system performance 

by 65.49% and 94.25%, respectively. 
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1. INTRODUCTION 

Electricity is distributed to individual customers through a distribution network, which is the last stage 

of an electrical supply system. The heat produced by current flow during power distribution could result in 

power loss [1]. For a large-scale distribution network, the total power loss of the system may be significant. 

According to a previous research, distribution network system losses accounted for 70% of total power system 

network losses, while transmission and sub-transmission line losses accounted for 30% [2]. In accordance with 

the losses issue, one of the techniques that can be utilised to reduce power loss in a power system network is 

by installing distributed generations (DGs) near to load centers [3]. Additionally, integrating renewable DGs 

units as alternative sources for conventional power plants will significantly help in addressing the rapidly 
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increasing load demand issues [4]–[6]. The DGs use smaller generating units, ranging from 25 [kW] to 100 

[MW] [7], which allow for more flexible power supply as the system can be easily disconnected for inspection 

if a fault occurs. Furthermore, DGs are more reliable than large power grids, which are more prone to faults. 

Additionally, DGs help to improve the voltage profile, power quality, and overall grid reliability [8]. Despite 

the previously mentioned benefits of DGs, improper placement and sizing of the units in distribution networks 

may result in significant technical issues. These technical issues would have a negative impact on voltage 

reduction, power supply dependability, system stability, power losses, protection system, and undesirable 

islanding [9]. Integrating DGs into existing power networks may result in several drawbacks since conventional 

electrical grids have always been built to supply load demand from the generation side [10]. However, the 

power flow will be bidirectional if the DGs are connected to the system as the surplus power produced is fed 

back to the generation side. 

In a distribution network, selecting the optimal location and size for DGs involves complex 

optimisation problems [11]–[15]. To ascertain adequate placement and size of DGs in the distribution network, 

various meta-heuristic optimisation techniques have been proposed. Crow search optimisation (CSO) was 

employed to determine the optimal sizing and placement of distribution generation for an actual radial 

distribution system in Egypt [16]. Furthermore, the hybrid lightning search algorithm-simplex method (LSA-

SM) [17] and flower pollination algorithm (FPA) [18], [19] were used to optimise the distributed generation 

systems. Another method of determining the optimal location of DGs was based on the firefly algorithm (FA), 

which mimics the attractiveness of the firefly as a function of the light intensity seen by adjacent fireflies [20]. 

The optimal positioning and sizing of grid-connected DGs in radial distribution networks can be accomplished 

through the application of a well-established optimization technique, particle swarm optimization (PSO) [21]. 

Another study Halim et al. [22] employed the moth flame optimization (MFO) algorithm, which incorporates 

distinct spiral courses, to determine the most favorable placement and sizing of DGs in the IEEE 12 and 33-

bus radial distribution networks. A new technique for optimal sizing and placement of DGs consisting of 

photovoltaic (PV) and wind turbine (WT) in a radial distribution network was proposed in this work.  

To minimise active power losses and improve the voltage profile, particle swarm optimisation with time-

varying acceleration coefficients (PSO-TVAC) technique was used to solve the optimisation problem while 

taking equality, inequality, and security constraints into account. The algorithm has proven its ability to provide 

consistent and robust solutions to a variety of power system optimisation problems. 

 

 

2. METHOD 

The following sub sections discuss the methodologies involved in this study. The first procedure was 

related to the formulation of a distribution system based on the standard IEEE 33-bus radial system network. 

The next procedure involved the implementation of a meta-heuristic algorithm, known as particle swarm 

optimisation with time-varying acceleration coefficients to determine the best location and sizing of DG 

installation in the 33-bus radial distribution system network. 

 

2.1.  Power flow formulation of a distribution system 

A power flow study is a common technique used in electrical engineering to optimise the operation 

of a power system network. The optimal operating condition for the electrical network can be determined by 

identifying the amounts of generation and consumption. The process of power flow analysis begins by 

identifying the system’s elements including generator, transformers, and transmission lines. The network is 

modelled mathematically, and simulations of different power flow scenarios can be conducted to determine 

the bus voltage magnitude and phase angle, real and reactive power flow in different lines as well as the power 

loss due to the inefficiencies of the system. Thus, the power flow analysis can identify the potential ways to 

improve the efficiency of the system and reduce the amount of power loss such as the location of DGs 

installation and their sizing. In a radial distribution system, backward forward sweep (BFS) method is opted 

due to the special features of radial structure, high R/X ratio and unbalanced load [23]. In BFS algorithm, there 

are three major steps to calculate the power flow of radial distribution system as follows. 

 

2.1.1. Three steps to calculate the radial power flow distribution algorithm of the BFS system 

Step 1: Create bus-injection to branch-current (BIBC) matrix. The BIBC matrix is modified based on 

a 6-bus system as in Figure 1. Figure 1(a) shows the configuration of the 6-bus system while Figure 1(b) shows 

the BIBC matrix which represents the branch connection between buses of the network. 
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(a) (b) 

 

Figure 1. Modification of BIBC matrix; (a) 6-bus system configuration and (b) BIBC matrix 

 

 

Step 2: Compute the currents using kirchhoff’s current law (KCL) in backward sweep direction (from 

the farthest node to the source node). The equivalent current injection and the branch current are computed 

using (1) and (2) respectively. 

 

𝐼𝑖 = (
𝑃𝑖+𝑗𝑄𝑖

𝑉𝑖
)

∗

 (1) 

 
[𝐼𝑏𝑟𝑎𝑛𝑐ℎ] = [𝐵𝐼𝐵𝐶][𝐼𝑖] (2) 

 

Step 3: Compute the voltage using kirchhoff’s voltage law (KVL) in forward sweep direction (starting 

from the source node). The line data for each branch is represented in a diagonal element in matrix ZD as in 

(3) and rearranged into BIBC matrix as in (4). The voltage of each bus is computed using (5). 

 

𝑍𝐷 = [

𝑍𝐵1 0
0 𝑍𝐵2

0     0
0     0

0    0
0    0

⋱     0
0 𝑍𝐵𝑛

] (3) 

 
[𝑍𝐵𝐼𝐵𝐶] = [𝐵𝐼𝐵𝐶]′[𝑍𝐷][𝐵𝐼𝐵𝐶] (4) 

 

𝑉𝑖 = 𝑉𝑜 − [𝑍𝐵𝐼𝐵𝐶] × 𝐼𝑖 (5) 

 

The computation of currents and voltages in Step 2 and Step 3 are repeated until the solution is 

converged. The currents and voltages for each bus computed by using BFS algorithm is used to determine the 

power flow of each branch and the total loss of the system. The complex power, Sij from bus i to bus j and Sji 

from bus j to bus i are calculated using (6) and (7) respectively. The branch loss and total loss of the system 

are calculated using (8) and (9) respectively.  

 

𝑆𝑖𝑗 = 𝑉𝑖𝐼𝑖𝑗
∗  (6) 

 

𝑆𝑗𝑖 = 𝑉𝑗𝐼𝑗𝑖
∗  (7) 

 

𝐿𝑖𝑗 = 𝑆𝑖𝑗 + 𝑆𝑗𝑖 (8) 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐿𝑖𝑗 (9) 

 

2.2.  PSO-TVAC for optimal installation of DG location and sizing 

The installation of DGs with appropriate location and quantified sizing into the radial distribution 

system may reduce the system loss and increase the efficiency of the system. To determine the best location 

and sizing of DG installation, a meta-heuristic algorithm is an appropriate solution to be implemented. Random 

or improper selection of DGs location and sizing may lead to higher system loss and consequently reduce the 

system efficiency. Thus, PSO was implemented in this study to solve the optimal DGs location and sizing due 

to its ability of achieving a global optimum and robust solution. The PSO proposed by [24] is a common method 

used to solve the nonlinear functions in electrical power system problems. A modification was made to the 

conventional PSO to improve the performance of the algorithm. The flowchart of PSO-TVAC for optimal 

location and sizing of DG installation is presented in Figure 2. 
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Figure 2. Flowchart of optimal DG location and sizing using PSO-TVAC 
 

 

The algorithm of modified PSO with time-varying acceleration coefficients (PSO-TVAC) is further 

elaborated in the following steps: 

Step 1: Generate n-population of random particles or solutions in a dimension, d and the fitness value for each 

set of random particles as in (10) and (11) respectively. 
 

𝑋𝑖 = [

𝑥11 𝑥12

𝑥21 𝑥22

⋯ 𝑥1𝑑

⋯ 𝑥2𝑑

⋮ ⋮
𝑥𝑛1 𝑥𝑛2

⋱     ⋮
⋯ 𝑥𝑛𝑑

] (10) 

 

𝑌𝑖 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] (11) 

 

Step 2: Select the best particles, pbest from the best fitness across all iterations for each population as in (12). 

However, pbest is directly taken for particles, X for the first iteration. 
 

𝑝𝑏𝑒𝑠𝑡 = [

𝑝𝑏𝑒𝑠𝑡11 𝑝𝑏𝑒𝑠𝑡12

𝑝𝑏𝑒𝑠𝑡21 𝑝𝑏𝑒𝑠𝑡22

⋯ 𝑝𝑏𝑒𝑠𝑡1𝑑

⋯ 𝑝𝑏𝑒𝑠𝑡2𝑑

⋮ ⋮
𝑝𝑏𝑒𝑠𝑡𝑛1 𝑝𝑏𝑒𝑠𝑡𝑛2

⋱     ⋮
⋯ 𝑝𝑏𝑒𝑠𝑡𝑛𝑑

] (12) 

 

Step 3: Select a global best particle, gbest from the best fitness of pbest of each population for every iteration 

as in (13). 
 

𝑔𝑏𝑒𝑠𝑡 = [𝑔𝑏𝑒𝑠𝑡1 𝑔𝑏𝑒𝑠𝑡2 ⋯ 𝑔𝑏𝑒𝑠𝑡𝑑] (13) 
 

Step 4: Update the acceleration coefficients, c1 and c2 which varied with time as in (14) and (15). 
 

𝑐1 = (𝑐1,𝑚𝑎𝑥 − 𝑐1,𝑚𝑖𝑛) × (𝑖/𝑖𝑚𝑎𝑥) + 𝑐1,𝑚𝑖𝑛 (14) 
 

𝑐2 = (𝑐2,𝑚𝑎𝑥 − 𝑐2,𝑚𝑖𝑛) × (𝑖/𝑖𝑚𝑎𝑥) + 𝑐2,𝑚𝑖𝑛 (15) 
 

Step 5: Update the time-varying inertia weight, w and velocity of the particles, V as in (16) and (17) 

respectively. Update the position of the X particles as in (18). 
 

𝑤𝑖 = 𝑤𝑖 × (1 − 𝛼) (16) 
 

𝑉𝑖 = 𝑤𝑖 × 𝑉𝑖 + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖) (17) 
 

𝑋𝑖 = 𝑋𝑖 + 𝑉𝑖 (18) 

 

Start

Define the coefficients of PSO and 

limitations of DG location and sizing. 

Intialize the pbest and velocity as zero 

elements.

Generate random position and sizing of 

DG as in Eq. (10). Compute the fitness 

function as in Eq. (11).

Copy the position of x for pbest as in 

Eq. (12). Select gbest as in Eq. (13).

Update inertia weight, velocities and 

positions as in Eq. (16)-(18).

Evaluate the fitness of the particles of 

each population.

Update pbest and gbest of Eq. (12)-

(13).

Optimal values of DG location and 

sizing.

End

Iteration < 

Maximum iteration

Yes

No

Update the acceleration coefficients as 

in Eq. (14) and (15).
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3. RESULTS AND DISCUSSION 

The standard IEEE 33-bus radial distribution system was used as the test system as shown in  

Figure 3. The system consists of 33 buses with 32 branches. The total active and reactive loads are 3.715 [MW] 

and 2.3 [MVar] respectively. The bus and line data were based on the simulation data obtained in [25].  

Table 1 presents the parameters of the algorithm and the operating constraints. To verify the performance of 

the proposed algorithm, two types of DG were considered. DG Type-I is denoted by PV, which only produces 

active power, P. Meanwhile DG Type-II is denoted by WT, which produces both active and reactive power. 

 

 

 
 

Figure 3. Schematic diagram of IEEE 33-bus radial distribution system 

 

 

Table 1. Parameters and constraints for PSO-TVAC and DG installation 
Parameters Values 

Size of population 50 

Maximum iteration 100 

DG limitations of active power generation 0.3 [MW] ≤ PDG, i ≤ 3 [MW] 

DG limitations of power factor 0.7 ≤ PDG, i ≤ 1 

 

 

The performance of PSO-TVAC was evaluated by a comparison with PSO, backtracking search 

algorithm (BSA) [26], and bat algorithm (BA) [27] allocation and sizing of three DGs as in Table 2. Without 

the installation of DGs, the total power loss of the distribution system was 210.98 [kW]. It was observed that 

PSO-TVAC achieved the most minimum power loss of 72.79 [kW] and 12.14 [kW] for 3-PV and 3-WT 

installation respectively as compared to BSA, PSO and BA. Thus, the optimal installations of 3-PV and 3-WT 

were able to improve the performance of the distribution system at the highest by 65.49% and 94.25% power 

losses reduction. 

 

 

Table 2. Optimal location and sizing of DGs installation by different algorithms 
DG type Method Location (bus) Size [kW] Power factor Power loss [kW] Power loss reduction (%) 

Without DG - - - - 210.98 - 

3-PV BSA 12 

28 

31 

632 

487 

550 

Unity 89.05 57.79 

PSO 14 

24 

29 

691 

986.1 

1277.3 

Unity 74.09 64.88 

BA 13 

24 

30 

720 

1020 

980 

Unity 73.40 65.21 

PSO-TVAC 30 

13 

24 

1053.6 

801.8 

1091.3 

Unity 72.79 65.49 

3-WT BSA 12 

28 

31 

632 

487 

550 

0.86 

0.71 

0.70 

29.65 85.97 

PSO 13 

24 

30 

537.8 

1058.9 

967.7 

0.669 

0.786 

0.758 

19.63 90.70 

BA 13 

24 

30 

720 

1020 

980 

0.896 

0.897 

0.720 

12.35 94.15 

PSO-TVAC 13 

24 

30 

710.6 

1004.2 

1124.8 

0.883 

0.701 

0.714 

12.14 94.25 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

26 27 28 29 30 31 32 33

23 24 25
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Table 3 displays the results of allocating and sizing individual three, two, and one DGs for both PVand 

WT based on the proposed PSO-TVAC approach. As the number of DGs was increased, the power loss 

decreased from 111.02 [kW] and 87.17 [kW] to 72.79 [kW] for 1-PV, 2-PV, and 3-PV respectively.  

Similar reductions in the power loss were also observed for 1-WT, 2-WT and 3 WT of 67.86 [kW], 28.72 [kW] 

and 12.14 [kW] respectively. In comparison between two types of DGs, all three WT shows significantly higher 

power loss reduction with 67.84%, 86.39%, and 94.25% as compared to 47.38%, 58.68%, and 65.49% recorded 

by all three PV respectively. This is due to the reactive power compensated by WT in addition to the active 

power generated. Thus, the results show that the improvement of power factor by reactive power compensation 

also aid in the reduction of power loss of the overall distribution system. 

 

 

Table 3. Results of optimal installation of DGs location and sizing by PSO-TVAC 
DG Type Location 

(bus) 

Size [kW] Power 

factor 

Power loss 

[kW] 

Power loss 

reduction (%) 

Maximum 

voltage [p.u.] 

Minimum 

voltage [p.u.] 

Base case - - - 210.98 - - - 

1-PV 6 2590.2 Unity 111.02 47.38 1.0000 0.9424 

2-PV 13 

30 

851.6 

157.6 

Unity 87.17 58.68 1.0000 0.9685 

3-PV 30 

13 

24 

1053.6 

801.8 

1091.3 

Unity 72.79 65.49 1.0000 0.9687 

1-WT 6 2553.1 0.819 67.86 67.84 1.0013 0.9581 

2-WT 13 

30 

800.1 

1212.5 

0.873 

0.700 

28.72 86.39 1.0021 0.9804 

3-WT 13 

24 

30 

710.6 

1004.2 

1124.8 

0.883 

0.701 

0.714 

12.14 94.25 1.0013 0.9927 

 

 

4. CONCLUSION 

This study proposed PSO-TVAC technique for optimal placement and sizing of DGs in a radial 

distribution network. The proposed technique was tested on the 33-bus network with the integration of two 

different types of DGs, which are PVand WT. From the simulation results, it was proven that PSO-TVAC 

outperformed particle swarm optimisation, BSA and BA with the lowest simulated power losses of 72.79 kW 

and 12.14 [kW] for 3-PV and 3-WT installation respectively. Thus, the optimal installation of 3-PV and 3-WT 

is capable of improving distribution system performance by 65.49% and 94.25% power loss reduction.  

The power losses also reduced significantly as the number of DGs were increased, from 111.02 [kW] and 87.17 

[kW] to 72.79 [kW] for 1-PV, 2-PV, and 3-PV, respectively. The findings also demonstrated that improving 

power factor through reactive power compensation helps to reduce power losses in the system. 
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