
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 31, No. 2, August 2023, pp. 917~924

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v31.i2.pp917-924  917

Journal homepage: http://ijeecs.iaescore.com

A parallel algorithm to find the exact solution of the travelling

salesman problem

Mohammed W. Al-Neama1, Iman Abdulwahab Ahmed2, Salwa M. Ali3,4
1Education College for Girls, University of Mosul, Mosul, Iraq
2College of Islamic Science, University of Mosul, Mosul, Iraq

3Department of Computer Science, Unaizah College of Sciences and Arts, Qassim University, Qassim, Saudi Arabia
4Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

Article Info ABSTRACT

Article history:

Received Feb 4, 2023

Revised Mar 21, 2023

Accepted Apr 2, 2023

 The traveling salesman problem (TSP) is a problem in computer science that

has been extensively studied and has a wide variety of real-world applications.

It is considered an NP-hard issue since the only way to get a precise solution

to it is to wait an exponentially long amount of time unless P=NP. Both

accurate and heuristic algorithms exist to tackle this problem. The Branch-

and-Bound algorithm (BnB) is often regarded as the most significant precise

approach, despite the fact that it traverses, in the worst scenario, all potential

tours in order to calculate the tour efficiently. This study proposed an efficient

parallel algorithm to solve TSP by using a cluster multicore system. An exact

algorithm will be used to get the optimal solution, and to expedite the search

for the best path, we have employed a multi-threaded approach that capitalizes

on the processing power of multiple CPU cores to concurrently process sub-

problems.

Keywords:

Branch-and-bound algorithm

Message passing interface

OpenMP

Parallel algorithm

Traveling salesman problem
This is an open access article under the CC BY-SA license.

Corresponding Author:

Mohammed W. Al-Neama

Education College for Girls, University of Mosul

Mosul, Iraq

Email: mweama@uomosul.edu.iq

1. INTRODUCTION

The traveling salesman problem (TSP) is a classic problem in combinatorial optimization. The goal

of the TSP is to find the shortest tour of a given set of cities, visiting each city only once and returning to the

starting point [1]. The TSP is a problem of finding a minimum Hamiltonian cycle on a completely directed

graph with non-negative edge costs. A Hamiltonian cycle is a graph cycle that visits each node exactly once.

In other words, the salesman must determine the cheapest path that he takes to make one stop in each city on a

list of 𝑛 cities, with the cost of travel from 𝑐𝑖𝑡𝑦𝑖 to 𝑐𝑖𝑡𝑦𝑗 being 𝑐𝑖𝑗, before returning home [2]. The solution to

the TSP can be used to optimize many real-world problems, such as route planning for delivery services and

planning of sales routes [3], [4].

The TSP is well-known NP-complete mathematics problems, meaning there are no definite

polynomial-time solutions. A graph illustrates the cities' locations and distances. Many studies, such as [1],

[5]-[7] are working to solve the TSP and reduce its complexity to obtain an ideal solution. This paper proposes

a parallel method for solving TSP using BnB.

However, a multi-core cluster computer environment [8] has gained popularity in recent years due to

the performance limitations of single-node which has single-core settings. Complex calculation processing is

shared by multiple processes, and parallel search should reduce calculation time. Scientific computing, data

processing, engineering, military and government applications, and big data analytics employ cluster multi-

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 2, August 2023: 917-924

918

core computers. It employed in applications that demand a lot of processing power or memory, or that need to

be spread. Businesses and organizations employ multi-core cluster computers for high-performance computing.

The aim of this paper is to implement an exact method called branch-and-bound (BnB) algorithm for

finding the minimum number of iterations (computing time) required to solve the standard TSP, and thus to

determine the optimal route for the standard TSP that covers all the nodes by implementing on a cluster

multicore system. This system provides the great computational capability and high-speed memory access to

multi-terabyte data structures. This makes high performance computing (HPC) the preferred method for

solving TSP. We conduct an experiment to verify the performance of this approach using TSP as the

benchmark, and we explain how well it works.

2. LITERATURE REVIEW

In this section, previous and most relevant works to the research topic are reviewed. Many methods

have been presented in previous studies to find the solution for TSP. Some of them are exact methods to find

the optimal solution, and some of them are to find heuristic solutions.

This subsection presents the previous studies which are solve TSP using BnB. Land and Doig [9]

proposed BnB in 1960 for mixed and pure integer linear programming. This method is also a good partial

enumeration strategy for combinatorial data analysis. A BnB algorithm is an approach for finding the optimal

solution to an optimization issue. The aim of BnB is to start with the associated TSP. The Hungarian Method

will solve TSP. TSP's optimal solution provides a tour.

Balasubramanian and Grossmann [10] approach is a breakthrough. It solves an auxiliary TSP using

the Hungarian algorithm. The studies in [11], [12] discuss a strategy for solving a TSP auxiliary problem. The

researchers parallelized the TSP [13] to solve a random 80-vertex network on a multi-core system. The authors

in [14] describe TSP applications that add online store warehouse delivery. In addition, genome assembly is a

high-dimensional traveling salesman problem that was discussed in [15].

Parallel BnB tree traversal using a high-performance cluster and distributed memory is described in

articles [16], [17]. Each node in the tree has offspring that are added to the task pool and distributed to nodes

in the cluster. Cheang et al. [18], focused on parallelized heuristics and incomplete tree traversals.

Ebadinezhad [19] proposed a self-adaptive accountable care organization (ACO) with novel methods

to enhance unclear convergence time and random algorithm choices. DEACO constantly adjusts ACO settings.

This method uses grouping to choose the first city (start point) for the quickest trip. DEACO finds each cluster's

lowest cost/shortest path. This exercise used TSPLIB data from MATLAB simulation with 10 TSP cases. The

proposed method outperforms the traditional ACO in closure speed and search accuracy.

2.1. Standard TSP

The standard TSP is represented mathematically by the entire graph 𝐺 = (𝑉, 𝐸), where set 𝑉 =
1, 2, . . . 𝑛 denotes the set of cities correlating to the node, and each edge is weighted. As such, the 𝑑𝑖𝑗 is a

representation of the separation between the vertices it links. To take a tour is to travel in a circle along a

network of roads that link several different cities. A tour's total duration is simply the sum of its individual

legs. To solve the problem in an 𝑛-city setting, Bodin et al. [20] provide the formula for a typical TSP. For the

convenience of notation, let's assume that:

𝑎𝑖𝑗 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 (𝑖, 𝑗)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑑𝑖𝑗 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑛𝑜𝑑𝑒𝑠 (𝑖, 𝑗). The TSP model is given as (1).

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 = ∑ ∑ 𝑑𝑖𝑗𝑎𝑖𝑗
𝑛
𝑗=0

𝑛
𝑖=0 ; 𝑑𝑖𝑗 = ∞, ∀ 𝑖 = 𝑗 (1)

Subject to: ∑ 𝑎𝑖𝑗
𝑛
𝑖=0 = 1; 𝑗 = 0,1, … , 𝑛 ; ∑ 𝑎𝑖𝑗

𝑛
𝑗=0 = 1; 𝑖 = 0,1, … , 𝑛 (2)

𝑎𝑖𝑗 = (0,1); ∀ 𝑖, 𝑗 ∈ {0,1, … , 𝑛} ; 𝐴 = (𝑎𝑖𝑗) ∈ 𝑋 (3)

The main objective (1) is to reduce the amount of travel time a salesman spends on the road. In other

words, conditions (2) and (3) guarantee that each node is visited (entered and left) exactly once. Whether or

not the arc 𝑖, 𝑗 is included in the route is indicated by the variables 𝑎𝑖𝑗, which are guaranteed to be integers by

constraint (4). Sub-tour solutions that meet the assignment constraints are prohibited by the set 𝑆 in condition

(5). Figure 1 shows an example of a set (𝑋) that contains 𝑛 = 15 cities, and (𝑊) is a set that represents the

road between every two cities, implies that 𝑑: 𝑊 → 𝑅 be the cost of each road in 𝑊.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A parallel algorithm to find the exact solution of the travelling salesman … (Mohammed Wajid Al-Neama)

919

Figure 1. A tour of traveling salesman in 15 cities in Nineveh province including the cost of their roads

2.2. The complexity of the TSP

The complexity of the TSP lies in the fact that the number of possible routes grows exponentially as

the number of cities increases. This means that even with sophisticated algorithms, a solution to the TSP is not

guaranteed to be found in a reasonable amount of time. As a result, computer scientists have developed a variety

of heuristic approaches to the problem, which are effective at finding approximate solutions in a reasonable

amount of time [21].

The TSP is a hard problem, so, its complexity has motivated researchers to come up with efficient and

effective algorithms to solve it. This has enabled organizations to use the TSP in their logistics and operations

planning, making it a key tool in the world of industry. There are (𝑛 − 1)! possible Hamiltonian cycles if the

seller is located in a graph with n cities and he needs to make at least (𝑛 − 1) visits to those cities [22].

3. PROPOSED METHOD

3.1. The parallel BnB algorithm to solve TSP

The parallel algorithm for the BnB method to solve the TSP is an effective way to reduce the

complexity of the problem by using multiple processors to solve the problem in parallel. This algorithm is

based on the concept of dividing the problem into smaller sub-problems that can be solved independently. The

algorithm works by splitting the TSP into multiple sub-problems and assigning each sub-problem to a different

processor. The sub-problems are then solved independently, and the results are combined to get the optimal

solution. This approach allows the algorithm to work more efficiently and quickly than sequential algorithms

and provides a much more efficient solution to the TSP.

Since the existing best value could not be improved upon to eliminate the unnecessary branches,

several threads of a parallel program might explore them more thoroughly than a single thread of a sequential

program. Similarly, we can achieve this result for clusters [23]. Finding a good cost function value for the

initial best value for the exact algorithm could be done with the use of heuristic algorithms. The efficiency of

parallelization is improved by using this method.

The search results are distributed among the threads using the suggested technique, which does not

need the threads to communicate with one another. Instead, the results of the search are distributed by a hash

table that is stored in shared memory. It is not appropriate to grant access to computing resources to threads

that haven't yet found what they are looking for.

Each thread can run a separate branching and bounding procedure on the entire collection of potential

solutions at once. The maximum lower limit value 𝑙𝑚𝑎𝑥 and the global minimum upper limit u (best solution)

are also kept in the shared memory along with the hash table. The last step is calculated using 𝑢 and 𝑙𝑚𝑎𝑥.

Information from the hash table can be read concurrently by all threads, but only one can write to it at a time.

It is hoped that by doing so, the time spent on thread-to-thread communication and synchronization can be

minimized. Furthermore, the search is stopped for all threads when one of the threads meets (1). Algorithm 1

will clarify the parallel implementation of the BnB algorithm for TSP using OpenMP involves dividing the

search space among multiple processors and assigning each processor a subset of the partial solutions to

explore. This parallelization can lead to significant speedup in the algorithm, especially for large TSP instances.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 2, August 2023: 917-924

920

Algorithm 1. Parallel BnB TSP using OpenMP
Input : TSP instance

Output : Complete tour

1- Initialize the lower bound on the cost of the optimal solution.

2- Divide the search space among multiple processors using OpenMP parallelization

directives.

3- Assign each processor a subset of partial solutions to explore.

4- Explore the partial solutions in parallel by branching on them and pruning those

that are not optimal.

5- Keep track of the best solution found so far and update the lower bound on the cost

of the optimal solution.

6- Repeat steps 2-5 until all partial solutions have been explored.

7- Merge the results obtained by each processor to obtain the final solution.

8- Load balancing: Load balancing is an important aspect of parallel branch-and- bound

algorithms, since the size and complexity of each subtree may differ significantly.

To achieve load balancing, you may need to dynamically adjust the number of threads

assigned to each subtree based on its size and/or complexity.

3.2. Branch and bound for solving TSP

The BnB approach is a technique for finding a finite tree made up of possible solutions to the

combinatorial optimization problem [24]. There are two parts to this strategy: branching and bounding. A

solution set 𝑆 that contains an admissible solution and a candidate solution can be partitioned into more than

two subsets 𝑆𝑛 by the branching operation. Recursively performing this step reduces the search space, getting

it simpler to identify a solution that make the objective function 𝑓(𝑥) will be maximizes or minimizes. The

branching action is meant to create a disconnected subset, while the bounding operation is used to truncate that

subset. The process of pruning involves removing elements from a set to make it smaller. The size of the

reduction is determined by the difference between the set's upper limit (𝑢) and its lower limit 𝑙(𝑆𝑛).

If set 𝑆𝑛 fulfills 𝑢𝑙 for the minimization issue, then 𝑆𝑛 may include candidates for solutions that could

update 𝑢. Subsets that do not fulfill 𝑙𝑢 are cut out. This means the algorithm will only continue with a subset

of answers that may have superior options. Despite the branch and bound method being renowned for its

accuracy, it can also be employed to obtain a reasonably good solution for practical purposes by halting the

branching operation when certain constraints are satisfied.

The proposed approach conducts the branching operation by linking city 𝑖 (randomly chosen as the

branching city in the initial case) to city j from an unvisited city group (𝑗 ∈ 𝐸) to be selected subsequently.

𝑙(𝑆𝑖) can be determined through a single-tree relaxation [25], [26]. The upper limit 𝑢 is obtained by applying

the greedy algorithm to each subset and selecting the best value among all threads. In this study, the Lin-

Kernighan method (LK method) solution [27] is utilized as the initial upper limit value. Since the aim of this

study is to compute a satisfactory solution for practical use, a termination condition for the branch is

established. These conditions are expressed as (4).

(𝑢 − 𝑙𝑚𝑎𝑥) (𝑢 + 𝑙𝑚𝑎𝑥)⁄ ≤ 𝜀 (4)

The left-hand side of this inequality denotes the discrepancy between the minimum upper limit value

u and the maximum lower limit value 𝑙𝑚𝑎𝑥. In the proposed approach, every thread conducts an expensive

branch and bound operation, and the resulting search outcome is stored in a shared hash table. The cost 𝑆1 and

the total cost 𝑀1 of the chosen branches will serve as the keys to the shared hash table. So, we have:

𝑀 = ∑ 𝑁𝑛(𝑖, 𝑗)𝑚
𝑛=0 (5)

here, 𝑆1 is the cost being sought and 𝑀𝑛 is the city chosen at a cost that is 𝑛 times 𝑆1. The hash table's value

must be the smallest possible value found in the associated subset. The number of subsets grows exponentially

with the number of cities, making it impractical to keep track of them all, as illustrated in

Figure 2; consequently, results from the first location examined are given more priority Figure 2. Each thread,

following a branch operation, verifies whether or not the chosen branch has been searched by looking it up in

a hash table. If a hash table search has already been performed, the lower and higher bounds can be disregarded.

If the range hasn't been explored yet, you can compute the minimum and maximum values and save the

resulting hash in a common database. In Figure 2, the costs of the subsets' existence and the total cost S of the

branches are combined with the lower limit values of the subsets 𝑆1, 𝑆3, and 𝑆4 searched in P0 of Figure 2 to

generate the hash table. Second, an effort is made to find a subset that is in a cost position. Since the minimum

values for 𝑆1 and 𝑆3 are already stored in the hash table, you can just examine the result to complete the search

without resorting to any further mathematics. That way, finding the most cost-effective subgroups is a quick

process.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A parallel algorithm to find the exact solution of the travelling salesman … (Mohammed Wajid Al-Neama)

921

The process continues until either one of the threads satisfies the approximation requirement or all of

the subsets have been explored, whichever occurs first, at a certain cost. To speed up the search, we adjusted

the cost limit per thread. In (6) is the calculation for the upper cost bound.

𝑑𝑙𝑖𝑚𝑖𝑡 = ⌊2 log 𝑁 + 1⌋ (6)

Furthermore, the search process is expedited by avoiding the selection of a branch with a length 𝑁(𝑖, 𝑗)

that surpasses the value 𝐷𝑎𝑣𝑔, which is obtained by averaging the total distance 𝐷 of the previously selected

branches up to the depth 𝑑. Following is the criterion by which branches are chosen according to 𝐷𝑎𝑣𝑔.

𝐷𝑎𝑣𝑔 = 𝐷 𝑑⁄ (7)

Figure 2. Scheduling computations on processing nodes, shows that P0 begin writing the hash table, while P1

is using the hash table as a reference

4. EVALUATION OF PERFORMANCE

The experiment setup for the implementation of the program traveling salesman problem would

involve creating a specific set of cities and distances between them. The experiment would involve running the

program with this data set and measuring the accuracy of the results. The accuracy would be measured by

comparing the results of the program with the optimal solution for the given data set. Other factors that could

be measured include the time taken for the program to run and the amount of memory it takes up. Additionally,

the experiment could be repeated with different data sets to further test the accuracy of the program.

4.1. Setup of experiment

This subsection details the procedure and outcomes of the computational experiments used to assess

the efficacy of the proposed approach. The program is written in C++, and OpenMP is used as a parallel

implementation framework. The specifications of the platform are called Sun Microsystems cluster, provided

by LinkSCEEM-2 systems at Bibliotheca Alexandrina, Egypt, with 130 nodes and 64 GB memory (each user

is permitted 32 nodes), 8 GB RAM, 80 GB hard drive, and a twin port in fin band (10 Gbps), and Giga Ethernet

Network interface; 64-bit Linux operating system. Programming language: C++; Compiler: GCC v. 6.3.0,

compiler option, Parallel programming library: GNU OpenMP v. 6.3.0. There are various datasets available

for the TSP, ranging from small-scale problems with a few cities to large-scale problems with thousands of

cities. Table 1 lists the test's five different datasets from (TSPLIB) [28].

Table 1. the dataset used in the experiments
No. Dataset name Country name No. of Cities

1 mu1979 Oman 1,979

2 eg7146 Egypt 7,146

3 ar9152 Argentina 9,152

4 fi10639 Finland 10,639

5 ho14473 Honduras 14,473

4.2. The run-time, speed-up, and efficiency

In this subsection, three common performance measurements, the run-time, the speed-up, and the

efficiency, are used. The run-time of the implementation of the parallel algorithm is significantly faster than

the run-time of the sequential algorithm. This is because the parallel algorithm is able to process multiple tasks

simultaneously, thus reducing the total time it takes to complete a task . The speed-up of the implementation of

the parallel algorithm is also impressive. The speed-up of the parallel algorithm is usually measured by the

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 2, August 2023: 917-924

922

ratio of the execution time of the sequential algorithm to the execution time of the parallel algorithm. The

speed-up of the parallel algorithm is usually much higher than the speed-up of the sequential algorithm, thus

enabling a faster completion of tasks. The efficiency of the implementation of the parallel algorithm is also

high. Efficiency is usually measured by the number of tasks that can be processed in a unit of time. The

efficiency of the parallel algorithm is usually much higher than the efficiency of the sequential algorithm, thus

making it more efficient in terms of resource utilization [29].

4.3. The performance evaluation of PA-TSP

The proposed algorithm of PA-TSP uses one core per thread and has been tested in five different

environments with 8, 16, and 32 cores. The method's starting point, the proposed method's optimal endpoint, and

the proposed method's calculation time are all evaluated. The method's computation time is not included in the

proposed method's total computation time. When applied to (1). Each problem and each core number are tested

five times, and the average is recorded. The average run-time by the number of cores is a crucial metric for

evaluating the performance of a parallel TSP algorithm. It is affected by various factors, such as the size of the

dataset, the number of cores used, and the efficiency of the algorithm. The outcomes are listed in the Table 2.

Table 2. Average run-time by number of cores in the PA-TSP algorithm for each dataset
No. Dataset name Final solution Sequential 8 cores 16 cores 32 cores

1 mu1979 86,891 26.63 10.96 8.99 6.74

2 eg7146 172,386 121.37 31.28 25.65 19.24

3 ar9152 837,479 745.76 151.27 114.04 99.03

4 fi10639 520,527 860.10 167.66 137.48 103.11

5 ho14473 177,092 2,110.74 325.23 296.69 220.02

It is clear that the majority of the PA-TSP's issues are alleviated once more cores are added to the

computation (cores 16–64 is faster than core 8). This demonstrates that, up to a certain number of cores, the

proposed method searches for solutions at a faster rate. In light of this, the result of a core count of 32 is

assumed to take less time to calculate than the other results. It is clear that all the dataset's core 8 have a much

longer run-time than other core counts, but all results take less than several tens second to complete. It is

thought that increasing the number of cores will prevent such long calculation times from happening since

other experiments with the number of cores did not find such a big difference.

The system was able to calculate the optimal routes for the salesperson in a fraction of the time it

would normally take on a single-core system. Additionally, the results were accurate and consistent across

multiple simulations. The cluster multi-core system was able to utilize its resources efficiently and effectively,

and was able to calculate the optimal routes for the salesperson in a fraction of the time it would normally take.

The results of the parallel traveling salesman problem on a cluster multi-core system are a testament to the

power of distributed computing, as shown in Figure 3.

Figure 3. Speed-up comparisons between the sequential TSP algorithm and the proposed parallel TSP

method using (8,16, and 32) cores

Furthermore, the use of multiple processors allowed for the system to make more efficient use of its

resources, as any idle processor could be used to help in the processing of other tasks. This optimization in

computing power meant that the system could solve complex problems more quickly and accurately, saving

time and money. Overall, the results of the parallel traveling salesman problem implemented on a cluster multi-

core system were a success and showed the potential of this powerful computing tool.

2,00

4,00

6,00

8,00

10,00

mu1979 eg7146 ar9152 fi10639 ho14473

S
p

ee
d

-u
p

TSP instance

8 cores
16 cores
32 cores

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A parallel algorithm to find the exact solution of the travelling salesman … (Mohammed Wajid Al-Neama)

923

5. CONCLUSION

In this work, a parallel algorithm to solve the traveling salesman problem by using a branch and the

bound was proposed. This technique efficiently utilizes the multi-core by performing a deepening iteration of

the BnB algorithm in each thread and then sharing the search results among them via a hash table in shared

memory. Experimental results corroborated the theory that increasing the core speeded-up the search process.

Additionally, we showcased the potential effectiveness of the proposed method for large-scale problem

instances, as the rate of speed improvement varied based on the problem instance size. To accurately assess

the performance of the method for large-scale instances, future research should focus on verifying its

performance with such instances, rather than solely relying on the problem instances examined in this study.

Branch and bound techniques can enhance the precision of the best solution and accelerate the iteration process.

Furthermore, they can optimize the algorithms utilized for determining the upper and lower bounds, as well as

the method for selecting branches. Additionally, while the shared hash table's results are not modified once

written, we posit that updating the hash table, such as overwriting its contents, could potentially yield

performance improvements in cases where new results with the same key and superior outcomes are obtained.

As we believe that the proposed method has applicability beyond just the TSP and can be utilized for other

discrete optimization problems, we will also explore its performance on various combinatorial optimization

problems. In conclusion, the implementation of the parallel algorithm results in faster run-time, higher speed-

up, and higher efficiency than the implementation of the sequential algorithm. This makes it a great choice for

processing multiple tasks at once, thus saving time and resources.

ACKNOWLEDGMENTS

The authors thank Bibliotheca Alexandria and University of Mosul.

REFERENCES
[1] W. B. Yahia, M. W. Al-Neama, and G. E. Arif, “PNACO: Parallel algorithm for neighbour joining hybridized with ant colony

optimization on multi-core system,” Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming

and Computer Software, vol. 13, no. 4, pp. 107–118, 2020, doi: 10.14529/mmp200409.

[2] W. B. Yahia, M. W. Al-Neama, G. E. Arif, and W. Yahia, “A Hybrid optimization algorithm of ant colony search and neighbour-

joining method to solve the travelling salesman problem,” Advanced Mathematical Models & Applications, vol. 5, no. 1, pp. 95–

110, 2020.

[3] W. B. Yahia, G. E. Arif, M. W. Al-neama, and A. H. Ali, “Traveling salesman problem methods of solution survey,” International

Journal of Psychosocial Rehabilitation, vol. 24, no. 5, pp. 8565–8581, 2020, doi: 10.37200/IJPR/V24I5/PR2023807.

[4] O. Cheikhrouhou and I. Khoufi, “A comprehensive survey on the multiple traveling salesman problem: applications, approaches

and taxonomy,” Computer Science Review, vol. 40, 2021, doi: 10.1016/j.cosrev.2021.100369.

[5] K. A. F. A. Samah, N. Sabri, R. Hamzah, R. Roslan, N. A. Mangshor, and A. A. M. Asri, “Brute force algorithm implementation

for traveljoy travelling recommendation system,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 16, no.

2, pp. 1042–1049, 2019, doi: 10.11591/ijeecs.v16.i2.pp1042-1049.

[6] Z. A. Ali, S. A. Rasheed, and N. No’man Ali, “An enhanced hybrid genetic algorithm for solving traveling salesman problem,”

Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 2, pp. 1035–1039, May 2020, doi:

10.11591/ijeecs.v18.i2.pp1035-1039.

[7] F. Chebihi, M. E. Riffi, A. Agharghor, S. C. B. Semlali, and A. Haily, “Improved chicken swarm optimization algorithm to solve

the travelling salesman problem,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 12, no. 3, pp. 1054–

1062, Dec. 2018, doi: 10.11591/ijeecs.v12.i3.pp1054-1062.

[8] F. Montagna, G. Tagliavini, D. Rossi, A. Garofalo, and L. Benini, “Streamlining the OpenMP Programming Model on Ultra-Low-

Power Multi-core MCUs,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 12800 LNCS, 2021, pp. 167–182.

[9] A. H. Land and A. G. Doig, “An automatic method for solving discrete programming problems,” 50 Years of Integer Programming

1958-2008: From the Early Years to the State-of-the-Art, vol. 28, no. 3, pp. 105–132, 2010, doi: 10.1007/978-3-540-68279-0_5.

[10] J. Balasubramanian and I. E. Grossmann, “A novel branch and bound algorithm for scheduling flowshop plants with uncertain

processing times,” Computers and Chemical Engineering, vol. 26, no. 1, pp. 41–57, 2002, doi: 10.1016/S0098-1354(01)00735-9.

[11] Z. Zhang, Z. Xu, S. Luan, X. Li, and Y. Sun, “Opposition-based ant colony optimization algorithm for the traveling salesman

problem,” Mathematics, vol. 8, no. 10, 2020, doi: 10.3390/MATH8101650.

[12] I. M. Ali, D. Essam, and K. Kasmarik, “A novel design of differential evolution for solving discrete traveling salesman problems,”

Swarm and Evolutionary Computation, vol. 52, 2020, doi: 10.1016/j.swevo.2019.100607.

[13] J. Lauri, S. Dutta, M. Grassia, and D. Ajwani, “Learning fine-grained search space pruning and heuristics for combinatorial

optimization,” arXiv preprints, 2020, [Online]. Available: http://arxiv.org/abs/2001.01230.

[14] Y. Chen, Z. Jia, X. Ai, D. Yang, and J. Yu, “A modified two-part wolf pack search algorithm for the multiple traveling salesmen

problem,” Applied Soft Computing Journal, vol. 61, pp. 714–725, 2017, doi: 10.1016/j.asoc.2017.08.041.

[15] H. Chandran, M. Meena, and K. Sharma, “Microbial biodiversity and bioremediation assessment through omics approaches,”

Frontiers in Environmental Chemistry, vol. 1, Sep. 2020, doi: 10.3389/fenvc.2020.570326.

[16] A. Ignatov and A. Gorchakov, “Tool for simulating branch and bound computations,” Open Computer Science, vol. 10, no. 1, pp.

112–116, May 2020, doi: 10.1515/comp-2020-0115.

[17] B. Steinberg, A. Baglij, V. Petrenko, V. Burkhovetskiy, O. Steinberg, and E. Metelica, “An analyzer for program parallelization

and optimization,” in Proceedings of the 3rd International Conference on Applications in Information Technology, Nov. 2018, pp.

90–95, doi: 10.1145/3274856.3274875.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 2, August 2023: 917-924

924

[18] B. Cheang, X. Gao, A. Lim, H. Qin, and W. Zhu, “Multiple pickup and delivery traveling salesman problem with last-in-first-out

loading and distance constraints,” European Journal of Operational Research, vol. 223, no. 1, pp. 60–75, 2012, doi:

10.1016/j.ejor.2012.06.019.

[19] S. Ebadinezhad, “DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem,”

Engineering Applications of Artificial Intelligence, vol. 92, 2020, doi: 10.1016/j.engappai.2020.103649.

[20] L. Bodin, B. Golden, A. Assad, and M. Ball, the State of the Art in the Routing and Scheduling of Vehicles and Crews. 1981.

[21] M. Khachay and K. Neznakhina, “Complexity and approximability of the Euclidean generalized traveling salesman problem in grid

clusters,” Annals of Mathematics and Artificial Intelligence, vol. 88, no. 1–3, pp. 53–69, 2020, doi: 10.1007/s10472-019-09626-w.

[22] M. De Berg, K. Buchin, B. M. P. Jansen, and G. Woeginger, “Fine-grained complexity analysis of two classic TSP variants,” ACM

Transactions on Algorithms, vol. 17, no. 1, pp. 1–29, Jan. 2021, doi: 10.1145/3414845.

[23] Q. Shu, T. Rötzer, A. Detter, and F. Ludwig, “Tree information modeling: a data exchange platform for tree design and

management,” Forests, vol. 13, no. 11, 2022, doi: 10.3390/f13111955.

[24] H. Tahami and H. Fakhravar, “Literature review on combining heuristics and exact algorithms in combinatorial optimization,”

European Journal of Information Technologies and Computer Science, vol. 2, no. 2, pp. 6–12, 2022, doi:

10.24018/compute.2022.2.2.50.

[25] A. Gharehgozli, C. Xu, and W. Zhang, “High multiplicity asymmetric traveling salesman problem with feedback vertex set and its

application to storage/retrieval system,” European Journal of Operational Research, vol. 289, no. 2, pp. 495–507, 2021, doi:

10.1016/j.ejor.2020.07.038.

[26] V. Traub and J. Vygen, “An improved upper bound on the integrality ratio for the s–t-path TSP,” Operations Research Letters, vol.

47, no. 3, pp. 225–228, 2019, doi: 10.1016/j.orl.2019.02.005.

[27] S. Lin and B.W. Kernighan, “An effective heuristic algorithm for the traveling-salesman problem,” Operations Research, vol. 21,

no. 2, pp. 498–516, 1973, [Online]. Available: https://pubsonline.informs.org/doi/abs/10.1287/opre.21.2.498.

[28] University Waterloo, “National traveling salesman problems,” TSP Test Data, 2017.

http://www.math.uwaterloo.ca/tsp/world/countries.html (Accessed Mar. 13, 2023).

[29] A. A. AbdulRazzaq, Q. S. Hamad, and A. M. Taha, “Parallel implementation of maximum-shift algorithm using OpenMp,”

Indonesian Journal of Electrical Engineering and Computer Science, vol. 22, no. 3, pp. 1529–1539, Jun. 2021, doi:

10.11591/ijeecs.v22.i3.pp1529-1539.

BIOGRAPHIES OF AUTHORS

Mohammed Wajid Al-Neama he has a Ph.D. in computing mathematics from

Al-Azhar University, Cairo (Egypt) in 2014. He currently works at the Education College for

Girls, Mosul University. His research area includes bioinformatics and parallel computing.

He can be contacted at email: mwneama@uomosul.edu.iq.

Iman Abdulwahab Ahmed she has obtained an MSc. in Mathematical from the

University of Mosul. She is currently working at the Islamic Science College, University of

Mosul. Her research area includes computing mathematics and numerical analysis. She can

be contacted at email: ahmediman1963@gmail.com, i.a.a@uomosul.edu.iq.

Salwa M. Ali she has obtained the Ph.D. in computer science from Ain Shams

University, Cairo (Egypt). She is currently worked at Unaizah College of Sciences and Arts,

Qassim University, (K.S.A.). Her research area includes information science foundation and

lambda calculus. She can be contacted at email: s.mussa@qu.edu.sa.

https://orcid.org/0000-0001-6792-437X
https://scholar.google.com/citations?user=XN_0qNEAAAAJ&hl=ar
https://www.scopus.com/authid/detail.uri?authorId=56241665800
https://access.clarivate.com/login?app=wos&detectSession=true&referrer=path%3D%252Fwos%252Fauthor%252Frid%252FV-3739-2019%26detectSessionComplete%3Dtrue%26mode%3DNextgen%26action%3Dtransfer%26DestParams%3D%26DestApp%3DUA
https://orcid.org/0009-0003-9657-0859
https://orcid.org/0000-0003-0617-520X
https://www.scopus.com/authid/detail.uri?authorId=57194573535

