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Abstract 
 This article puts forward a novel system for pedestrian detection tasks, which proposing a model 

with sparse and low-rank matrix decomposition, jointly alternating direction method to solve the convex 
relaxation problem. We present an efficient pedestrian detection system using mixing features with sparse 
and low-rank matrix decomposition to combine into a Kernel classifier. Results presented on our data set 
show competitive accuracy and robust performance of our system outperforms current state-of-the-art 
work. 
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1. Introduction 
Pedestrian counting in public places plays a key role in many applications, such as 

evacuating from a dense region to a sparse one when an emergency happens, or optimizing the 
design of traffic infrastructures to provide better transportation services. Furthermore, social 
security and surveillance strongly depend on the effectiveness of pedestrian counting. A wide 
variety of pedestrian detection methods have been proposed [1-6]. 

Matrix representations of complex systems and models arising in various areas often 
have the character that such a matrix is composed of a sparse component and a low-rank 
component. Such applications include the model selection in statistics, system identification in 
engineering, partially coherent decomposition in optical systems, and matrix rigidity in computer 
science, see e.g. [7-13]. Practically, it is of significant interest to take advantage of the 
decomposable character of such a complex system. One necessary way towards this goal is to 
recover the sparseand low-rank components of a given matrix without prior knowledge about 
the sparsity pattern or the rank information. In paper, we put forward a novel framework for 
pedestrian detection tasks based on sparse and low-rank matrix decomposition (SLRMD). 

 
 

2. Research Method 
2.1. Feature Extractions 

Obviously, the choice of features is the most critical decision when designing a detector, 
and finding good features is still largely an empirical process with few theoretical guidelines. We 
evaluate different combinations of features, and introduce a new feature based on the similarity 
of colors in different regions of the detector window, which significantly raises detection 
performance. The pedestrian region in our detection window is of size 48*96 pixels.  

Histograms of oriented gradients (HOG) are a popular feature for object detection, first 
proposed in [14]. They collect gradient information in local cells into histograms using trilinear 
interpolation, and normalize overlapping blocks composed of neighboring cells. Interpolation, 
local normalization and histogram binning make the representation robust to changes in lighting 
conditions and small variations in pose. HOG was recently enriched by Local Binary Patterns 
(LBP), showing a visible improvement over standard HOG on the INRIA Person data set [15]. In 



TELKOMNIKA  ISSN: 2302-4046  

Pedestrian Detection Based on Sparse and Low-Rank Matrix Decomposition (Cheng Ke-yang) 

1545

our experiments we compute histograms with 9 bins on cells of 8*8 pixels. Block size is 2*2 cells 
overlapping by one cell size. 

HOF Histograms of flow were initially also proposed by Dalal et al. [16]. We have shown 
that using them (e.g. in [16]’s IMHwd scheme) complementary to HOG can give substantial 
improvements on realistic datasets with significant ego motion. Here, we introduce a lower-
dimensional variant of HOF, IMHd2, which encodes motion differences within 2*2 blocks with 4 
histograms per block, while matching the performance of IMHwd (3*3 blocks with 9 histograms). 
Figure 2(d) schematically illustrates the new coding scheme: the 4 squares display the encoding 
for one histogram each. For the first histogram, the optical flow corresponding to the pixel at the 
ith row and jth column of the upper left cell is subtracted from the one at the corresponding 
position of the lower left cell, and the resulting vector votes into a histogram as in the original 
HOF scheme. IMHd2 provides a dimensionality reduction of 44% (2520 instead of 4536 values 
per window), without changing performance significantly. We used the publicly available flow 
implementation of [17]. In this work we show that HOF continues to provide a substantial 
improvement even for flow fields computed on JPEG images with strong block artifacts (and 
hence degraded flow fields). 

Several authors have reported improvements by combining multiple types of low-level 
features [18-20]. Still, it is largely unclear which cues should best be used in addition to the now 
established combination of gradients and optic flow. Intuitively, additional features should be 
complementary to the ones already used, capturing a different part of the image statistics. Color 
information is such a feature enjoying popularity in image classification [15] but is nevertheless 
rarely used in detection. Furthermore, second order image statistics, especially co-occurrence 
histograms, are gaining popularity, pushing feature spaces to extremely high dimensions [19, 
21]. 

By combining these ideas, we use second order statistics of colors as additional 
feature. Color by itself is of limited use, because colors vary across the entire spectrum both for 
people (respectively their clothing) and for the background, and because of the essentially 
unsolved color constancy problem. However, people do exhibit some structure, in that colors 
are locally similar—for example (see Figure 1) the skin color of a specific person is similar on 
their two arms and face, and the same is true for most people’s clothing. Therefore, we encode 
color self similarities within the descriptor window, i.e. similarities between colors in different 
sub-regions. To leverage the robustness of local histograms, we compute D local color 
histograms over 8*8 pixel blocks, using trilinear interpolation as in HOG to minimize aliasing. 
We experimented with different color spaces, including 3*3*3 histograms in RGB, HSV, HLS 
and CIE Luv space, and 4*4 histograms in normalized rg, HS and uv, discarding the intensity 
and only keeping the chrominance. Among these, HSV worked best, and is used in the 
following. 

 

 
 

Figure 1. Self-similarity Encodes Relevant Parts 
 
 

2.2. Supervised Discriminative Learning Based on Sparse and Low-Rank Matrix 
Decomposition 

The heuristics of using the ℓ1-norm as the proxy of sparsity and the nuclear norm as the 
surrogate of low-rank are widely used in many areas such as statistics and image processing 
(see e.g. [22-25]). This inspires us to put forward a supervised discriminative learning model 
based on sparse and low-rank matrix decomposition: 
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Where nmR x  is the given pedestrian image matrix to be decomposed; nmRA   represent 
the sparse components of x, which contains the discriminative information of pedestrian image; 

nmRB   represent the low-rank components of x, which contains the noise information; ||·||2 is 
the ℓ2 norm; ||·||1 is the ℓ1 norm defined by the component-wise sum of absolute values of all 
entries; ||·||*, s the nuclear norm defined by the sum of all singular values; and λ>0 is a trade-off 
constant for these components.  

In this paper, we use the ADM approach for solving (1) by taking full advantage of its 
separable structure. As we will analyze in detail, the ADM approach is attractive for (1) because 
the computational of each iteration is dominated by only one singular value decomposition 
(SVD). 

Roughly speaking, ADM is a practical variant of the classical augmented Lagrangian 
method (ALM, see e.g., [26, 27]) for solving linearly constrained convex programming problem 
whose objective function is the sum of two individual functions without coupled variables. The 
ADM has found applications in many areas including convex programming, variational 
inequalities and image processing, see, e.g. [28-39]. In particular, novel applications of ADM for 
solving some interesting optimization problems have been discovered very recently, see e.g. 
[40-48]. The augmented Lagrangian function of (1) is: 
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Where Z∈Rm*n is the multiplier of the linear constraint; <·, ·> denotes the standard trace inner 
product. Clearly, the classical ALM is applicable, and its iterative scheme starting from Zk is 
given as follows: 
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The direct application of ALM, however, treats (1) as a generic minimization problem 

and performs the minimization with respect to A,B andθsimultaneously. 
In contrast, ADM splits the minimization task in (2) into two smaller and easier 

subproblems, where A and B are minimized separately. Specifically, the original ADM (see [34]) 
solves the following problems to generate the new iterate:  
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By doing so, the subproblems (3a), (3b) and (3c) both have closed-form solutions. 

Thus, iterative processes for solving the inner subproblems are avoided. This fact contributes 
significantly to the computational efficiency of ADM for solving (1). We now elaborate on 
strategies of solving the subproblems (3a), (3b) and (3c). First, problem (3a) turns out to be a 
shrinkage problem (see e.g [40]) and its closed-form solution is given by: 
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Based on above analysis, we now describe the procedure of applying the ADM to solve 

(1). For given (Bk,Zk), the ADM takes the following steps to generate the new iterate 
(Ak+1,Bk+1,Zk+1): 
 

  
 

Figure 2. The ADM Algorithm for SLRMD Problem 
 
 

3. Results and Analysis 
To evaluate the performance of the proposed algorithm, we carry out a series of 

experiments on a dataset extracted 500 images of size 128*64 from MIT database. If the image 
contains a pedestrian, the label of it will be 1，otherwise -1. Figure 3(a) shows several images 
with label 1. Figure 3(b) shows several images with label -1. 100 images from the dataset are 
selected as the test examples. Different number images of the dataset are selected as the 
training examples to compare the accuracy rate.  

  
 

 
 

 

Figure 3(a). Images with Label 1 Figure 3(b). Images with Label -1 
 
 

Step 1. Generate Ak+1: 

)/(/ 11
1

/ CBZPCBZA kkkkk 


    

Step 2. Generate Bk+1: 
Tkk

i
kk VdiagUB )}(0,/1(max{ 1

1
111   

 
where Uk+1, Vk+1 and {σi 

k+1} are generated by the following SVD: 

   Tkkkkk VUZA )(/x 111
1

1  , with 

 
  )}({ 1

11 r
i

k
i

k diag   

Step 3. Generateθk+1: 

}||||),(({minarg 24
1k1 


  Byfck  

Step 4. Update the multiplier: 

)x( 11
1

1   kkkk BAZZ 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 2, February 2014:  1544 – 1550 

1548

Figure 4 shows the compare results of recognition between with HOG, HOF and Color 
features respectively and the corresponding features with sparse and low-rank matrix 
decomposition. Figure 5 shows the result of using mixing features to compare the two methods. 
As shown in the graph, our method performs better than the method directly using HOG, HOF 
and Color features to recognition with the classifier SVM. In addition, with the increasing number 
of training samples, our method performs better. 

Figure 6 shows the result of these two methods using shading images to test. 
Compared with the traditional method, our method has better recognition accuracy and shows 
good robustness. 

 
 

Figure 4. The Compare Results of Recognition 
between with HOG, HOF and Color Features 
Respectively and the Corresponding Features 

with Sparse and Low-rank Matrix 
Decomposition 

Figure 5. The Result of Using Mixing Features 
to Compare the Two Methods 

 
 

 
Figure 6. The Result of these Two Methods Using Shading Images to Test 

 
 

4. Conclusion 
We proposed a system for pedestrian detection with very good accuracy. To achieve 

good classification performance, we put forward a novel framework for pedestrian detection 
tasks, which proposing a model with sparse and low-rank matrix decomposition, jointly 
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alternating direction method to solve the convex relaxation problem. We present an efficient 
pedestrian detection system using mixing features with sparse and low-rank matrix 
decomposition of HOG, FOG and CSS to combine into a Kernel classifier. Results presented on 
our data set show competitive accuracy and robust performance of our system outperforms 
current state-of-the-art work. Although we use the system for the detection of pedestrians, the 
general idea can be applied to the detection of other object classes as well. 
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