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 Contents-addressable memory (CAM) is a special memory that searches the 

input data with the entire pre-loaded database and generates corresponding 

address information. CAMs are advancing to be a core technology in 

computer networking systems. As field programmable gate array (FPGA) is 

recently being used for network acceleration applications, the demand to 

integrate CAM on FPGA is increasing. FPGA-based CAMs are divided into 

three categories of implementation: register-based, block RAM (BRAM)-

based, and distributed RAM-based CAM. However, they come with a cost of 

excessive resource usage. Besides, the collision ratio is high in FPGA-based 

CAMs, leading to data loss and failure to produce accurate addresses. 

Synchronous dynamic random-access memory (SDRAM)-based CAMs, 

benefiting from the features of high density and low price of SDRAM, solve 

the limitations of FPGA’s on-chip resources. This paper proposes a data-

collision CAM hardware implementation using modern FPGA’s off-chip 

SDRAM for data storage. The hardware architecture is customized for 

massive lookup tables and resource-saving. Furthermore, the architecture is 

parameterized, which is better for integration. The synthesis results and 

comparisons show significant advancement compared to other FPGA-based 

CAM implementations by total reduction of on-chip RAM. The novel 

architecture shows remarkable improvement in the memory depth and width 

with the capacity of 128 Mbyte lookup table. 
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1. INTRODUCTION 

With the rapid evolution of the Internet, the networking system has become more sophisticated than 

ever [1]. Cloud-based services expand and are essential in every aspect, such as web services or in enterprises, 

which is believed to play a vital factor in computer networking. Also, with the rise of IoT, more extensive and 

complex databases need effective managing and searching methods [2]. Hence, the demand for a high-speed 

networking system is necessary; hence, a more reliable solution is preferable. 

Simple data lookup solutions can no longer be effective as faster searches and larger table sizes are 

required. A fast content lookup table, i.e., content-addressable memory (CAM), becomes an indispensable part 

of any high-speed networking system. CAM is a particular memory type that searches the binary data input 

with the entire pre-loaded database and generates the corresponding address information with a single clock 

cycle [3]–[5]. The database can be a routing network table that stores the port information to which the data 

https://creativecommons.org/licenses/by-sa/4.0/
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packet is being forwarded. The CAM takes the address information (“0 1 1 1”) of the incoming packet and 

looks up for the appropriate port (Port B), as illustrated in Figure 1 [6]. The high-speed feature of CAM is ideal 

for intensive search time applications [3]. Frequent and fast lookup operations are required in image processing, 

encryption information, or database accelerators. CAMs are primarily used for network routers for fast transfer, 

packet forwarding, Ethernet address lookup, or translation-look-aside buffers (TLBs) [3]. 
 

 

1 0 1 0

0 1 1 1

1 1 0 1

1 0 0 0

Port A

Port B

Port C

Port D

0 1 1 1 Port B

CAM Storage

00

01

10

11

D
e
c
o
d
e

10

 
 

Figure 1. Content-addressable memory 
 

 

In recent years, field programmable gate array (FPGA) based platforms have increased due to adoption 

in fields such as security and network processing [7]. Their applications include streaming, data processing, 

and heavy data flow [8], [9]. FPGA-based hardware accelerators have advanced and been preferred to 

conventional accelerators in the modern high-performance cloud. Modern FPGAs have integrated static and 

dynamic storage elements, e.g., SRAM and SDRAM [10], making them ideal for content-addressable 

advancements. Studies have been proposed with the use of internal memories on FPGA to implement CAM; 

however, the trade-off for a significant number of on-chip resources [11]–[14]. Improvements in CAM’s 

performance and resource optimization [15], [16] have been proposed but either required many adaptive logic 

modules (ALMs) and block RAMs or trade-off for high collision probability to fit a large dataset into them due 

to the limitation of FPGA's resources. A DDR-SDRAM packet header lookup circuit, known as the SDRAM-

based Hash-CAM [17], was implemented on FPGA. It introduced a method to overcome the limitation of 

FPGA on-chip resources. Even though block RAMs (BRAMs) were less than on-chip implementations, it still 

required a substantial number of logics and registers resources to overcome the collision ratio of hashing 

method. This paper proposes a novel SDRAM-based CAM hardware architecture with advancements 

compared to conventional CAMs. The architecture saves area costs and reserves on-chip resources such as 

ALMs and storage elements on FPGA. Furthermore, the architecture reduces collision probability considerably 

and are parameterized by taking advantage of the high-density feature of SDRAM as well. The rest of this 

paper is structured as follows. The next section provides information about the preliminaries of FPGA-based 

CAM research over the years as well as the motivation and contributions of the architecture. Section 3 proposes 

the hardware system architecture with advancement in collision-avoidance and SDRAM compatibility. Section 

4 analyzes the architecture performance and provides synthesis results comparison with related works. Section 

5 concludes and discusses the future of large-scale implementation of architecture. 

 

 

2. PRELIMINARIES AND MOTIVATION 

CAMs have become a mature field of research because of their importance on systems. This section 

provides an overview about the current research state of CAM on FPGA over the years. In addition, we present 

the inducement of this research. 

 

2.1.  Preliminaries 

One of the most outstanding examples of CAM application was the STARAN [18], built by Goodyear 

Aerospace Corporation in 1972. It was a single instruction, multiple data array processor with a 4×256 1-bit 

processing element computer based on CAM. It’s astounding performance was proved by its image-processing 

ability [19]. It executed many sophisticated image processing algorithms interactively under ten seconds of 

response time, and the throughput for batch processing systems experienced a giant leap. Therefore, with its 

strength, an integrated CAM that consumes low hardware resources but has high reliability and expansion 

capability is an essential part of state-of-the-art computing systems. 

 

2.1.1 Conventional CAM techniques 

The original development of CAM based on application-specific integrated circuits (ASICs) has 

slowed down [15] because of the low storage density and challenging configurability [6]. Field-programmable 

gate array (FPGA)-based CAMs are becoming popular due to high-integration density, power consumption, 

and their application in the state-up-the-art networking system such as SDNs [20]. Researchers tended to 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Parameterized SDRAM-based content-addressable memory on field … (Binh Dang) 

671 

implement CAM using on-chip resources on FPGA. FPGA-based CAM implementation can be categorized 

into three ways of implementations: register-based, BRAM-based, and distributed RAM-based [4]. The 

register-based BCAMs could read and compare all the patterns simultaneously due to the flexibility of reading 

and writing flip-flops [13]. Distributed RAM, i.e., lookup table random access memory (LUTRAM)-based 

CAM, provided better performance, low power, and resource utilization due to exploiting the paired nature of 

LUTs and FFs in modern FPGAs [21]. BRAMs, utilized by FPGA vendor IP libraries, paved the way for single-

cycle pattern match searching [13]. However, the method and architecture have disadvantages that make it hard 

to integrate widely in many systems. For example, the drawbacks of BRAM-based CAM are the pre-processing 

of mapping data, the constraint of data order, and the large SRAM/CAM bit ratio. Furthermore, LUTRAM-

based CAM is in trouble with wide bitwise AND-ing and high-routing complexity, which makes them require 

shallow and wide RAM blocks to implement large-size RAM-based CAMs. Another candidate is FF-based 

CAM, which improves the resources per CAM bit but needs more scalability and is hard to implement due to 

routing complexity [4].  

 

2.1.2 SDRAM-based CAM 

Since IoT has rapidly grown with larger and more complex databases, FPGA’s on-chip resources have 

become an unsuitable choice for data management due to the limited memory storage, high resource 

consumption, and challenging integration. To relax these resource-related constraints, CAM research has been 

shifting to using off-chip memory components on modern FPGAs to save resources and increase storage 

capacity. Yang et al. [17] first proposed a DDR-SDRAM-based data lookup circuit setting a landmark for the 

deployment of SDRAM-based CAM. It shows that the CAM using external memory is superior in size while 

maintaining competitive throughout compared to conventional CAM techniques. Furthermore, the SDRAM-

based Hash-CAM can easily fit 64 K entrants with 32-bit data, a remarkable number compared to other logic-

based CAM. The design, however, comes against an inevitable collision issue using the CRC-16 polynomial 

hash function; thus, it still required a register-based Hash-CAM circuit to accommodate collided keys. 

Moreover, with the requirement of a CAM logic cell, the timing performance is restricted by the number of 

CAM entries and takes up considerable on-chip resources. 

 

2.2.  Motivation and contributions 

2.2.1. Motivation 

CAM is now an indispensable element in any modern networking system. It is a reliable routing table 

for packet classification and forwarding. Moreover, state-up-the-art FPGA technology is distinct in high-speed 

and complex networking processing due to its rich resources and reconfigurability. Modern FPGAs have 

efficiently integrated many hardware resources, including off-chip storage elements such as SDRAM, to 

support FPGA applications [10]. Furthermore, the innovation of 5G networks requires massive database 

processing; thus, the implementation and advancement of CAM on FPGA are crucial for any complex system.  

Table 1 shows CAM’s on-chip resource consumption of three representatives for distributed RAM-based, 

BRAM-based, and Register-based CAM methodologies, respectively. The resource consumption of each 

method is presented with the size of 16 K lookup entrants for 36-bit data. 
 

 

Table 1. CAM on-chip resource consumption 
 ALMs BRAMs (20 K) Speed (MHz) 

II2D-BCAM [13] 70,000 400 200 

BF-BCAM [12] 80,000 2100 160 

Reg-based CAM [13] 260,000 - 160 

 

 

The register method used up more than 250 K logic cells to accommodate data, a tremendous logics 

consumption. BRAM-based CAM provides better logic utilization but takes up to two thousand 20 K RAMs. 

The LUTRAM-based solution helps balance the logic and block RAMs usage. Despite such improvements in 

balancing resources, it is only possible to integrate such a 16 K×36-bit CAM into small FPGA family devices, 

e.g., the Intel FPGA Cyclone V 5CSEMA4U23C6 with an average number of 15 K ALMs. 

Many algorithms have been proposed to tackle area consumption issues, but resource optimization 

solutions face another inevitable problem, i.e., the collision phenomenon. Such a phenomenon has been 

acknowledged in various CAM research [15], [16], [22], [23] as a crucial trade-off issue when intending to 

make CAM less resource-consuming. Users must choose between the demand of the area and the data loss. 

The trade-off comes as an even more significant issue when users intend to integrate CAM on small FPGA 

lineups. In this architecture, we propose a novel SDRAM-based CAM hardware architecture using an external 

storage element SDRAM) hat efficiently utilizes available on-chip resources on FPGA and increases the depth 

and width of CAM to catch up with the innovation required of complex systems. 
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2.2.2. Key contribution 

Key contributions of the proposed work are as follows: 

− This paper proposed a novel hardware architecture of data-collision CAM by using DDR SDRAM that can 

store massive databases without losing the integrity of data while consuming modest amounts of resources 

so that even small FPGA lineups that support DDR SDRAM can integrate large-size CAMs easily. 

− The proposed CAM design, SDRAM-based data-collision CAM, shows significant advancements 

compared to the available FPGA on-chip-based BCAMs in logic utilization on FPGA and shows a 

remarkable improvement in look-up-table depth and width. 

− The architecture shows better SDRAM utilization and improvement in resource utilization by 97.2%, 

93.6%, and 100% reduction in logic, registers, and memories, respectively, compared to the related work 

[17]. 

 

 

3. PROPOSED HARDWARE IMPLEMENTATION 

This section proposes a novel SDRAM-based content-addressable memory hardware architecture that 

is customized for resource-saving and collision-avoidance purposes. The proposed method is presented with 

the feature of SDRAM-compatibility and collision-avoidance method. The hardware system architecture is 

described in detail with each functional block. 

 

3.1.  Proposed method 

Sato et al. [16] proposed a method called data-collision, an effective algorithm to compensate 

resources for constructing a CAM. The algorithm initially used block RAMs to store data addresses (DA) and 

decimal figures. The decimal figure is divided into fragments with pre-configured bits each; based on the 

similarity of fragments, DA are stored in the exact memory location. With this approach, area costs are reduced 

significantly. The method also showed superior performance on high-speed searching with lower power 

consumption due to the address-to-data search algorithm.  

Regarding accuracy, when the number of inputs is the same as the register address number, the 

collision probability is conducted to 0.26 in a normalized segment, so the collision probability is 0.26 power 

the number of segments [16]. Hence, they claimed that their algorithm has a negligible probability for all the 

collisions in an extensive random database. However, the problem arises when we want to increase the size of 

CAM due to the limitation in the length of address bits of FPGA’s on-chip block RAMs. For instance, on a 

small FPGA family, the maximum depth a single M10 K memory can support is 512×20-bit [15], which mean 

the CAM’s depth is limited to 512 entries to keep a negligible ratio. Thus, when constructing 2 K entries of 

RAM-based data-collision CAM, the collision probability is now conducted to approximately 0.6 in a 

normalized segment, i.e., it is over-entry. 

 

3.1.1. Collision phenomenon 

Many researchers have proposed effective resource-saving architectures for CAM; however, they 

come against the collision phenomenon. This phenomenon occurs varying by different implemented 

algorithms. A graph illustrating the collision probability of each function in write, collision, and empty entries 

is built in [16]. If more than one DA is stored at the same register address (RA), that location will be marked 

as collided, which means a false segment when searching. Figure 2 illustrates faulty consequences resulting 

from the collision phenomenon with the original dataset with DA and RA in the top left. Data address “D” 

collides with “B” at register address “11”; with “C” at “11”; and so on. After setting all datasets into the storage 

element, the CAM table is in the bottom left. Thus, when searching for data address “D,” CAM-like element 

cannot produce accurate results due to the collision incident. Collision phenomenon scales with the large 

ruleset. BRAM-based segment mat requires many memories when intending to reduce collision ratio. 

Nevertheless, a novel architecture advancement must minimize collided segments [16]. 

 

3.1.2. Collision-avoidance method 

By utilizing SDRAM, this study proposed a new method to overcome the collision problem for [16], 

the so-called collision-avoidance method. The method to minimize collided segments is illustrated in Figure 3. 

Two different fragmentation methods present an example of 10-bit keys with corresponding addresses. First, 

binary data are cut into fewer fragments to increase the width. The DA are then distributed far from each other, 

reducing collision probability. However, since the fragment’s pre-defined bits are now longer, memory storage 

capacity increases, which leads to excessive use of block RAMs.  

The architecture takes advantage of the excessive address bits of SDRAM. With lengthy address bits, 

a 512 Mbyte SDRAM supports up to 28-bit address width with 16-bit data width, which helps scale down 
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many collided segments. As in Figure 3, cutting binary data into two fragments with five bits each, instead of 

five fragments with 2-bit each, helps reduce collided segments by five times. It shows superior results in 

reducing collision probability. Thus, when searching for the data address “D,” the exact result is produced for 

the system to continue its operation. 
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Figure 2. Collision phenomenon 
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Figure 3. Collision-avoidance method 

 

 

3.1.3. SDRAM compatibility 

Improvements to SDRAM compatibility are required. Figure 4 presents data arrangement with 

conventional BRAMs and the proposed SDRAM method. Figure 4(a) illustrates the traditional algorithm 

requires block RAMs connected in parallel to store data (each color indicates a RAM with its addresses). Block 

RAMs share the same addresses, known as RA, and data width, known as data address (DA). This conventional 

method is high-speed but very RAM-consuming and unable to be reconfigured. 

With SDRAM-based CAM, only one big memory is available as data storage. As a result, complex 

adjustments are necessary for the SDRAM-based CAM to distribute data as the RAM-based version. An 

address prefix algorithm is developed; by taking advantage of the lengthy address bit, this functional block 

helps the CAM see the SDRAM as a group of BRAMs, as illustrated in Figure 4(b). The red color indicates 

the prefix that partitions SDRAM. A distinct color indicates each region of the memory location. Not only does 

this approach allow CAM to be implemented using one unified memory, but it also helps the architecture to be 

reconfigurable. Another significant improvement of SDRAM-based design is the new comparator algorithm 

that enables the architecture to be parameterized and more resource-saving. The time for comparison is fixed 

and independent from searching time; in other words, even if it performs plenty of segment searching, the result 

is always received within fixed cycles after the last search operation. As a result, the SDRAM-based data-

collision CAM is implemented using the following parameters: a total fragment number, a key width, and an 

ID width. The use of parameters allows different size CAMs to be easily synthesized and adapted to different 

systems. 
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Figure 4. Database arrangement using (a) conventional SRAMs and (b) the proposed SDRAM method 

 

 

3.2.  Hardware system architecture 

The overall architecture of SDRAM-based data-collision CAM is illustrated in Figure 5. The 

architecture supports updating original keys and their corresponding address information in the memories. As 

setting keys and their address arrive, the address prefix generator cuts the keys into a user-defined number of 

fragments and calculates the appropriate address location to store data. Simultaneously, the Segmentation block 

communicates with DDR SDRAM through the SDRAM Controller block to decide the proper status bits for 

each address to store them in memories. 

When search data arrives, the segmentation block performs a straightforward operation. First, data 

input is cut into a pre-defined number of fragments with pre-configured bits, which addresses the SDRAM 

through the SDRAM controller block. A vector of segments, including addresses plus their status, is then read, 

and presented at Segmentation to prepare for the comparison process. In the comparison phase, the comparator 

will sequentially take segments from SDRAM and compare them to eliminate empty or collided ones. Then, 

the comparator passes the result for confirmation with the pre-set original search data. The confirmation logic 

block outputs the reference address if a match occurs. To compensate for SDRAM read latency, which is known 

as the time from the read signal is asserted to the read-data-valid signal is asserted and read data is presented 

at the interface of the controller, a parallel shift register is used to delay the input data; therefore, data is 

synchronized for confirmation. 

 

 

Segmentation Comparison

Shift Register
Data 
Input

Address 
Output

SDRAM Controller

Confirmation

External SDRAM
 

 

Figure 5. Overall system architecture 
 

 

3.2.1. Segmentation 

The segmentation can be seen as the heart of data-collision CAM. It is responsible for directly 

communicating with SDRAM controller interface to perform setting or searching segments into or from 

memory. It consists of a big state machine, known as a segment controller, to control the read and write 

operation of SDRAM and two data paths: Fragmentation and segment datapath, as in Figure 6. 
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Figure 6. The segment engine architecture 
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As mentioned above in section 2, a prefix is generated and added to the addresses to mark our segment 

mat by the address prefix generator (i.e., APG). The APG logic block, located in the fragmentation block, is a 

parameterized counter that partitions the SDRAM into separated regions. When a key fragment is produced, it 

is then concatenated with the appropriate auto-generated prefix, as illustrated in Figure 7. The output of the 

concatenation process is the SDRAM memory address for data arrangement. The inside of the fragmentation 

is illustrated in Figure 7. 
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Figure 7. The fragmentation logic 
 

 

3.2.2. Comparison 

An effective comparison algorithm is crucial in CAM-like elements. Since segments are sequentially 

read from the SDRAM controller, the comparison process needs a new algorithm; otherwise, the whole 

architecture consumes numerous clock cycles. Figure 8 shows a sequential comparator, which operates 

concurrently with the segment engine. To optimize supported speed, the comparator is pipelined with three 

stages. It produces an address for final confirmation process within 3 clock cycles after all segments are read 

from SDRAM. The new comparator is a key factor that makes SDRAM-based CAM parameterized. 
 

3.2.3. Confirmation 

Confirmation process is the last stage of CAM which compares the final address with its original 

database to increase the reliability of the output. Figure 9 shows the implementation of confirmation process 

to ensure the accurate output. The final segment for confirmation contains information of the final address, its 

validity status, and corresponding original key data. It is extracted to obtain the original key, and the module 

performs a comparison with the search key making sure the final address is correct.  
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Figure 8. Sequential comparator algorithm 
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Figure 9. The confirmation process 
 

 

3.2.4. SDRAM controller interface 

Figure 10 shows how external DDR-SDRAM communication has been simplified using a built-in 

address span extender intel FPGA IP. The IP provided an Avalon-MM master-slave interface in which the 

master side controls the operation of SDRAM while the slave side connects to FPGA’s portion. The SDRAM 

controller interface is designed with an avalon memory-mapped master interface [24] to establish 

interconnection with the address span extender command interface. Prior to proceeding with setting or 

searching, all contents need to be initialized. This means all segments in the table are set to empty status and 

ready for setting. Figure 11 shows the data-path in two different processes: Setting and searching. Figure 11(a) 

illustrates the setting process of the architecture. When data input arrives at the segment engine, it is cut into a 

pre-defined number of fragments based on pre-configured bits. Each of these is a memory address for the data 

address to situate. 
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The process of setting a data address is described as follows. First, the fragment is fed into the APG 

logic block to be marked appropriately as the exact register address. Then based on this, DDR SDRAM 

accesses that location to check whether it is empty, written, or collided to set the proper status for the new data 

address. Since the necessary status is generated, the data address is then written to the location. Figure 11(b) 

illustrates how the proposed CAM architecture performs searching rule ID. Searching has the key cut in the 

same way as in the setting process; however, the data from DDR-SDRAM is now redirected and sequentially 

fed into the comparison stage. 
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Figure 10. DDR SDRAM communication 
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Figure 11. How the architecture processes data in (a) setting and (b) searching mode 

 

 

4. SYNTHESIS AND ANALYSIS 

This section implements a feasible data-collision CAM design with Avalon-MM mapped interface 

with SDRAM on Altera’s DE0-Nano-SoC device (5CSEMA4U23C6)-Cyclone V family [25]. The architecture 

uses hard processor system’s ISSI DDR3 SDRAM memory models for functional verification [26]. Synthesis 

results and comparisons with various CAM versions are presented. 

 

4.1.  FPGA implementation 

The entry ratio is derived from [16]. The greater this ratio gets, the higher the collision probability is. 

If the entry ratio equals one, the collision ratio equals 0.26, which provides negligible collision probability, as 

mentioned above. Thus, it is re recommended to keep the ratio less than one; otherwise, it is over-entry. The 

entry ratio is expressed in (1). 

 

𝐸𝑛𝑡𝑟𝑦 𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦 𝑒𝑛𝑡𝑟𝑖𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠
 (1) 

 

Parameterization advancement enables the architecture to be easily created in assorted sizes. The 

proposed SDRAM-based CAM is parameterized based on a total number of fragments (𝑛𝑓𝑟𝑎𝑔), a key width 

(𝑊𝑘), and an ID width (𝑊𝐼𝐷); thus, the SDRAM depth-width configurations can be calculated using (2)-(4) 

and selected referring to Table 2. 

 

𝑈𝑆𝐷𝑅𝐴𝑀 = 2𝐴𝑊𝐷𝐷𝑅 𝑆𝐷𝑅𝐴𝑀 × 𝐷𝑊𝐷𝐷𝑅 𝑆𝐷𝑅𝐴𝑀 (2) 

 

𝐴𝑊𝐷𝐷𝑅 𝑆𝐷𝑅𝐴𝑀  =  ⌈
𝑊𝑘

𝑛𝑓𝑟𝑎𝑔
⌉  + ⌈log2(𝑛𝑓𝑟𝑎𝑔)⌉  (3) 

 

𝐷𝑊𝐷𝐷𝑅 𝑆𝐷𝑅𝐴𝑀  =  2 + 𝑊𝐼𝐷 + 𝑊𝑘 (4) 
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Where 𝑈𝑆𝐷𝑅𝐴𝑀 denotes the SDRAM usage in bits; 𝐴𝑊𝐷𝐷𝑅 𝑆𝐷𝑅𝐴𝑀 is the address width, and 

𝐷𝑊𝐷𝐷𝑅 𝑆𝐷𝑅𝐴𝑀 is the data width of DDR SDRAM. The data width of SDRAM is rounded up to the nearest 

power-of-two value, e.g., if the total data width is 54-bit, then the selected 𝐷𝑊𝐷𝐷𝑅 𝑆𝐷𝑅𝐴𝑀 is 64-bit. 

 

 

Table 2. SDRAM’s depth and width configurations 
SDRAM’s property Width (bits) 

𝐴𝑊𝐷𝐷𝑅 𝑆𝐷𝑅𝐴𝑀 28 27 26 25 24 23 22 

𝐷𝑊𝐷𝐷𝑅 𝑆𝐷𝑅𝐴𝑀 16 32 64 128 256 512 1024 

 

 

to evaluate the feasibility of the proposed architecture, multiple configurations of SDRAM-based data-

collision CAMs are successfully implemented on the selected FPGA device. Figure 12 presents the synthesis 

results, SDRAM usage, and collision probability of different CAM sizes. Figures 12(a) and 12(b) shows the 

FPGA’s on-chip logic and registers resource utilization respectively, Figure 12(c) illustrates SDRAM size for 

each configuration of CAM table, and their corresponding entry ratio in Figure 12(d). The architecture shows 

significant advancements in the number of entries whilst maintaining a negligible collision ratio and low 

resource consumption. The architecture supports a capacity of 256-thousand-entry with 144-bit data while 

consuming less than 1% FPGA on-chip resources and 25% of SDRAM capacity in the selected device. 

Furthermore, the listed architectures size can operate at 400 MHz. 

 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 12. Resource utilization of different configurations in (a) logic (in ALMs),  

(b) logic registers, (c) SDRAM allocation, and (d) entry ratio of the architecture 

 

 

As mentioned in section 3, there exist delays for DDR SDRAM to perform proper read and write, 

which are represented as 𝑡𝑟𝑑 and 𝑡𝑤𝑟, respectively. The following condition (5) needs satisfaction to perform 

in an appropriate setting. For each search request, the following clock cycles condition (6) must be a guarantee 

for the proposed CAM to produce the appropriate data address. 

 

𝑡𝐶𝐴𝑀,𝑠𝑒𝑡𝑡𝑖𝑛𝑔 = 𝑛𝑓𝑟𝑎𝑔 × (𝑡𝑟𝑑 + 𝑡𝑤𝑟 + 𝑡𝑠𝑒𝑔) (5) 

 

𝑡𝐶𝐴𝑀,𝑠𝑒𝑎𝑟𝑐ℎ  = 𝑛𝑓𝑟𝑎𝑔 × (𝑡𝑟𝑑 + 𝑡𝑠𝑒𝑔) + 𝑡𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 𝑡𝑐𝑜𝑛𝑓𝑖𝑟𝑚 (6) 
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Where 𝑛𝑓𝑟𝑎𝑔 is the number of fragments that the user defines; 𝑡𝐶𝐴𝑀,   𝑠𝑒𝑡𝑡𝑖𝑛𝑔 and 𝑡𝐶𝐴𝑀,   𝑠𝑒𝑎𝑟𝑐ℎ are clock 

periods that CAM architecture perform setting or searching respectively; in this design, 𝑡𝑐𝑜𝑚𝑝𝑎𝑟𝑒 = 3 and 

𝑡𝑐𝑜𝑛𝑓𝑖𝑟𝑚 = 2 are cycles it takes for address comparison and confirmation. Another critical parameter is  𝑡𝑠𝑒𝑔, 

which is the clock period it takes segment engine to perform its operation. For a setting request, 𝑡𝑠𝑒𝑔 = 6 cycles 

for fully extracting a single fragment from SDRAM; while for a search request, for 𝑡𝑠𝑒𝑔 = 8 cycles for 

thoroughly arranging a single fragment into SDRAM as it needs extra cycles to modify data before writing it 

to the database. The time to perform a read from or write to SDRAM is defined as the sum of the controller 

latency, command latency, and the CAS latency of the DDR memory. The total latency is simulated as 𝑡𝑟𝑑 =
 𝑡𝑤𝑟 = 11 cycles. In the 64 K key entries CAM with 36-bit each, the matched address presents at the output 

every 39 clock cycles, and a key is set correctly into the SDRAM every 60 clock cycles. 

 

4.2.  Comparison with other CAM architectures 

Table 3 compares the novel CAM model with conventional logic-based CAM [14], synthesized with 

the same 512×36-bit size. The architecture is configured with two fragments which keep the collision 

probability less than 1%. In addition, the proposed architecture efficiently balances on-chip lookup tables 

(LUTs) and registers. Table 4 shows a comparison with [12], [13]. The selected configuration is 16 K-depth 

with 36-bit data width. By effectively utilizing the SDRAM, the proposed model outperforms other 

conventional CAM architectures by total reduction in BRAMs and significant savings on-chip ALMs and speed 

compared to the most advanced architecture of all. 

Table 5 compares the synthesis results of two SDRAM-based CAM architectures. The selected 

configuration for both models is 64 K key entries with 32-bit each. The logic utilization of the SDRAM-based 

data-collision circuit is less than 1% in the selected device with optimal configuration. The data-collision CAM 

shows better SDRAM utilization compared to the Hash-CAM. The results have proved that the proposed design 

is superior in reserving logic resources by 97.2% in adaptive LUTs, 93.6% in logic registers, and 100% in 

memory bits.  

 

 

Table 3. Logic utilization comparison with on-chip resources-based CAM  
CAMs LUTs Registers Memory bits SDRAM usage Speed (MHz) 

Proposed CAM 287 1,025 0 4 Mbyte 400 

LH-CAM [14] 1,259 70 0 ––– 340 

 

 

Table 4. Logic utilization comparison with large-size on-chip resources-based CAM  
CAMs ALMs BRAMs (20 K) SDRAM usage Speed (MHz) 

Proposed CAM 329 0 4 Mbyte 400 

II2D-BCAM [13] 70,000 400 ––– 200 

BF-BCAM [12] 80,000 2,100 ––– 160 

Reg-based CAM [13] 260,000 ––– ––– 160 

 

 

Table 5. Logic utilization comparison with SDRAM-based Hash-CAM 
 SDRAM-based data-collision CAM SDRAM-based hash-CAM [17] 

ALUTs 296 11,221 

Logic Registers 1104 17,312 

Memory bits 0 21,888 

PLLs/DLLs 1/1 1/1 

SDRAM utilization 4 MByte 256 KByte 

 

 

SDRAM-based data-collision CAM is distinguished by its storage capacity that can fit up to 256-

thousands-entrants, making it suitable for very-large-size routing table. Meanwhile, the architecture keeps the 

negligibility of collision probability to ensure the correctness of the outputs. Also, parameterization feature 

helps the architecture easily synthesized to adapt any system’s needs. 

 

 

5. CONCLUSION AND FUTURE WORK 

A novel CAM architecture using SDRAM with a data-collision algorithm has successfully operated 

in hard processor system, proving the concept of SDRAM-based CAM. It has immense application and 

development potential. SDRAM-based data-collision CAM hardware architecture can fit a large-sized lookup 

table while keeping the collision ratio under entry. The proposed architecture is superior in saving on-chip 
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resources on FPGA; thus, it can easily fit any FPGA device that supports DDR SDRAM and still has enormous 

logic and storage elements for other FPGA purposes. Furthermore, the architecture is parameterized and 

advances in reducing collision ratio, which make it great for highly critical system accuracy. However, different 

parameter configuration affects the performance of CAM. Therefore, it is up to the user to consider the system’s 

demand by using provided parameters, such as size, speed, and collision probability to select the appropriate 

CAM’s parameters. Future upgrades focus on improving search time and throughput of the architecture. 

Double-data rate (DDR) interface is well known for its high speed and throughput. An advanced CAM-specific 

DDR controller logic is believed to achieve reduction of read latency of the system. Moreover, ternary content-

addressable memory, i.e., TCAM is more versatile. Advancement in supporting ternary value “X” of the 

architecture is under investigation. 
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