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Abstract 
Although the ambiguity function of Costas-coded FH (frequency hopping) signal has a thumbtack 

nature, its resolution in range and velocity domain is constraint by the bandwidth and time duration also. If 
one target is much stronger than the others in multi-targets detection environment, the sidelobes pedestal 
will make possible masking via the traditional stretch signal processing. Based on the diffraction model of 
radar target, sparse decomposition and compressed sensing are applied to reconstruct the radar range-
velocity profiles with super-resolution. In order to get the super-resolution profiles, a sparse dictionary is 
constructed based on the Costas echo model, different sparsity measure functions are studied, and the 
penalizing function method and the Lagrangian multipliers method are introduced to get the optimal result. 
Some schemes are introduced to get the optimal atom and the differences between these schemes are 
compared via simulations. 
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1. Introduction 

Costas-coded FH signal has good performance of range and velocity measurement. 
The ambiguity function of Costas-coded FH signal has a thumbtack nature, the main lobe is 
high and sharp, and the sidelobes are low and flat. So Costas-coded FH signal has no delay-
Doppler coupling and can achieve super resolution of range and velocity [1]. Costas signal is 
very sensitive to velocity changes, velocity will make phase noise enhance and range profile 
attenuate sharply, the range profile will be submerged by the phase noise when the velocity is 
larger than the resolution. Therefore, velocity compensation becomes the key point of imaging. 
Many people have done a lot of researches on this problem. A continuous-wave (CW) signal 
was used as one of the probing signals along with the Costas signal in [2], and the CW signal is 
used just for the Doppler detection. A modified Costas signal in time and frequency is discussed 
in [3] to improve the ambiguity function performance. Different modulation effection between 
sub-pulses of Costas signal are presented and compared. A modified stretch processing was 
proposed in [4] based on high velocity targets detection in wideband environment. Stretch 
processing couldn’t finish complete compensation at the same time when there are many 
targets with different velocities, inaccuracy compensation will make the sidelobes pedestal arise 
and possible masking when a target’s RCS (Radar Cross Section) is much stronger than the 
others [5]. When the code is not long enough, this influence will be much more serious. One 
novel method to construct extended Costas sequences with ideal auto- and cross-ambiguity 
functions is proposed by combining the Golomb rulers with frequency hop sequences [6]. In 
order to reduce the sidelobes volume in ambiguity function, there are also many people 
beginning to study compound signal combining Costas signal and other modulations [7, 8] such 
as phase and frequency code during these years. 

Sparse decomposition picks optimal elements from an overcomplete dictionary to 
represent the known signal, and it has attracted wide attention in many fields such as spectrum 
estimation [9], signal recovery [10], radar imaging [11] and so on in recent years. The ambiguity 
function of Costas signal has a thumbtack nature, although it can achieve high range and 
velocity resolution at the same time, the resolution is restricted by time and band width. Echoes 
from moving targets are related to several scattering points with fixed ranges and velocities, so 
they are sparse in range-velocity domain basically. With the help of sparse decomposition, a 
super-resolution imaging in rang-velocity domain is potential. Suppose signal has a sparse 
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representation in some orthonormal basis, it can be reconstructed from smaller measurement 
via compressed sensing (CS) processing [12]. The CS theory has been used in many areas 
such as radar [13] and medical researches [14]. Based on the moving-targets echo model of 
Costas signal, the dictionary construction method and sparsity measure functions are studied in 
this paper. The super-resolution realization schemes using sparse decomposition and 
compressed sensing are compared via different optimization methods and the difference 
between the schemes are studied via simulaition.  

 
 

2. Traditional Stretch Signal Processing 
2.1. Costas-coded FH Radar Signal Model  

Radar transmits Costas-coded FH signal with carrier frequency f0, the time-frequency 
pulse train of this signal is shown in Figure 1, and the normalize complex expression is 
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Where T is the pulse duration, Tr is the pulse repetition interval (PRI), Δf is the frequency step, 
and N is the pulse train number.  
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Figure 1. Costas-coded FH Pulse Train 

 
 
The echo delay is: 
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Where r and v denote the radial velocity and range when the first pulse is transmitted. The 
reference signal is: 
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Echo mixes with the reference signal and the complex envelope of the mixer output is: 
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Where   is the scattering intensity. Sample echo at ( ) / 2 2 /rt i iT T R c   , then decode and 

normalize the sampling data, we get: 
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Where iC is the decode number of i. According to (5), the echo phase is: 
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If the velocity is 0 m/s, the range profile is got after performing an IDFT. Suppose target 
travelling with a fixed velocity, ( )i  will be decomposed into the following three parts ignoring 

the constant parts. 
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Here 1  is the phase related to the range of targets, after performing an IDFT, the output peaks 

indicate the range information. The pulse duration T is at the “μs” level and c is the velocity of 
light, so 2 � 1 . The phase relationship in 3  is disturbed by the decode algorithm, and its 

IDFT output is just noise like. Based on the IDFT property, the IDFT output of 3  will convolute 

with the IDFT output of 1 , and convolution algorithm results no range profile position changes 

but amplitude decay.  
 
2.2. Traditional Stretch Signal Processing 

The ambiguity function is a major tool to study and analyze radar signals. The ambiguity 
function of Costas FH signal has a thumbtack nature and the sidelobes will decay as the code 
length increases. Although the analytic ambiguity function of Costas FH pulse train is given in 
[15], the numerical form is always used as the analytic one is too complex. Zero-delay cut of AF 
is always used to analyze the velocity resolution. Set  =0, and then: 
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Zero-delay cut of AF shows that the velocity resolution has no relationship with the modulation 
mode but the complex envelop of the signal. According to the stepped-frequency pulse train 
given in [15], the velocity resolution of Costas FH signal is: 
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The traditional stretch signal processing of Costas signal is shown in Figure 2 [5]. Radar 

receiver samples echo data and gets N digital signal SV, SV is fed to a single IFFT block (after 
weighting) to yield a response matched to zero Doppler. The operation performed in the block 
marked diag(SV)×MTXn is used to generate many versions of vector SV, each one compensates a 
different Doppler shift. Each row is identically processed by adding weights and performing an 
IFFT, and each row in the resulted complex array is a different Doppler-compensated version of 
SV. 

The range and velocity resolution of traditional stretch signal processing is limited by the 
bandwidth and duration of transmitting signal, targets whose range and velocity distinction are 
less than the resolution will not be distinguished via this processing. 
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Figure 2. Stretch Signal Processing Method 

 
 
3. Research Method 

Based on the moving target echo model of Costas FH signal, a super-resolution 
realization is studied, an optimization algorithm is designed to get super-resolution image in 
range-velocity domain. 

 
3.1. Basic Sparse Decomposition and Compressed Sensing Theory 

Calculation and experiments show that echo energy reflected from target is related to 
some local scattering points, and this is a primary character when the transmitting frequency is 
high. The scattering points have their own fixed range and velocity value, it is sparse in range-
velocity domain and this is just the theoretical basis of sparse decomposition. Set NS R  as a 

signal measurement, if there is a coefficient vector Mα R  (named as atom) fulfills that: 
 

=Φα S                                                                                                                    (12) 
 
Where 0 1 1[ , , ]M  Φ Φ Φ Φ  is an overcomplete set (named as dictionary), N

i Φ R , i=0, 1,…, M-1, 

rank( )= <N MΦ , α is called an expression of S in dictionary Φ  [16]. The equality (12) has many 

solutions, and we need some additional information in order to get the unique one. The solution 
vector with a small number of nonzero elements is called a sparse one. If the atom is spare 
essentially, this priori information can be used to make up for the inadequate measurements. 
Sparse decomposition is used to search for a coefficient vector α  which has the least nonzero 
elements, namely: 
  

0
= arg min s.t. =α α Φα S                                                                           (13) 

 
This is a NP problem and not robust, and a sparsity measure function ( )d α  approximating ||α||0 

is typically used to get the sparsest solution. 
If the signal is sparse in some dictionary Φ , based on the CS theory, the sampling 

system can recover the signal with a very less measurements. In the standard CS theory [17], 
we acquire signal with the linear measurements. 

 
= = Y ΨS ΨΦ                                                                                                         (14) 

 
Where Ψ  is an M0×N matrix, M0 � N, and Y is the vector of measurements. The sparsity is the 
precondition of CS processing. There are many sampling matrixes can be used to get the 
measurements, we choose a random Gaussian matrix [18] to resample the echo in the next 
simulation. Using the sparse decomposition or CS processing, a super-resolution image in 
range-velocity domain may be reconstructed via constructing a dictionary and designing 
effective algorithm. 

 
3.2. Sparse dictionary construction  

Following (5) the echoes reflected from Q scattering points can be expressed as:  
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Where q  is the scattering intensity of the q-th scattering point,  ,q qr v  is the remaining item 

related to r and v. Based on the analysis in [15], the unambiguity range of Costas-coded signal 
is = /2ΔAr c f , the range resolution is = /2r c N f  , the unambiguity velocity is / 2Av c f   and the 

velocity resolution is 0/ 2A rv c f T . If we want to improve the range and velocity resolution to 

/ 2r c M f    and 0/ 2 (2 1) rv c f L T   , where M � N, 2L+1 � N, a dictionary 

 - - +1 -1= , , ,L L L LΦ Φ Φ Φ Φ  needs to be constructed based on the echo model, where: 
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l  [-L, L], m  [0, M-1]. The vector related to the two-dimensional super resolution image can be 

expressed as - - 1 1[ , , , ]T T T T T
L LL L  α α α α , where 0 1 1[ , , , ]l l l T

Ml    α  is the range profile at 

the l-th velocity cell. The final range-velocity image is obtained by reshaping α .Notice that the 
range in the m-th range cell is rm=m* r , the velocity in the l-th velocity cell is vl= l* v , and the 
absolute value of α are just the scattering intensity in different cells. 

 
3.3. Sparsity Measure Function Construction 

The best measure function ( )F α  is the l0 norm, as it is very difficult to get the resolution 

based on the analysis in 3.1, many other functions such as lp≤1 norm, logarithmic function and 
so on are used instead of l0 norm. The measure function needs to be concave in the first 
quadrant, and it is changeable and symmetric to every component [16]. A sparsity measure 
function used in [16] is shown in formula (16) here. 
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α , β is a constant value. Set parameters just like section 4 

and β to be 0.001. Suppose there is a scattering point travelling with different velocities at a 
fixed range, calculate the sparsity of the echo according to (16), we get Figure 3. There are 
many local minimum and a global minimum along the velocity changes.  

 

 
 

 

Figure 3. Sparsity Measure Function ( )F α  Figure 4. Waveform Entropy 
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Entropy is generally used to measure the uncertainty of random variable, here we difine 
a waveform entropy. Given a disperse sequence α={α1, …, αN}, the waveform entropy of α is: 

  

1

( ) lg(1 ) 0 1
N

i i i
i

E A p p p


   α                                                                (17) 

 
Where A is a constant value used to modulate the range of the waveform entropy, and pi is 
defined just like (16). The waveform entropy is a measurement of the energy divergence degree 
along parameter axis, and it is used to measure the sparsity of the echoes in this paper. For a 
fixed waveform, the larger the entropy is, the more uniformity the waveform is. Set parameters 
as section 4 and A to be 1, here is a scattering point with fixed range but different velocities. 
Calculate the waveform entropy of the echo reflected from this point, we get Figure 4. The 
ordinate axis in Figure 4 is the waveform entropy and the lateral axis is the velocity. This 
simulation shows that the waveform entropy has a global minimum value when the velocity is 
zero along the velocity axis. 

Based on the analysis in 2.2, we know that the range profile attenuates heavily and the 
energy diverges along the range axis when the target travelling velocity is larger than the 
resolution. Using waveform entropy to measure the divergence degree, the waveform entropy 
will become greater. We will get the minimum waveform entropy value if we make compensation 
with the right velocity. As the range profile diverges seriously, the sparsity of the corresponding 
range profile gets worse. Take the waveform entropy as the measure function, the waveform 
entropy value will represent the sparsity degree of the range profile. The atom get from the 
dictionary represents the range-velocity information of the scattering point, and the sparsest 
solution is the minimum value of the measure function. Let: 
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The second derivative of f(x) is: 
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So f(x) is concave in the feasible set. E(α) is also a concave functional since it is a “sum” of 
function f(x), and the local and the global minimum are the same.  
 
3.4. Algorithm Design and Analysis 

There are many methods have been proposed in solving the convex constrained 
optimization problem, such as gradient projection method [19], Compressive Sampling Matching 
Pursuit method (CoSaMP) [20] and so on. Here we get the optimal result with the help of 
gradient method. Choose a sparsity measure function, denote it as F(α): 
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Rewrite formula (13) as: 
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Translates formula (21) into an unconstrained optimization model using penalizing function 
method, we get: 
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Where M>0 is the regularized parameter related to noise level. Newtonian iteration method [21] 
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is used to get the optimal solution of formula (22) and we get: 
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Take γ=1, we get the special Newtonian iteration method. Now we just need to solve the 
gradient of the object function J(α). Base on (22), we get: 
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Make 0  , (24) can be rewritten as: 
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Take (26) and (27) into (23), we get: 
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After simplification we get the generalized and regularized focal undetermined system solver 
(FOCUSS) iterative formula [16]. 
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Where λ* is a Lagrange multiplier, and it may not be zero every time, so the gradient of measure 
function d(α) is normally nonzero at the constraint minimal point. After k0 iterations using 
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And this is contrary to the solution got from (30). For a given constrained problem, the 
penalizing function method may not get the optimal result after iterations unless the optimal 

solution 
0

*
kα  is just in the feasible set. Based on the Lagrange multipliers method, translate 

formula (21) into an unconstrained optimization shown as: 
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M
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
    α α α α                                                          (33) 

 
Where   is the Lagrangian multiplier which ensures that the unconstraint solution fulfills the 
constraint condition. If αk

* is the optimal solution after the k-th iteration, and then: 
 

* * *( ) ( ) ( ) 0k k k k kF M h h       α α α                                                                       (34) 

 
So the Lagrange multiplier should follow (35) in the iterative operation.  
 

*
1 ( )k k k kM F     α                                                                                              (35) 

 
Based on the Newtonian iteration formula(23), the unconstrained optimization problem 

will converge to the optimal solution of the constraint problem rapidly. In order to optimize the 
dictionary, pulse accumulation is used to estimate the velocity firstly; then construct a dictionary 
around the estimated velocity, and the dictionary dimension, iteration and calculation amount 
will be substantially reduced. 
 
 
4.Simulation Result 

Set simulation parameters as: f0=35 GHz, N=256, Δf=1 MHz, T=0.2 μs, Tr=10 μs. Base 
on the bandwidth and (11), we get the range and velocity resolution: ∆r=0.59 m and ∆v=1.67 
m/s. Suppose a target consists of four scattering points as shown in Figure 5, and point 0 is at 
[500 120] m. There is 2m between the scattering point and its neighbors, the target travel with a 
initial velocity at [0, 10] m/s, and a radar is placed at [0 0] m. The scattering intensities of the 
scattering points flash randomly during the entire track. The initial ranges of the four scattering 
points are rn =[514.42, 515.20, 513.84, 515.78] m, their corresponding velocities are vn =[-2.23,   
-1.87, -2.03, -2.07] m/s and their scattering coefficients are σn=[1, 0.50, 0.07, 0.50]. 

 
 

 
 

 

Figure 5.  Scattering Points Model Figure 6. Travel Track of the Target 
 
 

4.1 Comparison between Different Schemes used in Super-resolution Realization 
Based on the analysis in 3.1, there are two processing methods in achieving the super-

resolution result: the sparse decomposition and the CS processing; there are two measure 
functions are introduce in 3.2: a general used measure function F(α) and the waveform entropy 
function E(α); and two methods are studied to solve the optimization problem in 3.3: penalizing 
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function method and the Lagrangian multipliers method. Based on the all introduction above, we 
can get eight super-resolution schemes here: 
(1) Sparse decomposition using measure function F(α) and penalizing function method (SFP); 
(2) Sparse decomposition using measure function E(α) and penalizing function method (SEP); 
(3) Sparse decomposition using measure function F(α) and Lagrangian multipliers method 

(SFL); 
(4) Sparse decomposition using measure function E(α) and Lagrangian multipliers method 

(SEL); 
(5) CS theory using measure function F(α) and penalizing function method (CFP); 
(6) CS theory using measure function E(α) and penalizing function method (CEP); 
(7) CS theory using measure function F(α) and Lagrangian multipliers method (CFL); 
(8) CS theory using measure function E(α) and Lagrangian multipliers method (CEL); 
 
The differences of the final super-resolution results getting from the eight schemes are not very 
obvious, so we analyse the realizated speed of different schemes and take the iterative steps as 
a standard. Carry on the simulation introduced in section 4.1 for 40 s via different schemes and 
save the iterative steps every time, we get results shown in Table 1 and Table 2. 
 
 

Table 1. Iterative Steps of Different Schemes 
Item SFP SEP SFL SEL CFP CEP CFL CEL 

Max. 117 132 96 107 90 130 133 13 

Min. 19 12 16 11 14 8 7 74 

Average 44.4 40.2 32.5 29.1 31.1 31.8 26.0 25.4 

 
 

Table 2. Average Iterative Steps of Different Schemes 

Item 
Sparse decomposition Compressed sensing 

Penalizing Lagrangian Penalizing Lagrangian 

F(α) 44.4 32.5 31.1 26.0 

E(α) 40.2 29.1 31.8 25.4 

 
 
Based on the results above, we get the following results: 

(1) Based on the CS processing, we can get the super-resolution image and the program 
efficiency is better than the algorithm of sparse decomposition as the CS processing is 
carried on a much lower dimension; 

(2) Waveform entropy used as a measure function has better performance than the one used 
in [16]; 

(3) The Lagrangian multipliers method convergence at a faster rate than the penalizing 
function method. 

 
4.2. Comparison between Traditional Stretch Processing and Super-resolution 

Realization  
Based on the stretch signal processing, we get the range-velocity domain image shown 

in Figure 7. There is only one peak in Figure 7 and the four scattering points could not be 
distinguished in range or velocity domain via this signal processing. Based on the super-
resolution realization, a dictionary is constructed based on the target range profile firstly, there 
are eight schemes that can get the super-resolution result and take the eighth scheme, CEL, as 
an example. The sampling matrix Ψ  is a 150×256 Gaussian random matrix, the parameter A 
used in E(α) is set to be 1500, the regularization parameter M   is set to be 1 and the 
Lagrangian multiplier   is set to be 0, then the optimal result is acquired as shown in Figure 8. 
Compared with Figure 7, Figure 8 gets a super-resolution image in the range-velocity domain, 
the peaks in the two-dimensional image reflect the range and velocity information rightly and the 
four scattering points are separated which could not be separated via stretch processing. The 
scattering intensity even the smallest one is shown, and this verifies the correctness of using the 
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super-resolution realization. Meanwhile, the dictionary construction errors between the real 
value and the measurement make energy leak to the nearby cells, the corresponding scattering 
coefficients of the scattering points attenuate by some degree which make some peaks appear 
at the corresponding positions. 
 
 

 
 

 

Figure 7. 2-D Image Via Stretch Processing Figure 8. Super-resolutin Algorithm Result 
 

 
Make this simulation go on for 40 s, the CEL algorithm is utilized during the whole track. 

The dictionary is constructed base on the former measurement, iteration begins and the super-
resolution profiles are got finally based on this algorithm. The range and velocity errors between 
the real target position and the measurement are shown in Figure 9 and Figure 10. Compared 
with the range and velocity resolution discussed in 2.2, the errors are very small, and the errors 
in range and velocity domain using this algorithm are enhanced.  

 
 

 
Figure 9. Range Error of Point 1 Figure 10. Velocity Error of Point 1 
 
 

5. Conclusion 
A super-resolution imaging of Costas FH signal is studied based on sparse 

decomposition and CS theory in this paper. With limited sampling rate, a super-resolution in 
range-velocity domain is realized. Using different measure functions and optimization methods, 
some possible schemes are designed, and the caculation difference between these schemes 
are compared via simulation. Take the CEL scheme as an example, the super-resolution image 
is compared with the traditional stretch processing. With range, velocity, and scattering intensity 
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accuratly detected, this algorithm has a very high application value in target identification. Also 
the high-speed algorithm needs to be further studied. 
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