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 In this article, a lower limb exoskeleton (LLE) under contacting constrained 

motion has been modelled using augmented Lagrange equations which 

include Lagrange multiplier and Jacobian vectors. A sliding mode Controller 

optimized by the grey Wolf optimization algorithm has been used for 

controlling (LLE) in the case of constrained motion with uncertainties and 

outside perturbation. The grey wolf optimization algorithm has been used as 

an optimization algorithm for finding the optimal controllers’ parameters in 

order to improve the performance of the system. The stability analysis of the 

closed-loop system has been performed using Lyapunov theory of stability. 

To validate the effectiveness of the proposed controller structure grey wolf 

optimization algorithm controller (GW-SMC), a series of comparative 

simulations have been carried out with other types of recently existing sliding 

mode control (SMC). The results of numerical simulations indicate the 

superiority of the sliding mode optimized by the GW-SMC over other types 

of recently existing controller in terms of tracking errors and robustness 

towards uncertainties and external disturbances. 
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1. INTRODUCTION  

In the last decades, stroke illness has been considered as one of the most well-known diseases for 

humans in the all sides of the world. Stroke illness has been considered as the main cause of human nervous 

system damage, lower limb function disorders and hemiplegia [1]. As aresult, the rehabilitation process of 

stroke patients has become an urgent thing to be undertaken to solve the disorder motion of aging humans that 

suffer from the stroke case [2]. Traditionally, the classical physical therapy is performed by rehabilitation 

therapists in manual manner. However, this manual process become tedious and exhausted strategy to the 

physical therapists while they try to help the stroke patients in process of recovering the gait of them. As a an 

effective and sufficient kinds of the rehabilitation robots, lower limb rehabilitation exoskeletons (LLE) have 

been used as an effective rehabilitation approach for stroke patients with motion disorder [3]. Various types of 

of LLE have been manufactured and constructed by different universities and research centers such as Lokomat 

[4], berkeley lower extremity exoskeleton (BLEEX) [5] and active leg exoskeleton (ALEX) [6]. Different 

control strategies have been introduced in order to track predeterminded trajectory for nonlinear robotics 

systems such as: active disturbance rejection control [7], fractional order control [8], robust control [9] and 

sliding mode control (SMC) [10]. 

In fact, SMC has been adopted as an effective and adequate controller for trajectory tracking of linear 

and highly coupled non-liner robotic rehabilitation systems because of having the distinqushed properties of 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Optimal sliding mode controller for lower limb rehabilitation exoskeleton in … (Mohammad A. Faraj) 

1459 

SMC represented by the insensitivity against the variations in parameters and the external perturbations [11], 

[12]. These unique aattributes enable the SMC to be used for diifrent applications with various combination 

such as: impedence control for rehabitation exoskeletons [13], and hybrid adaptive robust control for lower 

limb exoskeleton [14]. The sliding mode control is also used as an efficient controller for delta parallel robot 

[15] and for wind turbines [16]. The tuning parameters of SMC controllers represent an important issue on the 

system performance. The incoorect tuning of the parameters may lead to decreasing the controller performance 

[17]. So, to get an exccellent performance, a meta-heuristic optimization technique adopted from natural 

behavior of animals has been used in last decades. In the present study, grey wolf optimization (GWO) has 

been used to optimize the tuning factors of developed sliding mode controller. Traditionally, the dynamic 

equations of lower limb robotic exoskeletons have been developed using popular Lagrange equations [18]. In 

fact, the contacting of robotic systems with horizontal or vertical surface modified the Lagrange equations to 

include the Lagrange multiplier and Jacobian vectors in its formula [19], [20]. Most of previous works in 

literature have modeled LLE without taking in to consideration the contacting of LLE with the ground 

(constraint motion). Hence, the primary objective of this article is to model and control the LLE in case of 

contacting with ground. To the best of author's knowledge, the modeling and controlling of LLE in constraint 

motions have not been discussed deeply in literature. The rest of this paper is constructed as follows: The 

derivation of dynamic equations of the LLE in constrains motions is accomplished in the section 2. The optimal 

sliding mode control law are developed in section 3. In the section 4, the results of the work have been explained 

and discussed. The conclusion of this article is achived in the section 5.  

 

 

2. METHOD 

2.1.  Modeling of lower limb exoskeleton in free motion 
The dynamic model of the LLE with three degrees of freedom has been adopted in this study as indicated 

in Figure 1. Figure 1(a) represents the free motion of LLE, whereas Figure 1(b) stands for constrained motion of 

LLE. In free motion, classical Lagrange equations are used to model the dynamic equation of LLE as shown 

Figure 1(a) where O is the coordinate origin and ℎ refers to the distance from the coordinate origin O at hip joint 

to the point of contacting of LLE with the ground and ∅(𝑞) refers to an algebraic constraint equation that represent 

the constraint motion in joint space [21], [22]. The Euler-Lagrange formulas are normally used to derive the 

dynamic model equations of the lower limb exoskeleton, which can be expressed as:  
 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) + 𝜏𝑑 = 𝜏 (1) 

 

 

  
(a) (b) 

 

Figure 1. Three-link exoskeleton structure in (a) free motion and (b) constraint motion 

 

 

where: q, q̇, q̈ ∈ R3 are angular joint position, velocity and acceleration vectors respectively. M(q) ∈
R3∗3 stands for positive definite inertia matrix. C(q, q̇)q̇ ∈ R3 represnts Carioles, centrifugal forces and torques. 

G(q) ∈ R3 are the torques of the gravity and τ ∈ R3 is the vector of joint torques and τd ∈ R3 is the bounded 

unknown external disturbances at LLE joints. The contents of M(q) , C(q, q̇)q̇ and G(q)of three joints of LLE 

are: 
 

𝑀11 = 𝑎1 + 𝑎2 + 𝑎4 + 2𝑎3cos(𝑞2) + 2𝑎5 cos(𝑞2 + 𝑞3) + 2𝑎6cos (𝑞3) 

  

𝑀12 = 𝑀21 = 𝑎2 + 𝑎4 + 𝑎3cos(𝑞2) + 𝑎5 cos(𝑞2 + 𝑞3) + 2𝑎6cos (𝑞3)  
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𝑀13 = 𝑀31 = 𝑎4 + 𝑎5 cos(𝑞2 + 𝑞3) + 2𝑎6 cos(𝑞3), 𝑀22 = 𝑎2 + 𝑎4 + 2𝑎6 cos(𝑞3)  
 

𝑀23 = 𝑀23𝑎4 + 2𝑎6 cos(𝑞3), 𝑀33 = 𝑎4   
 

𝐶11 = −𝑎5(𝑞2̇ + 𝑞3̇) sin(𝑞2 + 𝑞3) − 𝑎3𝑞2̇ sin(𝑞2) − 𝑎6𝑞3̇sin (𝑞3) (2) 

 

𝐶12 = −𝑎5(𝑞1̇ + 𝑞2̇ + 𝑞3̇) sin(𝑞2 + 𝑞3) − 𝑎3(𝑞1̇ + 𝑞2̇) sin(𝑞2) − 𝑎6𝑞3̇sin (𝑞3)  
 

𝐶13 = −𝑎5(𝑞1̇ + 𝑞2̇ + 𝑞3̇) sin(𝑞2 + 𝑞3) − 𝑎3 sin(𝑞2) − 𝑎6(𝑞1̇ + 𝑞2̇ + 𝑞3̇)sin (𝑞3)  
 

𝐶21 = −𝑎5𝑞1̇𝑠𝑖𝑛(𝑞2 + 𝑞3) + 𝑎3𝑞1̇ sin(𝑞2) − 𝑎6𝑞3̇ sin(𝑞3) , 𝐶22 = −𝑎6𝑞3̇sin (𝑞3)  
 

𝐶23 = −𝑎6(𝑞1̇ + �̇�2 + 𝑞3̇)sin (𝑞3)  
 

𝐶31 = 𝑎5𝑞1̇ sin(𝑞2 + 𝑞3) + 𝑎6(𝑞1̇ + �̇�2) sin(𝑞3) , 𝐶32 = 𝑎6(𝑞1̇ + �̇�2) sin(𝑞3) , 𝐶33 = 0
   

 

𝐺1 = −[𝑏1sin(𝑞1) + 𝑏2sin(𝑞1 + 𝑞2) + 𝑏3sin(𝑞1 + 𝑞2 + 𝑞3)]   
 

𝐺2 = −[𝑏2sin(𝑞1 + 𝑞2) + 𝑏3sin(𝑞1 + 𝑞2 + 𝑞3)] , 𝐺3 = −[𝑏3sin(𝑞1 + 𝑞2 + 𝑞3)]  

𝑏1 = (𝑚1𝑑1+𝑚2𝑙1+𝑚3𝑙1)𝑔 , 𝑏2 = (𝑚2𝑑2+𝑚3𝑙2)𝑔 , 𝑏3 = 𝑚3𝑑3𝑔   
 

𝑎1 = 𝐼1 + 𝑚1𝑑1
2 + (𝑚2 + 𝑚3)𝑙1

2 , 𝑎2 = 𝐼2 + 𝑚2𝑑2
2 + 𝑚3𝑙2

2 , 𝑎3 = (𝑚2𝑑2 + 𝑚3𝑙2)𝑙1  

𝑎4 = 𝐼3 + 𝑚3𝑑3
2 

,
𝑎5 = 𝑚3𝑑3𝑙1 

𝑎6 = 𝑚3𝑑3𝑙2  

 

where: m1,m2,m3,l1,l2,l3, refer to masses and lengths of thigh, shank, and foot links of the human lower limb 

and exoskeleton respectively. d1,d2,d3 stand for the position of the canter of mass of thigh, shank and foot 

of LLE and human lower limb respectively. I1,I2,I3 Stands for the moments of inertia of thigh, shank and 

foot of the exoskeleton and human lower limb respectively and g is the gravity acceleration. 

 

2.2.  Modeling of lower limb exoskeleton in constrained motion 

During constrained motion, the LLE is in contact with ground and can be viewed as a closed loop 

chain. Thus, as shown in (1) of free motion can not be applied when we want to describe the dynamic 

equations of the LLE when contacting with the ground as shown in Figure 1(b). In this case, a holonomic 

constraint illustrated by an algebraic equation in joint space is used to describe the contacting of LLE with 

ground [22], [23]. 
 

∅(𝑞) = 𝑙1 cos(𝑞1) + 𝑙2 cos(𝑞1 + 𝑞2) + 𝑙3 cos(𝑞1 + 𝑞2 + 𝑞3) − ℎ (3) 
 

Owing to theses constraint circumstances, the term 𝜏 = 𝐽(𝑞)𝑇𝜆 must be added to dynamic in (1). The Lagrange 

multiplier 𝜆 refer to the forces of contact of the LLE with the ground. Hence, the constrained dynamic equation 

of LLE can be written as (4) [19]: 

 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) + 𝜏𝑑 = 𝜏 + 𝐽(𝑞)𝑇𝜆  (4) 

 

where 𝐽(𝑞) =
𝜕∅(𝑞)

𝜕𝑞
 stands for the Jacobian of the equation of constraint with: 

 

𝐽1 =
𝜕∅(𝑞)

𝜕𝑞1
= −𝑙1 sin(𝑞1) − 𝑙2 sin(𝑞1 + 𝑞2) − 𝑙3 sin(𝑞1 + 𝑞2 + 𝑞3)   

𝐽2 =
𝜕∅(𝑞)

𝜕𝑞2
= −𝑙2 sin(𝑞1 + 𝑞2) − 𝑙3 sin(𝑞1 + 𝑞2 + 𝑞3) , 𝐽3 =

𝜕∅(𝑞)

𝜕𝑞3
= −𝑙3 sin(𝑞1 + 𝑞2 + 𝑞3) 

 

This constraint motion makes LLE lose number of degrees of freedoms which are equal to number of 

constraints [19]. In our work, the LLE is contacting with ground and this thing will make it lose one degree of 

freedom because of participating of one Algebraic equation. This thing separates the number of the degree of 

freedom of LLE into two main groups: the first group includes the independent joints coordinates 𝑞𝑧 =
[𝑞1, 𝑞2]

𝑇 ,  𝑞𝑧 ∈ 𝑅2.whereas the second group includes dependent joint coordinates. 𝑞𝑁 ∈ 𝑅1,  𝑞𝑁 =  𝑞3 . Hence, 

, a reduced order model has been obtained that relay on independent joints only (Hip and Knee joints) and the 

motion of ankle joint will depend on the independents joint motion. If we differentiate the algebraic constraint 

in (3) with respect to time, we obtain:  
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∅̇(𝑞) =
𝑑∅

𝑑𝑡
=

𝜕∅(𝑞)

𝜕𝑞

𝑑𝑞

𝑑𝑡
= 𝐽�̇� = [𝐽1𝑞1̇ + 𝐽2𝑞2̇ + 𝐽3𝑞3̇] = 0

 

 (5) 

 

the dependent velocity 𝑞3 ̇ can be expreesed in terms of independent velocities 𝑞1 ̇ , 𝑞2 ̇  as (6). 
 

𝑞3̇ = −𝐽3(𝑞)−1𝐽1(𝑞) − 𝐽3(𝑞)−1𝐽2(𝑞)
−

 (6) 
 

Hence, velocity coordinates ( 𝑞1 ̇ , 𝑞2 ̇ ,  𝑞3 ̇ ) can be expressed as (7): 
 

[

𝑞1̇

𝑞2̇

𝑞3̇

]
 = 

[
1 0
0 1

−𝐽3(𝑞)−1𝐽1(𝑞) −𝐽3(𝑞)−1𝐽2(𝑞)
]
 
[
�̇�1

�̇�2
] (7) 

 

thus, we can get (8): 
 

�̇� = 𝐻(𝑞)𝑞�̇� (8) 
 

where �̇� = [𝑞1̇ 𝑞2̇ 𝑞3̇]
𝑇 ,�̇�𝑧 = [𝑞1̇ 𝑞2̇]

𝑇, 𝐻 = [
1 0
0 1
𝐽z1 𝐽z2

], , 𝐽𝑧1 =
𝐽1(𝑞)

𝐽3(𝑞)
 , 𝐽𝑧2 =

𝐽2(𝑞)

𝐽3(𝑞)
 

 

The generalized acceleration can be written as (9):  

 

�̈� = 𝐻(𝑞)�̈�𝑧 + �̇�(𝑞)�̇�𝑧 (9) 

 

if we Sub (9) in (4), the dynamic in (4) can be expressed as (10):  

 

𝑀(𝑞)𝐻(𝑞)�̈�𝑧 + 𝐶1(𝑞, �̇�)𝑞�̇� + 𝐺(𝑞) + 𝜏𝑑 = 𝜏 + 𝐽(𝑞)𝑇𝜆  (10) 
 

where 
 

𝐶1(𝑞, �̇�) = 𝐶(𝑞, �̇�)𝐻(𝑞) + 𝑀(𝑞)�̇�(𝑞) (11) 
 

with 
 

�̇�  = [
1 0
0 1
𝐽ż1 𝐽ż2

]

 

, 𝐽ż1 = −
𝐽3(𝑞)𝐽1̇(𝑞)−𝐽1(𝑞)𝐽̇3(𝑞)

(𝐽3(𝑞))2
 ,

 

𝐽ż2 = −
𝐽3(𝑞)𝐽2̇(𝑞)−𝐽2(𝑞)𝐽3̇(𝑞)

(𝐽3(𝑞))2
  

 

and 
 

𝐽1̇(𝑞)=𝜓1𝑞1̇ + 𝜓2𝑞2̇ + 𝜓3𝑞3,̇  𝐽2̇(𝑞)=𝜓2𝑞1̇ + 𝜓2𝑞2̇ + 𝜓3𝑞3,̇  𝐽3̇(𝑞)=𝜓3𝑞1̇ + 𝜓3𝑞2̇ + 𝜓3𝑞3̇  

𝜓1 = −[𝑙1 cos(𝑞1) + 𝑙2 𝑐𝑜𝑠(𝑞1 + 𝑞2) + 𝑙3 cos(𝑞1 + 𝑞2 + 𝑞3)]   

𝜓2 = −[𝑙2 𝑐𝑜𝑠(𝑞1 + 𝑞2) + 𝑙3 cos(𝑞1 + 𝑞2 + 𝑞3)]  

𝜓3 = −[ 𝑙3 cos(𝑞1 + 𝑞2 + 𝑞3)]  
 

According to (10) refrs to the reduced order dynamic model for LLE when it contacting with ground. This 

equation includes J(q)Tλ term in its structure. The deleting of this term is very essential for developing an 

efficient controller. The J(q)Tλ term from (10) can be eliminated, by using the expression J(q)THT(q) = 0 

which is popular property in literature which is used for different fields [22]. If we borrow this property and 

pre multiply equation (10) by HT, we can get (12) [23]: 
 

�̅�(𝑞)�̈�𝑧 + 𝐶̅(𝑞, �̇�)𝑞�̇� + �̅�(𝑞) + 𝜏�̅� = 𝜏̅  (12) 
 

With �̅�(𝑞) = 𝐻𝑇𝑀(𝑞)𝐻 ,𝐶̅(𝑞, �̇�) = 𝐻𝑇𝐶2(𝑞, �̇�), �̅�(𝑞) = 𝐻𝑇𝐺(𝑞), 𝜏̅ = 𝐻𝑇𝜏, 𝜏�̅� = 𝐻𝑇𝜏𝑑  

 

 

3. CONTROLLERS DEVELOPMENTS 

In what follows, a sliding mode control scheme (SMC) will be developed in subsection 3.1 which 

assumes that the tuning of parmeters is peformed manually by trial and error strategy. Then, in subsection 3.2 

a grey wolf optimizer (GWO) will be used in order to get an optimized version of the developed controller 

(GW-SMC). Later, the description of grey wolf optimizer will be explained in detail in subsection 3.3. 
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3.1.  Sliding mode control (SMC) 

Firstly, we present the following sliding manifold:  

 

S𝑧 = 𝑒�̇� + Λ𝑒𝑧  (13) 

 

with :
𝑒𝑧=𝑞𝑧 − 𝑞𝑧

𝑑

 , 
𝑒𝑧=𝑞�̇� − �̇�𝑧

𝑑

 ,
 S𝑧 = [𝑆𝑧1, 𝑆𝑧2]

𝑇and Λ ∈ 𝑅2∗2 , are positive diagonal matrices. The subscript z 

stands for independent joint coordinates which are the Hip and Knee joints in our paper. By taking the 

derivative of (13), one obtains:  

 

S�̇� = 𝑒�̈� + Λ𝑒�̇�  (14)  

 

it is essential to enforce the system to be in the sliding surface. Hence, we obtain: S𝑧
̇ = 0, then we obtain: 

 

𝑞�̈� − 𝑞𝑧
�̈� + Λ(𝑞�̇� − 𝑞𝑧

�̇�) = 0  (15) 

 

by re-writing (12) and dropping dependency, we can get: 

 

�̈�𝑧 = �̅�−1[𝜏̅ − 𝐶̅𝑞�̇� − �̅�]  (16) 

 

sub (16) in (15), we can obtain: 

 

�̅�−1[𝜏̅ − 𝐶̅𝑞�̇� − �̅�] − 𝑞𝑧
�̈� + Λ(𝑞�̇� − 𝑞𝑧

�̇�) = 0 (17) 

 

if we multiply equation byM  , we get:  

 

[𝜏̅ − 𝐶̅𝑞�̇� − �̅�] − �̅�𝑞𝑧
�̈� + �̅�Λ(𝑞�̇� − 𝑞𝑧

�̇�)  (18) 

 

consequently, we can obtain the following sliding mode control law: 

 

𝜏̅ = 𝜏�̅�𝑞𝑢 + 𝜏�̅�𝑤 (19) 
 

with 
 

𝜏�̅�𝑞𝑢 = 𝐶̅𝑞�̇� + �̅� + �̅�𝑞𝑧
�̈� − �̅�Λ(𝑞�̇� − 𝑞𝑧

�̇�)  (20) 

 

𝜏�̅�𝑤 = −�̅�𝐾𝑠𝑠𝑔𝑛(S𝑧)  (21) 

 

where: 𝜏�̅�𝑤 is a high frequency discontinuous term which has been added to guarantee robustness with 𝐾𝑠 ∈
𝑅2∗2 is diagonal positive matrix. Thus, we can get the following sliding mode control law. 

 

𝜏�̅�𝑀𝐶 = 𝐶̅𝑞�̇� + �̅� + �̅�𝑞𝑧
�̈� − �̅�Λ(𝑞�̇� − 𝑞𝑧

�̇�) −�̅�𝐾𝑠𝑠𝑔𝑛(S𝑧)  (22) 

 

If we sub (22) in (14) we get: 

 

 S𝑧
̇ = 𝜏�̅�𝑤�̅�−1  (23) 

 

the lyapunov function related to dynamic system of LLE is: 
 

𝑉 =
1

2
𝑆𝑧

𝑇𝑆𝑧  (24) 

 

the main aim of this selection is ensure the minimization process of Sz = 0. In addition, to remain on sliding 

surface and to ensure that the the error ez will convergence to zero. Hence, if we differntate V with respect to 

time, we get: 

 

�̇� = 𝑆𝑧
𝑇𝑆�̇�  (25) 

 

�̇� = 𝑆𝑧
𝑇𝜏�̅�𝑤�̅�−1  (26) 
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�̇� = −𝑆𝑧
𝑇𝐾𝑠𝑠𝑔𝑛(S𝑧) < 0 (27) 

 

One of the main drawbacks of the sliding mode control is the existing of chattering problem which may cause 

the damage of the actuators. For eliminating and overcoming the influence of chattering effects, we replace the 

sign function by a smooth hyperbolic tangent function which has [24]. 

 

tanh(𝑆𝑧) =
𝑒𝑆𝑧−𝑒−𝑆𝑧

𝑒𝑆𝑧+𝑒−𝑆𝑧
 (28) 

 

3.2.  Optimal sliding mode control (GW-SMC) 

As shown in (22), the tuning of controller parameters of SMC ( Λ, 𝐾𝑠 ) has been usually performed 

using trial and error method. In fact, this is an exhausted process. For solving this tediedous method, a meta-

heuristic optimization technique called grey wolf optimizer (GWO) presented in detail in sub-section 3.3 is 

used to tune the gains of SMC controller. Hence, we get a GW-SMC controller which can be expressed as: 

 

𝜏�̅�𝑊−𝑆𝑀𝐶 = 𝐶̅𝑞�̇� + �̅� + �̅�𝑞𝑧
�̈� − �̅�Λ∗(𝑞�̇� − 𝑞𝑧

�̇�) −�̅�, 𝐾𝑠
∗𝑠𝑔𝑛(S𝑧)  (29) 

 

where: ( Λ∗, 𝐾𝑠
∗), represent optimized values of SMC parameters. The block diagram of SMC optimized by 

grey wolf optimizer (GWO) is shown in Figure 2. 

 

3.3.  Grey wolf optimizer algorithm (GWO)  

A grey wolf optimizer algorithm (GWO) is arelatively new swarm population-based optimization 

algorithm developed in 2014 by Faris et al. [25]. The work of GWO mainly depends on simulateing the social 

behavior of grey wolves that lived in the wild by considering the concept of the eadership hierarchy and the 

mechanism hunting to the prey of grey wolf. In this algorithm, a grey wolf hierarchy has been classified into 

four types of wolves: Alpha (α) wolf, Beta (β) wolf, Delta (δ) wolf and Omega (ω) wolf. The hunting process 

decision is achived by leaders of whole group which is Alpha (α) wolf. Beta (β) wolf follows the commands 

of Alpha (α) wolf and help it in decision of hunting and other activities in the pack. Omega (ω) wolf will lead 

the other Omegas (ω) and will follow Alphas (α), and Betas (β) wolves. If the wolf it is not an Alpha (α), Beta 

(β), or Omega (ω), the wolf will named as Delta (δ) wolf. The optimal solution which is representing the 

location of prey will be implemented by estimating the populations of wolves by using an iterative method. 

The best wolf is an Alpha (α) wolf, the best second solution stands for Beta (β) and Delta (δ) is third-best 

solution whereas Omega (ω) wolves are the least significant solutions. Equations (30) and (31) have been used 

for formulating a mathematical model that describes the behavior of wolves in encircling process (finding the 

optimum solutions): 

 

�⃑⃑� = |𝐶 𝑋𝑝
⃑⃑ ⃑⃑  (𝑡) − 𝑋 (𝑡)| (30) 

 

𝑋 (𝑡 + 1) = |𝑋𝑝
⃑⃑ ⃑⃑  (𝑡) − 𝐴 �⃑⃑� | (31) 

 

where 𝑡 refer to current iteration, 𝐴  and 𝐶  are coefficient vectors, 𝑋𝑝
⃑⃑ ⃑⃑  (𝑡) stands for the prey victim position 

vectors. Whereas 𝑋 (𝑡)is the position vector of a grey wolf. The calculation of vectors 𝐴 and 𝐶  can be expressed 

as: 
 

𝐴 = 2𝑎 𝑟1⃑⃑⃑  − 𝑎  (32) 
 

𝐶 = 2𝑟2⃑⃑  ⃑ (33) 
 

𝑟1⃑⃑⃑  , 𝑟2⃑⃑  ⃑ stands for vectors in random with range between 0 and 1, 𝑎  decreased from 2 to 0 in linear manner during 

the iterations process. The updating process can be expressed as:  

 

�⃑⃑� 𝛼 = |𝐶 1𝑋 𝛼(𝑡) − 𝑋 | , �⃑⃑� 𝛽 = |𝐶 2𝑋 𝛽(𝑡) − 𝑋 | , �⃑⃑� 𝛿 = |𝐶 3𝑋 𝛿(𝑡) − 𝑋 | (34) 

 

𝑋 1 = |𝑋 𝛼 − 𝐴 1�⃑⃑� 𝛼| , 𝑋 2 = |𝑋 𝛽 − 𝐴 2�⃑⃑� 𝛽| , 𝑋 3 = |𝑋 𝛿 − 𝐴 3�⃑⃑� 𝛿| (35) 

 

𝑋 (𝑡 + 1) =
�⃑� 1+�⃑� 2+�⃑� 3

3
  (36) 
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the details of Pseudo code of GWO can be found in [25]. An integral time absolute error (ITAE) expressed in 

(37) has been used as an objective function to evaluate the position of each serch agents (wolfs) during the 

search for choosing the best value [17]. 

 

ITAE = ∫ 𝑡|𝑒|
𝑇

0
𝑑𝑡 (37) 

 

 

 
 

Figure 2. Block digram of sliding mode controller optimized by GWO (GW-SMC) 

 

 

4. RESULTS AND DISSCUSION  
This section is dedicated for comparing the effectiveness of developed optimal sliding mode controller 

GW-SMC derived in the previous section with recentely developed SMC with chateering suppressor which is 

develpbed in [26]. The desired trajectories are taken from [27]. The parameters of human and exoskeleton that 

used in simulation are adopted from [28] and listed in Table 1. Moreover, the integral absolute value error 

(IAE) and integrated squared error ISE have been used as a measure for tracking performances of SMC and 

GW-SMC controllers. 

 

IAE =  ∫|𝑒|  𝑑𝑡 (38) 

 

ISE =  ∫ 𝑒𝑇𝑒  𝑑𝑡 (39) 

 

The parameters values SMC controller with with chateering suppressor has been selected by trial and 

error method. For GW-SMC controllers, the parameters selected as Λ = 25.73, 𝐾𝑠 = 8.22 and have been 

tuned using GWO. The number of wolves chosen is 50 and the algorithms are repeated for 70 iterations. Figure 

3 explain the excellent Objective Function performance of GWO after 70 iterations. The cpmparative 

simulation results are explained for three cases: nominal, uncertainty and disturbance rejection tests. 

 

 

Table 1. Physical parameters of human and lower limb exoskeleton [28] 
parameter Mass (m) in kg Length (l) in m Inertia (I)in kg.m2 Center of length (d) m 

 Exoskeleton Human Exoskeleton Human Exoskeleton Human Exoskeleton Human 

Thigh 0.2043 7.33 0.41 0.407 5.7×10-3 0.1502 0.15 0.1763 

Shank 0.2159 3.4503 0.39 0.4334 4.3×10-3 0.0505 0.11 0.1849 

Foot 0.115 1.075 0.159 0.275 3.9×10-4 0.0038 0.04 0.1179 

 

 

4.1.  Nominal case  

The evolutions of position, position error, and torque input signal for hip and knee joints for SMC in 

[26] and GW-SMC controllers in nominal case are depicted in Figures 4 and 5 respectivaly. It is worth to 

observe the validity of the GW-SMC controller over SMC controller with chateering suppressor in [26] in 

terms of trajectory tracking performance and minimization the tracking errors. This refelects the vital role of 

GWO in finding the optimal values and its impact to the system performance. A smooth control input signals 

have been obtained for two controllers owing to existing hyperbolic function which has the ability to reduce 

the chattering effect effectively. The results of IAE index and ISE performance indices for nominal cases for 

SMC in [26] and GW-SMC controllers are shown in Table 2. The results explain that GW-SMC controller has 

lowst tracking error as compared with SMC controller with chateering suppressor.  
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Figure 3. Evolution of objective function of grey wolf optimizer after 70 iterations 

 

 

 
 

Figure 4. Performance of hip joint for two controllers in nominal case 

 

 

 
 

Figure 5. Performance of Knee joint for two controllers in nominal case 
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Table 2. Performance indices IAE and ISE for two controllers for nominal case 
Index  IAE  ISE  

Controller GW-SMC (29) SMC [26] GW-SMC (29) SMC [26] 
Hip joint 0.001372 0.013715 0.001654  0.01571 

Knee joint 0.001541 0.005277 0.006407  0.01068 

Both joints 0.002914 0.018992 0.008062  0.02640 

 
 

4.2.  Uncertainty case  

In this case, the parameters of the LLE are varied by 30% from their original nominal values. It is 

observed from Figures 6 and 7 and Table 3 that GW-SMC controller has an excellent robustness against system 

uncertainty. The figures and table illustrate that the performance of SMC with with chateering suppressor is 

significantly changed in case of the presence of parameters variations while the proposed GW-SMC is remain 

insensitive to parameter variations. 

 

 

 
 

Figure 6. Performance of hip joint for two controllers in uncertainty case 

 

 

 
 

Figure 7. Performance of Knee joint for two controllers in uncertainty case 

 

 

Table 3. Performance indices IAE and ISE for two controllers for uncertainty case 
Index  IAE  ISE  

Controller GW-SMC (29) SMC [26] GW-SMC (29) SMC [26] 

Hip joint 0.001649 0.021897 0.001933 0.02523 
Knee joint 0.001705 0.013445 0.006690 0.01962 

Both joints 0.003355 0.035342 0.008623 0.04486 
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4.3.  Disturbance rejection case  

The third simulation has been achieved in the presence of time varying disturbance which has the 

following expression [29]. 

 

𝜏𝑑 =
[
𝜏𝑑1

𝜏𝑑2
]
 = 

[
2 sin(𝑡) + 0.5sin (100𝑡)

cos(𝑡) + 0.5 sin(100𝑡)
] (40) 

 

We can notice from Figures 8 and 9 that smaller control errors and faster convergence have been effectively 

ensured by GW-SMC as compared with the SMC with chateering suppressor in [26]. Thanks to tuning process 

by GWO our GW-SMC controller can still ensure the best comprehensive control performance and it is still 

satisfactory in spite of the presence external disturbances. The tracking control performance indices IAE and 

ISE for this case are given in Table 4. We can notice that the GW-SMC has the lower best values in terms of 

IAE and ISE performance indices as compared with SMC with chateering suppressor. To sum up, the 

advantages and the superiority performance of the proposed GW-SMC controller have been verified. GW-

SMC controller provides an excellent tracking performance; high precise tracking, less chattering and good 

robustness towards the uncertainties and external disturbances.  

 

 

 
 

Figure 8. Performance of hip joint for two controllers in disturbance rejection case 

 

 

 
 

Figure 9. Performance of Knee joint for two controllers in disturbance rejection case 
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Table 4. Performance indices IAE and ISE for two controllers for disturbance rejection case 
Index  IAE  ISE  

Controller GW-SMC (29) SMC [26] GW-SMC (29) SMC [26] 

Hip joint  0.0026758  0.026384  0.003066  0.032597 

Knee joint  0.002160  0.046239  0.007396  0.048754 

Both joints 0.004836  0.072624 0.010463  0.081352 

 

 

5. CONCLUSION  

In this study, a reduced order constrainnt model with augmented Lagrange equations for a lower limb 

exoskeleton in constrained circumstances dedicated for rehabilitation of stroke patients have been developed. 

Optimal sliding mode controller tuned by grey wolf optimization algorithm (GW-SMC) has been developed to 

control lower limb exoskeleton in constrained enviroinments. The stability analysis of the closed-loop system 

has been performed using Lyapunov theory of stability. Simulation results in nominal, uncertain and 

disturbance rejection tests indicate that the sliding mode controller optimized by grey wolf optimizer provides 

excellent results performances in terms of robustness, fast response and tracking error as compared with 

conventional sliding mode controller. In the Future, the focusing will be on extending this controller in real 

time rehabilitation exoskeleton systems and using another types of optimization algorithm for tuing the 

controller parmeters. We are planning to combine this controller with fractional ordr calculas for getting an 

excellent response of the performance of the system. 
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