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 Parameter identification is the most fundamental task for the model-based 

battery management system. However, there are some difficulties in 

completing this task since most of the existing methods require at least one 

known parameter or a time-consuming offline procedure to extract parameters 

from measured data. Based on the well-known thevenin equivalent circuit for 

battery, this paper determines the unique purpose is introducing the bounded 

varying forgetting factor recursive least square approach which identifies 

online all the parameters of the battery model at the same time. The precision 

of the proposed method is verified by simulation with the error converged to 

zero and the maximum error less than 1% of the nominal value. 
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1. INTRODUCTION 

The increasing concerns for environmental protection and the energy crisis have propelled the rapid 

growth of electric vehicles (EVs) in recent years. Among various battery technologies, lithium-ion batteries 

have been preferred for EVs because of their high power-to-weight ratio, long cycling lifespan, and low self-

discharge. To ensure the reliable and efficient performance of EVs, accurate prediction of battery performance 

is crucial [1], [2]. 

Battery management systems (BMS) have increasingly relied on model-based estimation techniques 

in recent years, with battery modeling emerging as a critical factor affecting estimation accuracy. These models 

simulate battery reactions and inform charging and discharging strategies. Besides the electrochemical model 

[3]–[5], and the black box model [6], the equivalent circuit model (ECM) [7]–[10] is widely used due to its 

simplicity of battery simulation [11]. In the ECM, the voltage response of a battery can be well modeled on 

different time scales by connecting RC cells with different time constants in series [12], [13]. 

Much of the recent research is based on a circuit model that simulates the electrical dynamics of a 

battery using a network of resistors, capacitors, and voltage sources. However, the ECM parameters often 

change under real conditions or drift during charge/discharge cycles [14]. This raises the question of how 

accurately and effectively we can identify them by measuring the current/voltage across the battery cells. In 

the current literature review, the ECM’s parameters identification method can be divided into three categories. 

Offline experiment-based examination. This classification uses charging/discharging examinations 

with the final goal that a battery’s parameters can be estimated from the dynamics. The transient voltage 

response is utilized in [15] to find the ECM’s parameters by charging/discharging a battery utilizing constant 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 1, July 2023: 151-159 

152 

and pulse currents. The state-of-charge (SOC)-open circuit voltage (OCV) relationship can be used for the 

estimation of SOC. This can be done by the small current discharge experiment [16], or on the other hand, by 

applying a typical magnitude discontinuous current (an adequately long rest period is applied between two 

discharge cycles) [17]. While simple to implement, these methodologies present huge time costs-a SOC-OCV 

alignment investigation can require over one day [18], excessively expensive, particularly in enormous battery 

testing. 

Electrochemical impedance spectroscopy (EIS). EIS is a significant method for noticing 

electrochemical cycles inside batteries. The EIS information uncovers the battery impedance characteristic, 

and the writing incorporates a couple of techniques that fit an ECM to gather EIS information to separate the 

obstruction and RC boundaries [19]. These techniques center around impedance recognizable proof on a case-

by-case basis in numerous applications and then, leave different information about a battery’s elements for 

example the SOC-OCV relationship is ignored. 

Online data-based parameter estimation. This classification tries to use the current/voltage 

measurements to decide an ECM's parameters from a system identification viewpoint. The effort on online 

model boundary recognizable proof of lithium-ion battery has hatched numerous techniques, which can be 

characterized into filtering-based and regression-based strategies. The first sort of technique utilized various 

kinds of adaptive filters [20] for online tracking of time-varying ECM’s parameters. However, the generally 

high computational burden brought by high-order matrix manipulations is not suitable for onboard systems in 

real applications. On the other hand, the regression type of approaches which are mostly based on least squares 

(LS) is more widely used because of their lower computing effort. The researches [21], [22], the LS moving 

window was used to update the first-order RC model parameters and estimate the SOC with high accuracy. In 

contrast to the batch calculation features of LS, the recursive least squares (RLS) method [23] has been most 

widely used to identify LIB model parameters due to its reasonable computational requirements and recursive 

calculation framework. However, it is difficult to deal with the saturation issue if the parameters suddenly 

change or change extremely slowly, resulting in the RLS method having its limitations. In a few studies, the 

forgetting factor (FF) has been introduced or combined with filtering algorithms to improve the RLS method. 

It is common for the FF to be set to constant values, which leads to unsuitable performance under complex and 

unpredictable working conditions. Furthermore, since the filtering algorithms have been integrated, the 

matching between them and the overall computational efficiency is compromised. With the identification of 

parameters, the workload for the joint estimation of SOC and some of the model parameters increases [24]. It 

should be emphasized that these studies often require an accurate SOC-OCV connection to be established 

before identification, which necessitates the previously described long-term testing. 

Although crucial, the methods mentioned earlier are subject to two main limitations. They only 

identify a subset of an ECM’s parameters, assuming that the other parameters are already known. Additionally, 

the FF is frequently set to a constant value, which is not suitable for complex and changing operating conditions 

in practice. This raises an intriguing question: Can an ECM’s parameters be extracted simultaneously? By 

“all,” we refer to both the RC parameters and the nonlinear SOC-OCV function parameters. Achieving this 

would yield at least two benefits. Firstly, it would significantly enhance battery model identification efficiency 

by eliminating the time-consuming SOC-OCV calibration process. Secondly, without the need for offline 

measurement, it would ensure the availability of an accurate battery model for management throughout various 

load scenarios. 

This work is propelled to develop new methodologies with VFF to distinguish successful online 

battery estimation for one-cycle battery parameters identification. The well-known thevenin model is 

considered here. Due to the nonlinearity of the model, the identification process can be spiked, which may lead 

to unphysical estimation. This work thus presents a precise approach to defeat this problem, with these 

accompanying commitments. 

This work brings to reality the novel one-shot parameter identification methods which were developed 

to estimate all the parameters one at a time without any information except current and voltage and minimize 

the model prediction error by setting the boundaries of trust-region for the parameters. An online estimate 

approach based on variable forgetting factor recursive least squares is presented. In the optimization of the 

RLS method, we demonstrate that the VFF converges to the real value in real time via linear correlation with 

the system’s iterative error and gain. Therefore, the online real-time estimation of the parameter can be 

achieved accurately. 

This research introduces a method of estimation of all the parameters in the thevenin battery model 

without any information further than measured voltage and current. The accuracy of this method is better than 

other existing methods with a terminal voltage error of less than 1% of the nominal voltage. The estimated 

internal resistance is also compared with real measurements by a battery tester and guarantees the precision of 

the identification. 
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2. LITHIUM BATTERY MODELING 

2.1.  Equivalent circuit model 

From the dynamic response of the cells, the equivalent circuit model consists of electrical components 

such as a resistor, capacitor, and voltage source to mimic the same dynamic response of the battery so that it 

can be used as the model for a battery with much lower complexity in comparison with the electro dynamic 

model. Figure 1 is an ECM with a voltage source 𝑈𝑂𝐶  represents the open circuit voltage, resistor 𝑅𝑜 represents 

series resistance, several parallel branches 𝑅𝐷𝑘
𝐶𝐷𝑘

is applied to represent the transient response of terminal 

voltage. The input of the model is the current 𝑖𝐿, the output of the model is the terminal voltage 𝑈𝑡. 
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Figure 1. Equivalent circuit of a lithium battery 

 

 

2.2.  Battery mathematic model 

Various R-C models with differing numbers of parallel branches have been developed for batteries, 

depending on the intended application and desired level of accuracy. The number of parallel branches of R-C 

is a tradeoff between accuracy and complexity. However, one R-C model is accurate enough for EV 

applications [21]. Thus, the thevenin model is chosen to be investigated. The one R-C thevenin equivalent 

circuit model is shown in Figure 2. 
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Figure 2. One R-C thevenin ECM 

 

 

The thevenin model can be presented in the s-domain as:  
 

{
�̇�1(𝑠) =

𝐼(𝑠)

𝐶1
−

𝑈1(𝑠)

𝑅1𝐶1

𝑈𝑏(𝑠) = 𝑈𝑂𝐶𝑉(𝑠) − 𝑈1(𝑠) − 𝑅0𝐼(𝑠)
 (1) 

 

relation between terminal voltage and open circuit voltage:  
 

𝑈𝑏(𝑠) − 𝑈𝑂𝐶𝑉(𝑠) = −𝐼(𝑠) (𝑅0 +
𝑅1

1+𝑅1𝐶1𝑠
) (2) 

 

the transfer function is obtained:  
 

𝐺(𝑠) =
𝐸𝐿(𝑠)

𝐼(𝑠)
= −𝑅0 −

𝑅1

1+𝑅1𝐶1𝑠
= −

𝑅0+𝑅1+𝑅0𝑅1𝐶1𝑠

1+𝑅1𝐶1𝑠
 (3) 

 

where, 
 

𝐸𝐿 = 𝑈𝑏 − 𝑈𝑂𝐶𝑉  
 

after the discretization of G(s) by Tustin’s method, with 𝑠 =
2

𝑇

1−𝑧−1

1+𝑧−1, the transfer function is: 
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𝐺(𝑧−1) = −

𝑅0𝑇+𝑅1𝑇+2𝑅0𝑅1𝐶1
𝑇+2𝑅1𝐶1

+
𝑅0𝑇+𝑅1𝑇−2𝑅0𝑅1𝐶1

𝑇+2𝑅1𝐶1
𝑧−1

1+
𝑇−2𝑅1𝐶1
𝑇+2𝑅1𝐶1

𝑧−1
 (4) 

 

the (4) can be written as (5) after discretization with k=1, 2, 3, …, 
 

𝐸𝐿(𝑘) = 𝑎1𝐸𝐿(𝑘 − 1) + 𝑎2𝐼(𝑘) + 𝑎3𝐼(𝑘 − 1) (5) 
 

where, 𝑎1 = −
𝑇−2𝑅1𝐶1

𝑇+2𝑅1𝐶1
, 𝑎2 = −

𝑅0𝑇+𝑅1𝑇+2𝑅0𝑅1𝐶1

𝑇+2𝑅1𝐶1
, 𝑎3 = −

𝑅0𝑇+𝑅1𝑇−2𝑅0𝑅1𝐶1

𝑇+2𝑅1𝐶1
 

 

The synthetic influence on the OCV is determined by various factors including the SOC, working 

temperature (Te), and cycle history (H). These factors can all be mathematically represented as functions of 

time (t). Therefore, the correlation between these factors can be defined as (6). 
 

𝑑𝑈𝑂𝐶𝑉

𝑑𝑡
= (

𝜕𝑈𝑂𝐶𝑉

𝜕𝑆𝑂𝐶

𝜕𝑆𝑂𝐶

𝜕𝑡
+

𝜕𝑈𝑂𝐶𝑉

𝜕𝑇𝑒𝑚

𝜕𝑇𝑒𝑚

𝜕𝑡
+

𝜕𝑈𝑂𝐶𝑉

𝜕𝐻

𝜕𝐻

𝜕𝑡
) (6) 

 

If the change in SOC during the sampling time is negligible, we can assume that ∂SOC/∂t≈0. 

Additionally, as the battery is typically heated or cooled to reach the working temperature, we can assume that 

the temperature change is relatively small and ∂Te/∂t≈0. In the long-term usage history, short-term cycles have 

minimal impact on the cycle history (H) value. Therefore, we can also assume that ∂H/∂t≈0. As a result, we 

can rewrite (6) as: 
 

𝑑𝑈𝑂𝐶𝑉

𝑑𝑡
=

𝑈𝑂𝐶𝑉(𝑘)−𝑈𝑂𝐶𝑉(𝑘−1)

𝑇
≈ 0 (7) 

 

△ 𝑈𝑂𝐶𝑉(𝑘) = 𝑈𝑂𝐶𝑉(𝑘) − 𝑈𝑂𝐶𝑉(𝑘 − 1) ≈ 0 (8) 
 

from the (5) and (8) terminal voltage 𝑈𝑏(𝑘) is obtained:  
 

𝑈𝑏(𝑘) = (1 − 𝑎1)𝑈𝑂𝐶𝑉(𝑘) + 𝑎1𝑈𝑏(𝑘 − 1) + 𝑎2𝐼(𝑘) + 𝑎3𝐼(𝑘 − 1) (9) 
 

with  𝜙 = [1, 𝑈𝑏(𝑘 − 1), 𝐼(𝑘), 𝐼(𝑘 − 1)] and 𝜃 = [(1 − 𝑎1)𝑈𝑂𝐶𝑉(𝑘), 𝑎1, 𝑎2, 𝑎3]𝑇, from (9) we obtain: 

 

𝑈𝑏(𝑘) = 𝜙. 𝜃 (10) 
 

the recursive formulas can be used to identify the parameter vector θ, from which we can derive the values of 

the model parameters 𝑅0, 𝑅1, 𝑎𝑛𝑑 𝐶1 by utilizing the expressions of 𝑎1, 𝑎2, 𝑎𝑛𝑑 𝑎3. 

 

 

3. PARAMETER IDENTIFICATION 

By constraining the search within a parameter space that can be believed to be correct, it is possible 

to prevent parameter searches from reaching physically meaningless local minima. A limited search space can 

be created based on the lower and upper bounds of several parameters, then numerical optimization can be 

performed within the boundaries of this space. There is no difficulty in determining the bounds for some 

parameters in thevenin’s model since observation and analysis of measurement data can both provide some 

coarse-grained knowledge of a battery, for example, internal impedance. 

The ECM-based recursive least squares (RLS) parameter identification approach, among others, is 

particularly suited for such complex BMS situations [25]. However, one major essential concern with RLS is 

that the method might become numerically unstable due to a lack of excitation of the battery model by the 

measured quantities measurement inputs. This article addresses these issues while reaping the benefits of RLS 

by adaptively changing the forgetting factor which is called varying forgetting factor recursive least squares 

(VFFRLS). In VFFRLS, the exact forgetting factors are tracked with simple calculations using recursive 

relationships between RLS variables. 

Estimated terminal voltage:  
 

𝑦𝑘 = 𝜙𝑛(𝑘)𝜃𝑛(𝑘) + 𝑒(𝑘) (11) 
 

the error between the measured voltage and the estimated one:  
 

𝑒(𝑘) = 𝑈𝑏(𝑘) − 𝜙𝑛(𝑘)�̂�𝑛(𝑘 − 1) (12) 
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gain of RLS:  
 

𝐾(𝑘) =
𝑃𝑛(𝑘−1)𝜙𝑛

𝑇(𝑘)

𝜆𝑛(𝑘−1)+𝜙𝑛
𝑇(𝑘)𝑃𝑛(𝑘−1)𝜙𝑛(𝑘)

 (13) 

 

estimated parameters vector:  
 

�̂�𝑛(𝑘) = �̂�𝑛
−(𝑘) + 𝐾(𝑘)𝑒(𝑘) (14) 

 

covariance of error:  
 

𝑃𝑛(𝑘) =
𝑃𝑛(𝑘−1)−𝐾(𝑘)𝜙𝑛

𝑇(𝑘)𝑃𝑛(𝑘−1)

𝜆𝑛(𝑘−1)
 (15) 

 

varying forgetting factors:  
 

𝜆𝑛(𝑘) = 1 −
𝑒2(𝑘)

1+𝐾𝑇(𝑘)𝑃𝑛(𝑘)𝐾(𝑘)
 (16) 

 

θ̂(k): estimation of parameter vector θ; e(k): estimation error of the terminal voltage Ub(k); K(k): gain, P(k): 

covariance matrix, λ: FF to perform real-time correction for changes in parameters and update the covariance 

matrix. The (12) and (16) embody the concept of the VFFRLS algorithm. If the error levels of the system 

change substantially, the algorithm quickly replaces the old data with new data to establish a new learning 

model that accurately reflects the current state of the system. This enables the system to rapidly adapt to 

changes and achieve its objective. The new learning model gradually converges as more samples are added. 

As the prediction error “e” (“k”) decreases, the effective data window length “λ” (“k”) increases, resulting in 

higher steady-state accuracy of the system. The Flowchart of the online parameter identification algorithm is 

shown in Figure 3. Initial value 𝜃(0), 𝑃(0), 𝐾(0) is set with an appropriate value, then the estimated parameter 

vector 𝜃(k) is updated with the change in measured data vector 𝜙(𝑘) by forgetting factor 𝜆 after each loop. 
 

 

 
 

Figure 3. Flowchart of the online parameter identification algorithm VFFRLS 

 

 

4. VALIDATION OF THE PROPOSED APPROACH 

4.1.  Method of validation 

The current and terminal voltage of a lithium pin cell will be recorded in an entire charge-discharge 

cycle. The sampling time must be large enough to guarantee the stability of the system and small enough to 

track the change in the battery’s dynamics. The chosen sampling time is 1 second. The precision of the VFFRLS 

algorithm will be examined by comparing the ECM output’s terminal voltage with identified parameters and 

the reference measured terminal voltage. The measurement system and data logging system are set up as shown 

in Figure 4. An experimental model is built in Figure 5. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 1, July 2023: 151-159 

156 

V

A

Battery monitor 

kit/data logger

Computer
 

 

Figure 4. Block diagram of the validation experiment 

 

 

 
 

Figure 5. Experiment system model 

 

 

4.2.  Parameter identification result 

The validation experiment is set up with a constant resistive load of 2 ohm, Figure 6 shows the battery 

terminal voltage and discharge current in one cycle. Discharging begins at a time of 100 seconds with a 

maximum OCV is 4.2 V, discharge terminated at time 5,300 seconds as the terminal voltage drops 3.1 V. The 

discharge current is not constant and has the same trend as the terminal voltage since the discharge load is 

resistive. Each curve has 5,300 measurement samples, and they will be used to estimate the model’s parameters. 

Figure 7 shows the estimated OCV and the model’s terminal voltage. During discharge, the OCV 

curve is always higher than the terminal voltage since the battery is about to recover if the load is disconnected. 

When discharge ends, i.e., the SOC approach zero, the OCV and terminal voltage converge because the battery 

runs out of chemical energy, and then it is not able to recover until recharged. The estimated output of OCV is 

similar to the real OCV curve in the battery’s datasheet. 
 

 

 
 

Figure 6. Measured terminal voltage and discharge current 

 

 

 
 

Figure 7. Estimated OCV and model’s terminal voltage 
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The results of the estimation of parameters are shown in Figure 8. Figures 8(a)-8(c) are the estimated 

results of parameters 𝑅0, 𝑅1, and 𝐶1 respectively. 𝑅0 reflects the ohmic resistance of the battery. With time 

smaller than 100 seconds, the current is equal to zero due to load disconnection then the resistance can not be 

estimated effectively. From time large more than 100 seconds when the load is connected, resistance 𝑅0 

fluctuates slowly around 50 mΩ. The estimated 𝑅0 the curve is smooth with very small fluctuation after 1,000 

seconds and approaches 20 mΩ at the end of the discharge cycle. This result is close enough to measure 

resistance by the battery tester. As the battery discharges, the 𝑅1 and 𝐶1 curves grow, indicating that the time 

constant of the RC branch is also rising, this indicates that the voltage drop on the RC branch is reducing, and 

the OCV and measured terminal voltage converge when the discharge cycle ends. 

To verify the effectiveness of the proposed method, a mathematical model of the battery on 

Matlab/Simulink is built and compares the model’s output terminal voltage and measured terminal voltage. 

The results of the model voltage and measured voltage are shown in Figure 9. Figure 10 shows the error of 

terminal voltage. Comparing our result of estimated terminal voltage with other works, we can see that with 

the same thevenin battery model, our result has a maximum error of 0.025 V over a nominal voltage of 3.7 V 

in comparison with [9] has a maximum error of 0.040 V. 
 
 

  
(a) (b) 

 

 
(c) 

 

Figure 8. Estimation results of parameters (a) 𝑅0, (b) 𝑅1, and (c) 𝐶1 
 
 

 
 

Figure 9. Model voltage and measured voltage 
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Figure 10. The error of terminal voltage 

 

 

5. CONCLUSION 

This paper introduces a novel approach for one-cycle parameter identification of thevenin’s battery 

model. The main objective of this research was to develop a solution that can estimate all model parameters in 

real-time, based on the current/voltage data collected while the battery is running. The identified parameters 

were then validated by comparing the model output with measured data, with an error margin of less than 1% 

of the nominal voltage. The results demonstrate that the proposed method can accurately identify battery 

modeling, making it well-suited for a broad range of battery management applications that require precise 

models, including optimal charging, SOC estimation, and aging assessment. Our future work will be directed 

towards improving the parameter identification capability of a battery pack with dynamic stress discharge, 

further enhancing the practicality and versatility of this method. 
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