
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 30, No. 3, June 2023, pp. 1624~1633

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v30.i3.pp1624-1633  1624

Journal homepage: http://ijeecs.iaescore.com

Parallel processing of E-Atheer algorithm using pthread

paradigm

Atheer Akram AbdulRazzaq1, Mohammed A. Fadhel2, Laith Alzubaidi3,4, Omran Al-Shamma4
1Businesses Informatics College, University of Information Technology and Communications, Baghdad, Iraq

2College of Computer Science and Information Technology, University of Sumer, ThiQar, Iraq
3School of Computer Science, Queensland University of Technology, Brisbane, Australia

4University of Information Technology and Communications, Baghdad, Iraq

Article Info ABSTRACT

Article history:

Received Aug 18, 2021

Revised Jan 20, 2023

Accepted Jan 26, 2023

 The development in the field of computer technology, and the increase in the

growth rate of database, alongside the extraction of certain data from a huge

pool of database involve intricate and complex processes. The processes

comprise text mining, pattern recognition, retrieval of information and text

processing. Thus, the need for enhancing the performance of string matching

algorithms is required, which is considered as one of the challenges to the

researchers. Consequently, one of the resolution to address this problem is the

parallelization for exact string matching algorithms. In this study, we

implemented the parallel exact string matching algorithm termed as E-Atheer

with multi-core processing utilizing Pthread (POSIX) for the reduction of time

consumption. The Pitch, XML, Protein, and DNA database types are utilized

to test the impact of the proposed parallel algorithm. The parallelization

algorithm obtained positive results in the parallel execution time, and a more

superior expediting capabilities, in comparison to the sequential result. The

Pitch database indicated optimal results in parallel execution time, and when

utilizing long and short pattern lengths. The DNA database indicated optimal

speedup performance when utilizing short and long pattern length, meanwhile

the XML and Protein on the other hand indicated the worst results.

Keywords:

Database types

E-Atheer algorithm

POSIX threads (Pthreads)

Speedup

String matching algorithm

This is an open access article under the CC BY-SA license.

Corresponding Author:

Atheer Akram AbdulRazzaq

Businesses Informatics College, University of Information Technology and Communications

Baghdad, Iraq

Email: athproof@uoitc.edu.iq

1. INTRODUCTION

String matching algorithms are the algorithms utilized for scertaining the optimal alignment through the

comparison of a set of patterns to the random string. Whilst engaging in the comparison stage, it is imperative that

the pattern length be equal to the text window length. Additionally, the comparison between the pattern and the

text window strings is dependent upon the identification of the match between them [1]. Typically, String

Matching is usually utilized in numerous computer applications such as signal and image processing, artificial

intelligence (AI), web search engines, intrusion detection systems, operating systems, speech and pattern

recognition [2], [3], information retrieval [4], and computational biology and chemistry. Furthermore, in recent

years, the string matching algorithms are considered as the main component utilized in the application of DNA

pattern matching, and the analysis of Protein sequences [5], [6]. The development and growth rate of the database

is escalating at a swift rate; thus the need for enhancing the performance of exact string matching algorithms.

Certain exact known string matching algorithms such as Brute force, Boyer-Moore, Karp-Rabin and

Knuth-Morris-Pratt (KMP), are prevalently and extensively utilized. It should be noted that Brute force

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Parallel processing of E-Atheer algorithm using pthread paradigm (Atheer Akram AbdulRazzaq)

1625

algorithm can be considered as the easiest form of algorithm. In this algorithm, the comparison operation

between text and pattern window is executed from right to left. When the match or mismatch is obtained, the

shifting process is executed to the right character only [2], [7]. The Boyer-Moore algorithm is prevalently and

extensively utilized due to its high performance and efficiency. The comparison in this algorithm is initiated

from the right to left. There is a possibility of a match or mismatch between the pattern and the text window,

where it is noted that the shifting is dependent upon good suffix and the bad character functions [8]. As

aforementioned, the Karp-Rabin algorithm is the algorithm that is utilized in the hash process, and the

comparison of this algorithm is conducted from the left to right. It is dependent upon the calculation of the hash

function of the pattern and the text window. The hash technique possesses a high performance and efficiency

capability which reduces the consumption of time due to the use of integer numbers [9], [10]. The KMP

algorithm is considered as the first liner algorithm in time. The comparison of this algorithm is executed from

left to right, and the shifting process is dependent upon the last character [2].

The exact string matching algorithms are affected by three factors, which comprise the number of

attempts, the number of character comparison, and the consumed time, where the efficient algorithms reduced

the drawbacks of one or more of these factors. A majority of string matching algorithms enable the reduction

on the number of attempts, and the number of character comparison in sequential performance, which however

possess weakness in terms of the consumed time. Therefore, the researchers find that it is important to

concentrate on the consumed time problems, through the utilization of the parallel processing to address this

problem, as it affords the reduction of consumed time in exact string matching algorithms [11].

The parallel processing is defined as the practical way to reduce the computational time, which is

dependent upon dealing with the cores or processors in computers to resolve the sequential computing problems

[5], [11], [12]. Prevalently, in tandem with the increase in the enhanced development of computer technology,

particularly in the architectures of the processors and multicores, there exist pertinent necessity for enhancing

the performance of the exact string matching algorithms. So as to coincide with the enhancement of the system,

and the reduction of the consumed time of the multicore and multiprocessors of computers.

The computing of parallel process possesses great potentials of improving the data execution time, in

comparison to sequential computing that consumes a longer duration of time to obtain the results [11]. There are

numerous exact string matching algorithms that utilized parallel computing by utilizing either the multicore or

multi-processor techniques, for example AKRAM algorithm. This algorithm employed the parallel

multiprocessors model which comprises the message passing interface (MPI). The AKRAM algorithm that was

adopted in the parallelization process utilized the technique of data decomposition, which segregated the data into

numerous subparts and were distributed to the processors inside the cluster. The MPI multiprocessor model

indicated a high performance computing ability in contrast to the performance of sequential computing in the

AKRAM algorithm [13]. Additionally, there are exact string matching algorithms that used multiprocessor

parallel technology, and among them is the Karp-Rabin algorithm, which divides the string into subsets and each

individual ones are compared with the pattern separately. This algorithm obtained good results when large datasets

were utilized. However it demonstrated inefficient results when utilized with short patterns. Additionally, there

are alternative algorithms other than the exact string matching algorithm which utilized the multicore technology

such as the quick search algorithm. The quick search algorithm used the OpenMP paradigm that reduced the

execution time of the algorithm. The OpenMP technology operates through the utilization of the data

decomposition technique, which divided the data into subsets through the fork and join process. The OpenMP

technique demonstrated good performance in parallel time in comparison with sequential time [11].

The KMP algorithm employed the hybrid technology OpenMP/MPI, where this algorithm indicated high

parallelization results with large string size. However, due to the communication time, this algorithm obtained

low results when it utilized more than two clusters. Conversely it obtained very good results when it utilized two

clusters only [14]. Moreover, in order to enhance the filtering of intrusion detection system (IDS), the Quick

search algorithm utilized the multicore techniques which entail the Pthread (POSIX) and OpenMP paradigms. It

employed these two multicore implementations so as to expedite speed (speedup) of the parallelized algorithm

time for a swifter IDS [15]. The graphics processing units (GPU) technology was also utilized by the string

matching algorithms such as Karp-Rabin algorithm. It demonstrated that when utilized, it indicated a difference

in terms of cores, threads numbers, pattern, and string sizes with high speed of up to 23x in the parallel time, with

the implementation of GPU implementation in comparison with the CPU implementation [16].

In this paper, we have redesigned the exact string matching algorithm termed as E-Atheer by utilizing the

parallel Model with the aim of reducing the execution time and expediting the speeding (speedup) of the algorithm.

Here, we evaluated the performance of the algorithm over different factors such as using different types of databases,

pattern length, threads number, in addition to the number of cores. In section 2 describes the Algorithm and

implementation that explain the technique of E-Atheer algorithm and Pthreads (POSIX) technique, the generation

of Pthreads code for the E-Atheer algorithm, and the implementation and environment. The results are obtained in

section 3, the discussions and analysis are presented in section 4, and conclusion is introduced in section 5.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1624-1633

1626

2. ALGORITHM AND IMPLEMENTATION

2.1. E-Atheer algorithm

It involves two stages, which include the preprocessing stage and the searching stage. The

preprocessing stage is reliant on the selected functions of two algorithms (Atheer and Berry-Ravindran)

comprising the hashing function; Berry-Ravindran bad character (Brbc) function and Boyer-Moore bad

character (Bmbc) function. Meanwhile, the searching stage in the algorithm is dependent upon the comparison

of the hash values of three characters between the pattern and the text window. When a match is obtained, the

comparison of the three characters between pattern and text window will then take place. In the event of a

match, a comparison of the hash value of remaining characters from the second characters to (m/2-1) will be

continued. Additionally, on the ensuing match obtained, it will then be followed by a comparison of the

characters. In instances of further matching, it will then be followed by a comparison of the hash of the

characters from (m/2+1) to the last charecter-1. Finally, if there is still a match obtained, this is followed by a

comparison of the characters between pattern and text window. If there is a match or mismatch obtained for

each step, the new shifting of the algorithm will based on the highest values between the m from bmBc table

and (m+1 and m+2) values from brBc table [17].

2.2. POSIX threads

The thread can be utilized as a separate flowing for the space of address in order to control it [18].

The threads are utilized in the parallel execution of the shared memory multiprocessor and multi-core

architectures. The POSIX Pthreads is considered as a low level interface of programming for the operations with

the OS threads [19]. The POSIX Pthreads indicated to the C language threads programs for UNIX by the IEEE

the POSIX 1003.1c standard is utilized to generate different threads in the caller operation. In addition, one more

use of the parallelization in the UNIX is the fork, which can generate a new operation that eventually can enable

a new operation of the caller. The results of the experiments demonstrated that the Pthread is able to obtain

additional enhanced results as compared with the fork. This is because the thread can be created with less operation

system overhead in comparison to the fork, as the fork operation generates separate operation of execution [18].

2.3. Generating of pthreads code for E-ATHEER hybrid algorithm

This section describes the main technical contribution that is generated by the parallel C program,

which utilized the libraries of Pthreads. The following steps entail the parallel operations of the Pthread

paradigm that is employed in this study:

a) The first step in the parallel program of this study considered the control of fine grained texture by the

management of the thread, which directly operates on the threads, and are capable of creating new thread

functions by defining new THREAD (name), and then started as StartThread (name); function. The

iMaxThreads function defines the maximum number of threads, and the threads numbered from 0 to P-1,

where the P is the number of possible threads.

Moreover, the initial step also utilized the Mutex functions which require the initialization before

usage. It entails a predefined value that can be assigned for the static initializer: Pthread_Mutex_Initializer.

The Pthread_mutex_lock () routine is utilized by the thread in order to obtain the lock on the Mutex variable.

Additional, this stage of initial step also utilize the Pthread_mutex_unlock () routine, which is needed after the

threading process is finished. The data is utilized if there are other threads needed to obtain the Mutex for their

data usage. In addition to that, there are other functions that are used in the management of threads, which are

WaitForThread (int iThread). This type of function waits until the thread numbered as iThread finishes its

execution. The function WaitForAll () waits for all the threads.

b) In the second step in the parallel program, the variables are shared over the threads in all steps of the

shared section. The arguments that are used in the algorithm are length of text n, text y, length of pattern

m, and pattern x. This step is also utilized in the function of bmBc and function of brBc that is used for

the shifting in the E-Atheer algorithm.

c) The third step in the parallel program is dependent upon the decomposition of the data, where the array

y[] that is related to the text is divided into small chunks p. In addition the p chunks are treated using the

singular threads in the parallel region. Each division cannot be precisely n/p, because of the searching

technique of the pattern matching algorithm. Thus, the division process can be n/p+m-1.

d) In the fourth step, after the division of the data text, each thread in the core takes one chunk, and the threads

take the same pattern to each thread. It separately used the pattern with the specific chunk, and this is

dependent upon the algorithm technique. In the E-Atheer algorithm, each thread utilizes the hash function

for a number of three times, with pattern in three phases, alongside the first phase of the text window and

searching phase. When each thread process is finished, the number of character comparisons, the calculation

of the number of attempts, a comparison is made between the chunk and the pattern, and the consumed time.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Parallel processing of E-Atheer algorithm using pthread paradigm (Atheer Akram AbdulRazzaq)

1627

e) In the fifth step, the reduction mutex is completed by calculating all the results from the threads. The

function pthread_mutex_lock (Reduction) is utilized to copy the summarized results for each thread

separately, and to calculate the values when each thread ends. In addition, through the utilization of the

reduction function, the parallel algorithm is able to compute the number of character comparison, the

number of attempts and consumed time for each thread are computed, which is ensued by the calculation

of the final results for all the threads. Additionally, the fifth step utilized the pthread_mutex_unlock

(Reduction); where its function is executed after the threads completed all the functions, and to restart the

creation of new threads, as illustrated in Figure 1.

Figure 1. Flowchart for parallel of the E-Atheer algorithm using Pthread paradigm

Text

 Pattern

Start

Benchmark

databases

End

Worker T[0]

Calculate the hash values
of Fh, Fhw, Sh, and Th

Worker T[1] Worker T[n]

Calculate the hash values of Fh,
Fhw, Sh, and Th

 Searching technique of E-
Atheer algorithm

Calculate the hash values
of Fh, Fhw, Sh, and Th

 Searching technique of E-
Atheer algorithm

 Searching technique of E-
Atheer algorithm

Calculate no. of character
comparison, attempts and

consumed time

Calculate no. of character
comparison, attempts and

consumed time

Calculate no. of character
comparison, attempts and

consumed time

waitForAll_T() calculate no. of characters comparison, attempts & consumed
time

number pthread_t [iMaxThreads]

Pthread_Mutex_Initializer

(Reset thread state) InitThreads()
pthread_mutex_lock (mtxThreads)

(Wait for threads function)
 (Wait for allthread function)

E-Atheer algorithm _parallel (x, m, yWhole,
nWhole, iOverallThreads)

Matching function, bmBc [x] function, c [x]

function, Hash function

 IF (nWhole /
iOverallThreads

< m)

 Variables shared over the threads (x, m,
yWhole, nWhole, brBc, bmBc)

Compute data boundaries in which the thread

will work (data = continuous text array
shared amongst all threads)

The parallelization method requires
overlapping boundaries yLast += m-1

Each worker thread process one chunk and (run multiple threads in parallel)

(Overall numbers of threads)
Thread (E-Atheer_algorithm)

No

Yes

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1624-1633

1628

2.4. Implementation and environment

2.4.1. Hardware and Khawarizmi cluster architecture

The experiment utilizes the Khawarizmi cluster that is available in the parallel lab of the School of

Computer Science, in the Universiti Sains Malaysia (USM) (khawarizmi.cs.usm.my). This cluster possesses a

single master node (2×Quad-Core Intel Xeon E5450 3.00 GHz, 2×12 MB Cache, 1333 MHz FSB) and two

slave nodes (2×Quad-Core Intel Xeon 1.6 GHz, 2×4 MB Cache, 1066 MHz FSB). The cluster possesses three

nodes, where inside each node there are two processors that possess four cores, with a single thread in each

core. The operating system of this cluster is Linux (rocks cluster distribution 6.1, centos 6.3, 64-bit) and the

compiler that is utilized in the cluster is GCC 4.4.6.

2.4.2. Performance metrics

 The parallelization of the suggested algorithm is executed through the utilization of the Pthread. The

evaluation of the algorithm results is conducted through the use of metrics, which is used to make a comparison

between the sequential and parallel algorithms performance. These specific metrics involve the speedup, and

the execution time [20]-[22].

A. Execution time

The execution time between the starting (initiation) point and the ending (termination) point of a single

processor, in addition to the entire operations time, is called the sequential time. The parallel time entails the

consumed time from the moment of the beginning moment of the first processor until the moment of the

finished time of the last processor. The consumed time in sequential is denoted as Ts and in the parallel is

denoted as Tp.

B. Speedup

It is utilized to gain the benefit of the parallel process. The speedup is reliant on the ratio of the elapsed

time in the sequential stage, to the elapsed time in the parallel stage. The Ts is the consumed time of the

sequential phase, Tp is the consumed time of the parallel phase, and S is the speedup. The calculated time is in

milliseconds and the measurement is dependent upon following equation.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 (𝑆) = 𝑇𝑠 / 𝑇𝑝

2.4.3. Experiment design

The databases that are utilized in this experiment is downloaded from the Pizza and Chili Corpus Web

site (http://pizzachili.dcc.uchile.cl/ (Pizza Chili Corpus). The datasets that are utilized in this study are; DNA,

Protein, XML, and Pitch with 200 MB data size. The average was calculated for the program after the

implementation of each dataset for five times. This experiment is dependent upon a machine which is utilized

in numerous prior studies. It utilized eight cores due to the fact that the cluster possesses three nodes, and inside

each node there are 8 cores with a single thread for each individual one. Conversely, when more than 8 cores

is utilized in this study, the results will be useless and produce a backfire. In this experiment, the figures

employed the number of cores which are dependent upon the core power of two, between 2^1 to 2^3. The time

used in the results is (Seq) for sequential time, and (C2), (C4), and (C8) to represent the two, four, and eight

numbers of cores respectively. The sequential results were compared with the cores’ parallel results in this

study. To employ the comparison operation of databases and algorithms, in addition to make the attainment of

the parallel results easier in this study, the average results were utilized. Two pattern lengths were utilized in

this experiment: the length of short pattern, which extended from 4 characters to 28 characters, and the length

of long pattern (length power of 2), which extended from 2^5 characters to 2^10 characters. Furthermore, the

pattern lengths taken diverse colours when evaluated of the parallel times and the speedup.

3. RESULTS
In the parallel operation of E-Atheer algorithm, the dataset decomposed into several segments and

were distributed to the cores by utilizing Pthreads (POSIX). The E-Atheer algorithm is evaluated by comparing

the speedup, as well as, the parallel time and sequential time, when utilizing long and short pattern lengths for

data of size 200 MB. The databases that are used within the experiment are diverse within the alphabet size,

where this sort is utilized to analyze the behaviors of the algorithm within the different sizes of alphabet.

3.1. Parallel and sequential times

When comparing the parallel and sequential times, and when utilizing long and short pattern lengths

with 200MB size of the database, the parallel time indicated the optimal performance rather than the sequential

time. The Pitch databases indicated the optimal time in the most of the long and short pattern lengths.

Meanwhile, the DNA database indicated the worst time achievement in the entire long and short pattern lengths,

as indicated in Figures 2 and 3 respectively.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Parallel processing of E-Atheer algorithm using pthread paradigm (Atheer Akram AbdulRazzaq)

1629

Figure 2. Evaluations of the parallel time utilizing short pattern lengths

Figure 3. Evaluations of the parallel time utilizing long pattern lengths

3.2. Speedup

It indicated high results when using short pattern lengths. The results of algorithm are high with the

utilization of DNA database in all the long pattern lengths. Meanwhile the other databases obtained good

speedup results only when using two (2) cores. The speedup obtained good results when using 32 pattern

lengths with 4 and 8 cores, whereas it is reduced when utilizing other long pattern lengths. The optimal database

in the entire long and short pattern lengths is the DNA database, and contrarily the worst database is the XML

in most of the short pattern lengths. Moreover, the Protien database being the worst in most of the long patterns,

as indicated in Figures 4 and 5.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1624-1633

1630

Figure 4. Evaluations of the speedup utilizing short pattern length

Figure 5. Evaluations of the speedup utilizing long pattern lengths

4. DISCUSSIONS AND ANALYSIS

Initially, the findings of the parallel execution time indicated the optimal performance in comparison

to the sequential time. However, when the number of cores increased, the overhead is revealed to increase and

to have an impact on the parallel execution time. This is due to the increase in the communication time. When

the number of cores in parallel and pattern length increase, the parallel and sequential times are decrease in the

long and short pattern lengths [13], [23].

The best sequential results registered are 359 and 95 ms for short and long patterns with 200 MB data

size, separately. The worst sequential results registered are 699 and 483 ms for short and long patterns with

200 MB data size, separately. The particular best parallel results when utilizing short pattern length are as

follows: 2 cores 185 ms, 4 cores 96 ms, and 8 cores 59 ms. The best parallel results when utilizing long pattern

length are as follows: 2 cores 56 ms, 4 cores 41 ms, 8 cores 35 ms.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Parallel processing of E-Atheer algorithm using pthread paradigm (Atheer Akram AbdulRazzaq)

1631

The particular worst parallel results when utilizing short pattern length are as follows: 2 cores 358 ms,

4 cores 189 ms, and 8 cores 120 ms. The worst parallel results when utilizing long pattern length are as follows:

2 cores 251 ms, 4 cores 130 ms, and 8 cores 71 ms, as shown in Table 1. The Pitch dataset indicated the optimal

sequential and parallel times in long and short pattern lengths due to the fact that the E-Atheer algorithm utilized

the hash and (bmBc) efficient functions techniques. The DNA dataset obtained the worst results in sequential

and parallel time owing to the minute DNA alphabet size, which is dependent on the hash function that needs

to check the repeated characters. Thus, additional time is consumed than in other datasets.

Table 1. Performance assessment for the average sequential and parallel execution times (ms) of the

E-Atheer algorithm
Database types Short pattern Long pattern

Seq C2 C4 C8 Seq C2 C4 C8

DNA 699 358 182 96 483 251 130 71

Protein 372 192 100 59 95 56 41 36

XML 573 316 189 120 104 60 42 38

Pitch 359 185 96 59 100 58 41 35

The speedup increased when utilizing the short pattern length, while the speedup is expedited in terms

of time with long pattern length when only 2 cores are utilized, during the use of all types of dataset except for

the DNA database. The best results of speedup when short patterns utilized with 200 MB data sizes are

separatly displayed as follows: 2 cores 1.95, 4 cores 3.82, and 8 cores 7.19. The best results of speedup when

long patterns utilized are separatly displayed as follows: 2 cores 1.93, 4 cores 3.72, and 8 cores 6.76. The worst

results of speedup when short patterns utilized with 200 MB data sizes are separatly displayed as follows: 2

cores 1.85, 4 cores, 3.28, and 8 cores 5.16. The worst results of speedup obtained when using long patterns are

separatly displayed as follows: 2 cores 1.66, 4 cores 2.27, and 8 cores 2.56, as shown in Table 2.

Table 2. Performance assesment for average speedup of parallel E-Atheer algorithm
Database types Short pattern Long pattern

 C2 C4 C8 C2 C4 C8
DNA 1.95 3.82 7.19 1.93 3.72 6.76

Protein 1.93 3.63 5.98 1.67 2.27 2.56
XML 1.85 3.28 5.16 1.71 2.42 2.74
Pitch 1.93 3.66 5.9 1.66 2.29 2.69

The DNA dataset obtained good performance with all number of cores because there are only four

characters in the DNA dataset which possesses short parallel time in comparison to the sequential time for the

same data type. Moreover, the parallel time decreased when the pattern length increased [23]. Furthermore, the

algorithm technique is dependent upon the hash function that is used to calculate the hash value of three

characters only in the first step. Therefore when more than 2 cores are utilized with large alphabet size and the

long pattern, the elapsed time will be reduced and the shifting will be small unlike in the DNA dataset.

The optimal speedup results are obtained through the use of the DNA database when utilizing short

and long pattern lengths, as can be observed in the results, due to the DNA dataset obtaining high performance

with parallel time in comparison to the results obtained using sequential time. The speedup indicated an

increase when the sequential execution time is greater than the parallel time. The XML dataset has achieved

the defective results when utilizing the short pattern length, meanwhile the Protien database obtained extremely

terrible results when utilizing the long pattern length. The speedup decreased when the alphabet size increased

as the speedup is affected by the database type [24], [25].

5. CONCLUSION

The results in this study are represented by the parallel execution time, and speedup of the sequential

and parallel of E-Atheer algorithm through the utilization of varying types of datasets with size 200MB, and

with short and long lengths of patterns. The parallelization of E-Atheer algorithm obtained high performance

results in comparison to sequential version when utilizing Pthread paradigm as a multi-core processing

technology. Through our significant research, it is noted that the E-Atheer algorithm obtained optimal results

and high performance in the parallelization by the reduction in the algorithm execution time, and indicated

high results in speedup. In the parallel execution of E-Atheer algorithm, the Pitch database indicated optimal

results in parallel execution time, and when utilizing long and short pattern lengths. Meanwhile the DNA

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1624-1633

1632

database obtained optimal results in speedup. For future work the E-Atheer algorithm may be progressed by

executing to other multi core environment (e.g., GPU program) and multiprocessors models (e.g., MPI), as

well as Executing hybrid parallel models, like the hybrid models of the OpenMP-MPI or GPU-MPI.

REFERENCES
[1] S. Deusdado and P. Carvalho, “GRASPm: an efficient algorithm for exact pattern-matching in genomic sequences,” International

Journal of Bioinformatics Research and Applications, vol. 5, no. 4, pp. 385-401, 2009, doi: 10.1504/IJBRA.2009.02751.

[2] S. I. Hakak, A. Kamsin, P. Shivakumara, G. A. Gilkar, W. Z. Khan, and M. Imran, “Exact string matching algorithms: survey,

issues, and future research directions,” New Trends in Brain Signal Processing and Analysis IEEE Access, vol. 7, pp. 69614-69637,
April 2019, doi: 10.1109/ACCESS.2019.2914071.

[3] A. A. AbdulRazzaq, N. A. Rashid, and A. M. Taha, “The enhanced hybrid algorithm for the AbdulRazzaq and Berry-Ravindran

algorithms,” International Journal of Engineering and Technology, vol. 7, no. 3, pp. 1709-1717, 2018, doi:
10.14419/ijet.v7i3.12436.

[4] A. W. Mahmood, N. A. Rashid, and A. A. A. Rozaq, “BM-KMP hybrid algorithm for exact and subsequence string matching,”
Proceeding of the 3rd International Conference on Informatics and Technology, (Informatics '09), 2009, pp. 81-87.

[5] S. S. Al-Dabbagh, N. H. Barnouti, M. A. Naser, and Z. G. Ali, “Parallel quick search algorithm for the exact string matching problem
using openMP,” Journal of Computer and Communications, vol. 4, no.13, pp. 1-11, 2016, doi: 10.4236/jcc.2016.413001.

[6] K. F. Xylogiannopoulos, “Exhaustive exact string matching: the analysis of the full human genome,” 2019 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining (ASONAM), Aug 2019, doi: 10.1145/3341161.3343517.

[7] L. S. Nunes, J. L. Bordim, Y. Ito, and K. Nakano, “Parallel rabin-karp algorithm implementation on GPU (preliminary version),”

Bulletin of Networking, Computing, Systems, and Software, vol. 7, no. 1, pp. 28-32, 2018.

[8] N. B. Nsira, T. Lecroq, and M. Elloumi, ”A fast boyer-moore type pattern matching algorithm for highly similar sequence,”

International Journal of Data Mining and Bioinformatics, vol. 13, no. 3, pp. 266-88, 2015, doi: 10.1504/ijdmb.2015.072101.

[9] R. E. Putri and A. Siahaan, ”Examination of document similarity using rabin-karp algorithm,” International Journal Of Recent

Trends In Engineering and Research, vol. 03, no. 08, pp. 196-201, 2017, doi: 10.23883/IJRTER.2017.3404.4SNDK.

[10] A. B. Khoir, H. Qodim, B. Busro, and A. R. Atmadja, “Implementation of rabin-karp algorithm to determine the similarity of

synoptic gospels,” 1st International Conference on Advance and Scientific Innovation (ICASI), pp.1-7, 2019, doi: 10.1088/1742-

6596/1175/1/012120.

[11] A. A. AbdulRazzaq, “New hybrid searching techniques and multi-core implementations for exact string matching,” Ph.D thesis,

Computer Science School, University Science Malaysia, 2014.

[12] X. Y. Zha and S. Sahni, “GPU-to-GPU and host-to-host multipattern string matching on a GPU,” IEEE Transactions on Computers,

vol. 62, pp. 1156-1169, 2013, doi: 10.1109/TC.2012.61.

[13] A. A. Abdulrazzaq, N. A. Rashid, and A. H. A. Alezzi, “Parallel processing of hybrid exact string matching algorithm,” In 2013

IEEE International Conference on Control System, Computing and Engineering, 2013, pp. 203-209, doi:

10.1109/ICCSCE.2013.6719959.

[14] I. M. Abu-Zaid and E. K. El-Rayyes, “Parallel search using KMP algorithm in arabic string,” International Journal of Science and

Technology, vol. 2, no. 7, pp. 427-431, 2012.

[15] A. A. Hnaif, M. Alhalaiqah, O. Abouabdalla, S. Ramadass, and M. M. Kadhum, “Parallel quick search algorithm to speed packet

payload filtering in NIDS,” Journal of Engineering Science and Technology, vol. 4, no. 2, pp. 220-230, 2009.

[16] P. Shah and O. Rachana, “Improved parallel rabin-karp algorithm using compute unified device architecture,” In International

Conference on Information and Communication Technology for Intelligent Systems (Springer), pp. 236-244, 2017, doi:

10.1007/978-3-319-63645-0_26.

[17] A. A. AbdulRazzaq, N. A Rashid, A. A. Abbood, and Z. Zainol, “The improved hybrid algorithm for the atheer and berry-ravindran

algorithms,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 6, pp. 4321-4333, 2018, doi:
10.11591/ijece.v8i6.pp4321-4333.

[18] D. Herath, C. Lakmali, and R. Ragel, “Accelerating string matching for bio-computing applications on multi-core CPUs,” In 2012
IEEE 7th International Conference on Industrial and Information Systems (ICIIS), 2012, pp. 1-6, doi:

10.1109/ICIInfS.2012.6304784.

[19] S. S. Arslan, H. Le, J. Landman, and T. Goker, “OpenMP and POSIX threads Implementation of Jerasure 2.0,” In 2017 IEEE
International Black Sea Conference on Communications and Networking (BlackSeaCom), 2017, pp. 1-5, doi:

10.1109/BlackSeaCom.2017.8277690.

[20] A. Grama, G. Karypis, V. Kumar, and A. Gupta, “Introduction to Parallel Computing,” Second Edition, Addison Wesley, pp. 165-

169, 2003.

[21] Z. A. A. Alqadi, M. Aqel, and I. M. E. Emary, “Performance analysis and evaluation of parallel matrix multiplication algorithms,”
World Applied Sciences Journal, vol. 5, no. 2, pp. 211-214, 2008.

[22] H. A. Kadhim, “New sequential and gpu-based hybrid string matching algorithms,” Master thesis, Computer Science School,
University Science Malaysia, 2012.

[23] K. Hamidouche, A. Borghi, P. Esterie, J. Falcou, and S. Peyronnet, “Three high performance architectures in the parallel APMC
boat,” In 2010 Ninth International Workshop on Parallel and Distributed Methods in Verification, and Second International

Workshop on High Performance Computational Systems Biology, pp. 20-27, 2010, doi: 10.1109/PDMC-HiBi.2010.12.

[24] T. K. Pyrgiotis, C. S. Kouzinopoulos, and K. G. Margaritis, “Parallel implementation of the wu-manber algorithm using the opencl
framework,” In IFIP International Conference on Artificial Intelligence Applications and Innovations (Springer), pp. 576-583,

2012, doi: 10.1007/978-3-642-33412-2_59.

[25] A. A. AbdulRazzaq, Q. S. Hamad, and A. M. Taha, “Parallel implementation of maximum-shift algorithm using OpenMp,”

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 22, no. 3, pp. 1529-1539, 2021, doi:
10.11591/ijeecs.v22.i3.pp1529-1539.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Parallel processing of E-Atheer algorithm using pthread paradigm (Atheer Akram AbdulRazzaq)

1633

BIOGRAPHIES OF AUTHORS

Dr. Atheer Akram AbdulRazzaq was born in Baghdad, Iraq. He got his

bachelor from Al Mustansiriya University, Iraq in 2006. He got his M.Sc. from Universiti

Sains Malaysia in 2009. He got his Ph.D. in High performance computing (Parallel tools and

applications) in 2014, School of Computer Sciences, Universiti Sains Malaysia. He is

currently an assistant professor at the Businesses Informatics College, University of

Information Technology and Communication, Baghdad, Iraq. His main research area is high

performance computing. His research interests are in exact string matching algorithms,

parallel and distributed processing, network security, and data mining. He has published

numerous papers in string matching, parallel and distributed processing, network security,

and genomic information processing. He can be contacted at email: athproof@uoitc.edu.iq.

Mohammed A. Fadhel received the Master degree from University of

technology/Control and System Eng./Computer engineering, Iraq in 2015. He is currently a

senior lecturer in the College of Computer Science and Information Technology, University

of Sumer, Iraq. Published more than 40 Research Papers in various National and International

Conferences, International Journals (Scopus/SCI/SCIE/SSCI Indexed). His research interests

include embedded system, image and acoustic processing, deep learning, medical diagnosis

techniques, GPU, FPGA, real-time systems, sound processing, hologram technology and

many more. He can be contacted at email: Mohammed.a.fadhel@uoitc.edu.iq.

Laith Alzubaidi is currently a Ph.D. student at Queensland University of

Technology/Faculty of Science and Engineering, Brisbane, Australia. He received his

Master’s degree in computer science from the University of Missouri/USA in 2016. In his

Master’s thesis, he worked on the detection and classification of breast cancer with deep

learning. Laith broad research area falls in artificial intelligence and internet of things (IoT).

In particular, his research interests include deep learning for medical applications and IoT.

He can be contacted at email: laith.alzubaidi@hdr.qut.edu.au.

Omran Al-Shamma currently works at the Postgraduate affairs, University of

Information Technology and Communications, Baghdad, Iraq. He holds Ph.D. from

University of Hertfordshire, UK 2013. Omran interests in computer design software, medical

diagnosis techniques, and preliminary aircraft design software, real time surveillance system.

He can be contacted at email: o.alshamma@uoitc.edu.iq.

mailto:athproof@uoitc.edu.iq
https://orcid.org/0000-0002-4605-1095
https://orcid.org/0000-0001-9877-049X
https://orcid.org/0000-0002-7296-5413
https://orcid.org/0000-0001-5930-6176

