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Abstract 
This paper presents a novel method to nonlinearly investigate the dynamics of the coupled axial 

and torsional vibrations in the circular cross section beam of the steam turbine generator using the FFT 
analysis. Firstly, the coupled axial and torsional vibrations of a beam are proved by equivalent law of 
shearing stress and different boundary conditions. Then, a nonlinear mathematical model of the coupled 
axial and torsional vibrations is established by the Galerkin method. Lastly, the fast Fourier transform 
(FFT) is employed to investigate the coupled effect of the beam vibration. A practical calculation example 
is calculated numerically and the coupled mechanism of the beam’s axial and torsional vibrations is 
analyzed in detail. The analysis results show that the frequencies of the coupled response would be 
existed in some special orders and the coupled response frequencies are smaller than the single vibration. 
Since for the first time the coupled mechanism of the beam’s axial and torsional vibrations is theoretically 
analyzed, the findings in this work may provide directive reference for practical engineering problems in 
design of steam turbine generators. 
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1. Introduction 

Beam structure has been widely used in the field of aviation, shipbuilding, construction 
and other engineering, and the circular cross section beam is important component for the 
steam turbine generators. The vibration analysis and dynamic behavior of beams have been 
investigated from a single form vibration to coupled vibration, from a single cross section to 
varying section, from a single material to composite material, and from the linear theory to 
nonlinear theory [1, 2]. Among the FFT has been proven to be an indispensable tool for the 
dynamic analysis of beam vibration. 

With the increasing of beam span and deformation, the elastic coupling between 
various vibration forms of the beam is evident, and the coupled vibration analysis of the beams 
has been an important research area in recent years. Nayfeh [3] established the coupled 
equation of the beam’s longitudinal and transverse vibrations with the analytical method. Xia [4] 
analyzed the harmonic responses of beams with longitudinal and transverse coupling vibration 
by the Incremeatal Harmonic Balance method and discovered the phenomenon of inverted 
peak in amplitude-frequency response curve. Han [5, 6] simplified a flexible tower model in the 
marine environment as a beam’s longitudinal-transverse coupled vibration, and derived the 
coupled movement equation in the boundary conditions and analyzed the equation in free 
vibration and forced vibration. Banerjee [7] has got the conclusion that the coupling between the 
bending and torsional displacements in the free vibratory modes of a beam occurs when the 
mass centre (centroid) and the shear centre (centre of twist) of the beam cross-section are non-
coincident. He researched the cross section shape of beam element, including the thin-walled 
open-section beam, T beam, wing beam, etc. He used Wittrick-Williams methods for solving 
equations after establishing accurate dynamic stiffness matrix [8] of the space continuous beam 
and used opening box girder model as a example to study the effect of the warping stiffness for 
the natural frequency and got the conclusion that there was calculation error without considering 
warping. At the same time, the accurate dynamic stiffness matrix, the frequency equation and 
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the vibration model formula [9] are applied respectively to solving the bending - torsional 
coupled vibration of a composite material Timoshenko beam. Other Scholars also used wing 
beam as the research model to research the free vibration of beam element [10] and bending 
under certain load and random load, as well as the coupled vibration response [11]. The explicit 
formula has been established to investigate the cantilever Euler Bernoulli beam’ bending and 
torsional coupled vibration [12], the general quality is used to explain the dynamic response of 
the beam’s flexural-torsional coupled vibration [13] and bending torsional coupled vibration [14, 
15]. However, there is little work for the investigation of the beam’s axial and torsional coupled 
vibration due to that in many conditions the shearing stress was ignored. For the circular cross 
section beams, the shearing stress could not be ignored. Hence, it is imperative to analyze the 
coupled axial and torsional vibration for circular cross section beams. 

In order to address the above mentioned issue, this work present the investigation of 
the nonlinear dynamics of the coupled axial and torsional vibrations in the circular cross section 
beams of steam turbine generators using the FFT analysis. The Galerkin method was adopted 
to establish the coupled model of the beam’s axial and torsional vibrations and the frequency 
response of the system’s impulse test was analyzed by FFT. Numerical analysis was carried out 
to evaluate the dynamics of the proposed model.  
 
 
2. Mathematical Model 
2.1. Coupling Analysis 

As shown in Figure 1, put a circular cross section beam in the plane rectangular 
coordinate system, its axis and X axle are in the same line, and there is a X̂  torque on the 
beam. So the X̂  direction of the shear strain and shear stress can be calculated as: 

 

r
xdx
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Where   is the angle deformation, r  is the radius, G  is the shear elasticity modulus,    is the 

shear strain and   is the shear stress. 
According to the law of shear stress reciprocal of the elastic mechanics, there exists

  . Hence, there is a additional axial shear stress parallel the X axle, the force will make 
beam element deformed along the axial. The axial force can be expressed as:  

 

x
Grdrr

x
Grdr

x
GdAGF

rr

A 










 
 3

0

22

0 3

2
2)(                (2) 

 
Without considering the circle beam axial vibration, the boundary conditions of torsional 

vibration equation as follows: 
 
The fixed end: 0),0( t , 0),( tl                                                  (3) 
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Where l  is the length of the beam.  

Considering the circle beam axial vibration, the length of the beam will change to 
1l , 

and the boundary conditions also change as follows: 
 
The fixed end: 0),0( t , 0),( 1 tl                                                   (5) 
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Figure 1. Circular Cross Section Beam 
Axial Torsional Coupled Vibration Analysis 

 
 

Figure 2. Circular Cross Section Beam Axial 
Torsional Deformation 

 
 
2.2. Coupling Equation 

In circular cross section beam with length dx  of infinitesimal section, set up the 
rectangular coordinate system as shown in Figure 1. point A and point B are the point in the end 
face without the elastic deformation; r is the distance between the circle beam center and point 
A;   is the angle between Y axle and OA; while point C and point D are the positions of the 

point A and point B after the elastic deformation. So the displacements of the point A and point 
B can be expressed as: 
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 sincos),(                                                 (7) 
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According to the Figure 2, there is: 
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                                                (9) 
 

Where DC


  is the vector from point C to point D. So the deformation length of the infinitesimal 
section is: 
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After reduction, that is dxrudsCD 2/1222 ])1[(   , that is: 
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If there is initial axial force 0N  in the circular cross section beam, so the beam 

deformation during its tension changes, then the instantaneous value is: 
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Where A is the cross-sectional area for circular cross section beam. 
According to the momentum equation, there is: 
  

)(/)( kwjviuAxN                                                       (15) 

 
Substitute (8), (9) and (10) into (15), according to equal vector, we can get: 
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Noted that 222 )()()(   ArwAvA  , for  circular the cross section beam, there is  

2/2/ 24 rArJ P   , according to (10), ignored the initial axial force 0N and consider the 

torsional deformation, we can get: 
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Herein, (17) is the axial- torsional coupled vibration equation of the circular cross 

section beam. When 0r , that means only considering the vibration in the beam’s shaft, (17) 
would simplified as the single form vibration, which proved that there is no coupled vibration 
phenomenon on the axis of the beam with circular cross section. 
 
 
3. Coupling Equation Analysis 

Ignore the high-order items in (11), it yields: 
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For the first equation in (18), it contains the radius parameter r , which means the axial 

coupled force on the different point does not equal in a circular cross section; namely axial 
amplitude in the same cross section is not the same, and the deformation is a parabolic. Hence, 
the natural frequencies of the various points on the same cross section are not consistent. 
However, if the coupled item is considered as a small parameter, the amplitude can be the 
same on the same cross section and it is feasible to solve this equation. 

Based on the Galerkin method, axial displacement u  and torsion angle   can be 
expressed as the linear superposition of vibration mode function, i.e. 
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Where, )(xUi  and )(xj  are the axial and torsional vibration mode function, respectively, 

and they are determined by boundary conditions; )(tTui  and )(tT j  are the time function; m  

and n  are the axial and torsional mode, respectively. 
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For the two ends free beam with circular cross section, according to the boundary 
conditions, the vibration mode function is defined as: 

 

)/cos()( lxixUi  ， )/cos()( lxixi                                           (20) 

 
According to (18), (19) and (20), we derive: 
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Where 222 )/( liaui   , 222 )/( ljai   . 

For (21), select 1 nm , suppose 222 )/(  la , 222 )/(  lb , and multiply 
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Using the multi-scale method to solve (22), after a series of simplification it yields: 
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For (23), 2)1(2/)/(/)/(/ 2222   GElbla ,where   is  the 

poisson's ratio. Therefore, there is no internal resonance. 
If considering the condition of the internal resonance, choose 3.0 and we can get: 
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So (24) is the axial torsional coupled vibration equation in the first 5 order modes. 
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4. Numerical Analysis and Results 
The data of the beam used for the analysis are as follows: elastic modulus 

211 /101.2 mNE  , Poisson’s ratio 3.0 , length ml 3 , radius mr 03.0 . 
Establish a system simulation model according to (24), the axial displacement and 

torsional displacement of the beam element were obtained in the first 5 modes. Figure 3 shows 
the analysis results. Because each order mode has the same energy, the vibration frequency 
and vibration peak in different modes satisfy certain multiple relationship in both two kinds of the 
axial and torsional vibrations. 

 
 

Figure 3. The First 5 Order Modes of the Beam with Circular Cross Section Considering the 
Axial Torsional Coupled Vibration: (a) torsional vibration, (b) axial vibration 

 

 

Figure 4. Axial the 2nd, 4th Order and 
Torsional the 5th Order Vibration (m = n = 5) 

 
Figure 5. Axial-torsional Coupled Vibration 
Time-domain Diagram in a Cross Section 

 

Figure 6. Axial-torsional Coupled Vibration Frequency Domain in a Cross Section  
(a) torsional vibration, (b) axial vibration
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In order to understand the change of natural frequency of the beam element with 
circular cross section in coupled axial-torsional condition, the fast Fourier transform (FFT) is 
applied to investigating the coupling effect. According to the internal resonance occurring 
condition, the time-domain diagram considering the axial and torsional coupled vibrations with 
the second, fourth order axial vibration and the fifth torsional order is shown in Figure 4. From 
the figure it can be seen that the ratio of these three kinds of vibration frequencies is nearly 
rational number, but there are no displacement change in the classic internal resonance.  

From (19), the axial-torsional coupled vibration equation from 1 m to an end face could 
be obtained as: 
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
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According to the result of Figure 4 and (25), the vibration time-domain diagram of the 

cross section was obtained and shown in Figure 5. 
Use FFT transform for Figure 5, the vibration frequency domain of the cross section is shown in 
Figure 6, and the natural frequency is listed in Table 1. 
 
 

Table 1. Natural Frequency in the Beam (Hz) 
Type Coupled 1 2 3 4 5 

Axial vibration No 864.8 1729.6 2594.4 3459.2 4324.0 
Axial vibration Yes 864.2 1728 2592 3642 4326 

Torsional vibration No 540.4 1080.8 1621.2 2161.6 2702.0 
Torsional vibration Yes 540.3 1081 2592 3642 4326 

 
 

5. Conclusion 
In order to investigate the nonlinear dynamics of the coupled axial and torsional 

vibrations in the circular cross section beam of steam turbine generators, a novel coupled model 
has been established for the first time in this work. Numerical analysis was carried out to 
evaluate the dynamics of coupled model of the beam’s axial and torsional vibrations. The FFT 
analysis results show that the coupled vibration natural frequencies are smaller than the single 
type vibration in the corresponding orders except the second order natural frequencies in the 
torsional vibration, which may be caused by calculation error. At the same time, there are some 
additional natural frequency by the coupling effect near the main natural frequency in the 
frequency domain, which could be ignored. Hence, the analysis results of the proposed coupled 
model can provide valuable theoretical reference for the design and application of circular cross 
section beam in the steam turbine generators. 
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