
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 32, No. 1, October 2023, pp. 478~493 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v32.i1.pp478-493       478 

 

Journal homepage: http://ijeecs.iaescore.com 

Improving the accuracy of recurrent neural networks models in 

predicting software bug based on undersampling methods 
 

 

Nasraldeen Alnor Adam Khleel, Károly Nehéz 
Institute of Information Science, University of Miskolc, Miskolc-Egyetemváros, Hungary 

 

 

Article Info  ABSTRACT 

Article history: 

Received Dec 13, 2022 

Revised Mar 27, 2023 

Accepted Jul 8, 2023 

 

 The process of identifying software bugs is of paramount importance as it 

ensures software reliability and facilitates maintenance activities. The quality 

improvement process of software relies heavily on software bug prediction 

(SBP). In SBP, the task of accurately identifying defective source code poses 

a significant challenge. Numerous of machine learning (ML) models has been 

developed specifically to address this challenge in SBP. Nonetheless, the class 

imbalance issue restricts the potential of these models to predict software bugs 

accurately. This issue poses a significant hindrance to the efficiency of these 

models, leading to imbalanced false-positive and false-negative outcomes. 

Previous studies have paid limited attention to addressing the challenge of 

class imbalance in SBP. This study aims to fill this research gap by employing 

a combination of two recurrent neural networks (RNNs), namely long-short-

term memory (LSTM) and gated recurrent unit (GRU), along with an 

undersampling method (near miss) to effectively tackle this issue. 

Experiments have been conducted on publicly available benchmark datasets, 

considering both class-level and file-level metrics. The experimental results 

lead to the conclusion that our models outperform others and the combination 

of RNNs models with undersampling methods leads to improved bug 

prediction performance, particularly for datasets with imbalanced class 

distributions. 

Keywords: 

Class imbalance 

Recurrent neural networks 

Software bug prediction 

Software metrics 

Undersampling methods 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Nasraldeen Alnor Adam Khleel 

Institute of Information Science, University of Miskolc 

3515 Miskolc, Miskolc-Egyetemváros, Hungary 

Email: nasr.alnor@uni-miskolc.hu 

 

 

1. INTRODUCTION 

Software bug prediction (SBP) is a process for classifying fault-prone software modules based on 

some underlying properties of the systems, like software metrics that are extracted and collected from real data 

sets (historical data) during the software development process [1], [2]. Dealing with software bugs during the 

development process is problematic, as critical software bugs lead to potential risks that can lead to project 

failure. The final product should have as few bugs as possible to produce high-quality software. Early detection 

of software bugs can reduce development costs, time, rework efforts [3]. SBP serves as a means to track 

software modules and assess their reliability by examining specific parameter characteristics obtained from 

software projects [4]. Several machine learning (ML) techniques have been introduced to deal with the SBP 

problem [5], [6]. Recurrent neural networks (RNNs) belong to a category of ML models capable of handling a 

sequence of inputs and retain its state while processing the following series of information and efficiently 

acquiring the nonlinear features that are in order [7]. RNNs find extensive utility across various domains, 

encompassing but not restricted to pattern recognition, identification, classification, vision, speech, control 

systems, and numerous other applications [8]. So RNNs will be a promising technique for SBP. RNNs 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improving the accuracy of recurrent neural networks models … (Nasraldeen Alnor Adam Khleel) 

479 

encounter the obstacle of long-term dependencies when dealing with excessively lengthy input sequences, 

leading to an inability to ensure long-term nonlinear relationships [1]. When learning sequences, it is possible 

to encounter either the problem of gradient vanishing or gradient explosion. To tackle this issue, numerous 

optimization theories and advanced algorithms have been introduced, including Bidirectional long-short-term 

memory (LSTM), LSTM networks, gated recurrent unit (GRU) networks, Independent RNNs, echo state 

networks, and others [9]. 

The reason for utilizing both LSTM and GRU-optimized algorithms in RNNs for this research is due 

to their shared goal of efficiently tracing long-term dependencies while addressing the issue of vanishing 

gradients [10]. GitHub is widely regarded as a popular hosting service for source code, and numerous 

prominent open-source teams utilize it to manage their projects [9], [11]. So, the datasets selected in the study 

were obtained from the GitHub repository. But these selected data sets are imbalanced, and class imbalance is 

one of the problems facing ML techniques, which severely hinders the efficiency of ML techniques. Several 

data balancing methods have been introduced in previous studies to address this problem and allow the training 

of robust and well-fit ML models. Therefore, this study seeks to tackle the problem of class imbalance by 

utilizing data balancing methods (sampling methods) and to analyze the effect of these methods on the 

performance of RNNs models in SBP. In the first step, we apply sampling methods to balance the data sets. 

Next, the proposed models are trained and evaluated using these balanced datasets. The evaluation process 

includes various performance measures derived from the confusion matrix, such as accuracy, precision, recall, 

and F-measure. Additionally, common metrics like matthews correlation coefficient (MCC), area under the 

receiver operating characteristic curve (AUC), area under the precision-recall curve (AUCPR), and mean 

squared error (MSE) are also incorporated in the evaluation. In summary, the aim of this study is to outline its 

objective and primary contributions as follows: i) our research proposes a new method to enhance SBP 

accuracy. This method integrates LSTM and GRU models with the near miss method to address class 

imbalance challenges. By combining advanced recurrent neural network (RNNs) models with targeted 

undersampling, our method shows promise in improving bug prediction models' performance and reliability; 

ii) to evaluate the efficiency and effectiveness of the proposed method, various performance metrics will be 

utilized, and a comparative analysis will be performed against the existing methods in SBP; and iii) we show 

that by employing data-balancing methods to balance the data set, significant enhancement can be achieved in 

the performance of RNNs models in SBP. 

The paper follows the following structure: in section 2 provides an overview of related works, while 

sections 3 and 4 delve into the background information on LSTM and GRU, respectively. In section 5 outlines 

the research questions, and section 6 details the research method. In section 7 presents the experimental results 

and discussions, and the conclusion is presented in the final section 8. 

 

 

2. RELATED WORK 

Numerous research endeavors have explored SBP, proposing diverse techniques to enhance model 

accuracy. Prior studies examined ML algorithms (e.g., support vector machines (SVM), decision trees, and 

random forests) and data augmentation for class imbalance. Certain research explored ensemble strategies like 

Bagging and Boosting to amplify bug prediction accuracy. Despite potential, the synergy of RNNs and 

undersampling for SBP remains uncharted. This article addresses this gap, exploring undersampling's potential 

to enhance RNN-based bug prediction, offering novel insights for more dependable software development. 

Bani-Salameh et al. [1] introduced a model that utilizes LSTM model for the automated allocation of bugs. 

The model's effectiveness was measured against two ML algorithms, and the findings revealed that LSTM 

outperformed them, with superior accuracy and efficiency in assigning bug priorities. Hammouri et al. [5] 

developed an SBP model utilizing three distinct ML algorithms, which were then evaluated using historical 

data. The findings revealed that ML models could be utilized with great accuracy, and a comparison with other 

ML approaches showcased the superior performance of the proposed method. Fan et al. [9] proposed an 

attention-based RNN framework specifically designed for software defect prediction (SDP). The experimental 

outcomes showcased that the proposed model exhibits significant enhancements, achieving a 14% 

improvement in F1 measure and a 7% improvement in AUC in comparison to the currently employed 

techniques for SBP. 

Zhou and Lu [12] introduced a SDP model that utilized an LSTM model incorporating bidirectional 

and tree structures. Through the evaluation results, it was found that the proposed model surpassed several 

defect prediction models when applied to eight pairs of open-source Java projects. Tong et al. [13] presented a 

novel approach to address the issue of class imbalance in SDP. The effectiveness of the proposed method was 

extensively evaluated on diverse datasets and compared with existing techniques. The experimental results 

unequivocally demonstrated the superiority of the novel method over the alternatives, highlighting its 

significant potential in effectively handling the class imbalance problem. These findings emphasize the 

valuable contributions of this innovative approach in enhancing the accuracy and reliability of SDP models. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 1, October 2023: 478-493 

480 

As a result, this approach holds promise for improving the overall performance of SDP in real-world 

applications. Ye et al. [14] introduced a bug classification model that utilizes an LSTM model. To 

comprehensively evaluate its capabilities, the model underwent rigorous testing with a significant number of 

bug reports collected from three distinct software projects. The evaluation results unequivocally showcased the 

superiority of the proposed model over alternative approaches. This notable finding highlights the model’s 

remarkable performance and its potential to substantially enhance bug classification accuracy, making a 

valuable contribution to the field of SBP. The success of this model opens up new possibilities for more 

accurate and efficient bug detection, ultimately benefiting software development practices. Khuat and Le [15] 

performed an empirical investigation to examine the importance of sampling methods in SDP. Their 

experimental findings revealed that incorporating sampling methods in conjunction with ensemble learning 

models yielded beneficial outcomes, effectively mitigating the challenges associated with class imbalance. 

However, it should be noted that in certain datasets, this approach resulted in lower prediction accuracy. 

Munir et al. [16] proposed a method for SDP, integrating both GRU and LSTM models. The method 

was rigorously tested across multiple datasets and compared with various existing approaches. The 

experimental findings provided compelling evidence, showcasing the superiority of the proposed method over 

alternative techniques. This significant improvement in performance highlights the potential of the novel 

method in advancing SDP accuracy, making it a valuable addition to the repertoire of predictive modeling 

techniques in the software development domain. Kukkar et al. [17] introduced a novel deep learning (DL) 

model known as bug severity classification, tailor-made for multiclass severity classification tasks. The model 

seamlessly integrates convolutional neural network (CNN) and random forest with boosting. To thoroughly 

assess its effectiveness, the model was applied to five distinct open-source projects. The evaluation results 

showcased a significant improvement in bug severity classification performance, providing compelling 

evidence of the superiority of the proposed model. This noteworthy enhancement underscores the potential of 

this innovative DL-based approach in accurately and efficiently classifying bug severity levels, offering 

valuable insights for bug management and software quality improvement across diverse projects. Khleel and 

Nehéz [18] presented a model for SBP using four ML algorithms. 

The historical data obtained from NASA public datasets were used to evaluate the experiments. The 

proposed approach was subjected to comparison with other ML approaches. Based on the evaluation process 

and results, it was concluded that ML algorithms could effectively predict bugs. Liang et al. [19] proposed a 

framework named Seml was introduced for SDP, leveraging the power of the LSTM model. Through rigorous 

experimentation, the research demonstrated that the proposed method outperformed the latest defect prediction 

techniques, showcasing its remarkable superiority in performance. These results firmly establish Seml as a 

promising and effective approach in SDP, presenting valuable prospects for advancing the accuracy and 

reliability of defect detection in software development projects. Ferenc et al. [20] introduced a method to adapt 

deep neural networks (DNNs) for SBP. The method’s performance was assessed using various datasets. The 

results illustrated that incorporating static metrics with DNNs can greatly enhance prediction accuracy. Upon 

examination of earlier research on SBP, it was observed that the majority of proposed techniques neglect the 

problem of class imbalance. Research that specifically dealt with the issue of class imbalance and provided 

solutions as referenced in [13], [15] emphasizes the crucial role of data balancing methods in enhancing SBP 

accuracy. Hence, the main aim of this study is to mitigate the problem of class imbalance and enhance the 

efficacy of the proposed models. 

 

 

3. LONG-SHORT-TERM-MEMORY 

The LSTM networks, belonging to the category of RNNs, possess a specialized architecture that 

enables them to detect patterns within sequential data [9]. The purpose of introducing LSTM networks was to 

resolve or prevent issues of long-term dependencies, which regular RNNs are susceptible to due to an unstable 

gradient when connecting prior and current information [14], [19]. The repeating module of LSTM networks 

is depicted in Figure 1, which illustrates the interaction between its layers. Standard RNNs, which take input 

sequences where each step refers to a specific moment [10]. In LSTM networks, the output at a specific time 

moment t, denoted as 𝑜𝑡, is not solely dependent on the current input 𝑥𝑡. However, it is important to note that 

the output at time t is not solely dependent on the current input; it is also influenced by the output from the 

previous moment, 𝑡 − 1 [19]. This implies that the system's behavior is influenced by its own past states. To 

express this concept mathematically, we can represent the output at time (t) through the (1). 

 

ℎ𝑡   =  𝑓( 𝑈 ×  𝑥𝑡 + 𝑊 × ℎ𝑡−1 + 𝑏) (1) 

𝑜𝑡   =  𝑔( 𝑉 ×  ℎ𝑡 + 𝑐) 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improving the accuracy of recurrent neural networks models … (Nasraldeen Alnor Adam Khleel) 

481 

The weights of the RNNs are labeled as U, V, and W, while the biases are denoted as b and c. The 

activation functions of the neurons are represented by f and g. Within the LSTM context, the cell state plays a 

crucial role by preserving information from previous time steps and propagating it through the entire LSTM 

chain, facilitating the efficient handling of long-term dependencies. A notable component is the forget gate, 

responsible for filtering out irrelevant information from the previous time step. This forget gate can be 

mathematically expressed as (2). 

 

𝑓𝑡   =  σ( 𝑊𝑓 .  [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑓) (2) 

 

The activation function is denoted by the symbol σ, with 𝑊𝑓 and 𝑏𝑓 representing the weights and bias 

of the forget gate. The output of the input gate plays a crucial role in determining which information to retain 

from the current moment, and its mathematical representation is as (3). 

 

𝑖𝑡   =  σ( 𝑊𝑖 .  [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑖) (3) 

 

The activation function is denoted by the symbol σ, and the weights and bias of the input gate are 

represented by 𝑊𝑖 and 𝑏𝑖, respectively. Leveraging the information obtained from both the forgetting gate and 

the input gate, we can advance the LSTM process. The cell state 𝐶𝑡−1  is updated using the (4). 

 

Č𝑡   =  tanh( 𝑊𝑐 .  [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑐) (4) 

Č𝑡   =  𝑓𝑡  ×  𝐶𝑡−1 + 𝑖 ×  Č𝑡) 

 

Č𝑡 symbolizes a candidate value aimed at incorporating it into the cell state, while 𝐶𝑡 represents the 

updated cell state at the present moment. Ultimately, the output gate decides which information should be 

emitted by taking into account both the previous output and the current cell state. 

 

𝑜𝑡   =  σ( 𝑊𝑜 .  [ℎ𝑡−1 , 𝑥𝑡 + 𝑏𝑜] (5) 

ℎ𝑡   =  𝑜𝑡 × tanh(𝐶𝑡) 

 

 

 
 

Figure 1. Depicts the interacting layers of the repeating module in an LSTM model [21] 

 

 

4. GATED RECURRENT UNIT 

The GRU network, a type of RNN, is specifically designed to handle long-term information 

dependencies while addressing the issue of gradient vanishing. Its specialized architecture makes it a powerful 

solution for processing sequential data and is particularly effective in tasks involving capturing long-range 

dependencies, like natural language processing and time series analysis [8]. By mitigating gradient vanishing, 

the GRU network ensures stable and efficient training, making it a valuable tool in the domain of DL and 

sequential data processing. GRU, in comparison to LSTM, incorporates fewer parameters and includes the 

update and reset gates in addition to the forget gate, as depicted in Figure 2. The update and reset gates in GRU 

improve and optimize the learning mechanism [9]. Within the GRU network, the update gate assumes a crucial 

role in determining the extent to which past information should be retained and carried forward to the future. 

Conversely, the reset gate assists in determining the degree to which past information should be ignored or 

forgotten [22], [23]. The calculation of the update gate in the GRU network can be demonstrated by the (6). 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 1, October 2023: 478-493 

482 

z(t) =  σ(W(z). [h(t − 1), x(t)]) (6) 

 

Where z(t) is the update gate, h(t − 1) represents the output of the previous neuron, and x(t) denotes 

the input of the current neuron, the weight of the update gate is denoted as W(z), and the sigmoid function is 

represented by σ. The (7) below illustrates the calculation of the reset gate model in GRU networks. The reset 

gate is a crucial component that enables the network to control the flow of information and retain relevant 

context from previous time steps, contributing to its effectiveness in capturing long-term dependencies in 

sequential data. 

 

r(t) =  σ(W(r). [h(t − 1), x(t)]) (7) 

 

Within the framework of a GRU network, the reset gate is denoted as r(t), h(t − 1) signifies the 

output of the previous neuron, and x(t) represents the input of the current neuron. The weight of the reset gate 

is symbolized by W(r), and the sigmoid function is denoted by σ. The subsequent (8) elucidates the calculation 

of the output value of the hidden layer in a GRU network. The reset gate is a critical element that regulates the 

flow of information and aids in capturing relevant context from prior time steps, thus contributing to the 

network's ability to effectively model long-term dependencies in sequential data. 

 

ȟ(t) = tanh(Wȟ. [rt. h(t − 1), x(t)]) (8) 

 

The output value in this neuron is denoted as ȟ(t), where h(t − 1) denotes the output of the previous 

neuron and x(t) represents the input of the current neuron. Wȟ symbolizes the weight of the update gate, and 

the hyperbolic tangent function, tanh(), is applied. The calculated value of rt  plays a crucial role in controlling 

the level of memory retention. The (9) provided below presents comprehensive details concerning the hidden 

layer and its contribution to the final output. This mechanism enables the GRU network to effectively capture 

and retain relevant information from previous time steps, facilitating its ability to model long-term 

dependencies in sequential data. 

 

h(t) = (1 − z(t)). h(t − 1) + z(t). ȟ(t) (9) 

 

 

 
 

Figure 2. Depicts the interacting layers of the repeating module in a GRU model [23] 

 

 

5. RESEARCH QUESTIONS 

The main focus of this study is to assess the influence of data balancing methods on the predictive 

capability of RNN models in SBP. The research questions explored in this study specifically investigate the 

performance and accuracy of RNN models when incorporating data balancing methods for predicting software 

bugs. By investigating these research questions, valuable insights can be obtained regarding the effectiveness 

of various data balancing methods and their implications for enhancing the performance of RNN models in 

SBP. 

RQ1: can the accuracy of RNN models in SBP be improved through the use of data balancing 

methods? The primary aim of this research question is to investigate the impact of data balancing methods on 

the predictive performance of two RNN models in the specific domain of SBP. By exploring various data 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improving the accuracy of recurrent neural networks models … (Nasraldeen Alnor Adam Khleel) 

483 

balancing techniques, this study aims to shed light on how these methods influence the accuracy and 

effectiveness of the RNN models in predicting SBP values. Through this investigation, a comprehensive 

understanding of the relationship between data balancing strategies and predictive performance can be gained, 

offering valuable insights for optimizing RNN-based predictions in the domain of SBP. 

RQ2: are the proposed models more effective than the current state-of-the-art models in predicting 

software bugs? The main goal of this research question is to assess the effectiveness of the proposed models in 

predicting software bugs and compare them with state-of-the-art models. The study aims to thoroughly evaluate 

their predictive capabilities in this domain, contributing valuable insights to advance SBP and resolution. 

 

 

6. METHOD 

The primary objective of this research is to enhance the accuracy and effectiveness of software bug 

prediction through the integration of advanced RNN models, specifically LSTM and GRU, with the near miss 

method. By combining these advanced RNN models with the targeted undersampling technique, the study aims 

to address the class imbalance issue in a promising manner, leading to improved performance of the SBP 

models. This innovative fusion holds great potential to revolutionize the field of bug prediction, empowering 

developers and practitioners to build more reliable and efficient software systems. The method provides a 

detailed explanation of the various steps that have been implemented. The overall framework of our proposed 

method for SBP is visually presented in Figure 3, with each step further elaborated in the subsequent sections. 

 

 

 
 

Figure 3. Shows the structure of the proposed method of SBP 

 

 

6.1.  Software metrics and public unified bug dataset 

In the realm of software engineering, metrics serve as objective and systematic measurements utilized 

to evaluate different attributes of a software system. These metrics entail assigning numerical values or symbols 

to specific properties of the software under examination [23]. By employing software metrics, one can collect 

data on the structural aspects of a software design, allowing for a comprehensive analysis and interpretation of 

the software’s characteristics using statistical methods [3]. These metrics play a vital role in assessing software 

quality, identifying potential issues, and guiding the decision-making process during software development 

and maintenance. By leveraging such objective measurements, software engineers can make informed and 

data-driven choices to improve the overall quality and reliability of software systems [23]. A public unified 

bug dataset aggregates bug reports and related data from various projects, domains, and platforms, facilitating 

bug prediction research and defect analysis. Researchers utilize this dataset to develop and assess bug 

prediction models, identify common bug patterns, and gain insights into bug characteristics across different 

projects. Its availability fosters collaboration and facilitates the comparison of bug prediction techniques, 

advancing bug detection and prevention. In this study, the authors considered five publicly available datasets 

and extracted shared software metrics from the corresponding source code. In their study, the researchers 

compiled a unified bug dataset, tailored for the development of novel bug prediction models at both class and 

file levels. Subsequently, they conducted a thorough comparison of metric definitions and values derived from 

various bug datasets. This comprehensive analysis enables a better understanding of the similarities and 

differences among different datasets, and it provides valuable insights into the challenges and opportunities in 

bug prediction research. The unified bug dataset serves as a valuable resource for the software development 

community, fostering collaborative efforts and facilitating the development of more robust and accurate bug 

prediction models [24]. Table 1 shows the public unified bug dataset, and Table 2 displays the utilized metrics. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 1, October 2023: 478-493 

484 

Table 1. Describe the public bug datasets [24] 
Datasets System name Lines of code 

PROMISE datasets Camel, Ant, Ckjm, Ivy, JEdit, Forrest, Lucene, PBeans, 

Synapse, Poi, Velocity, Xalan, Xerces, and Log4J 

2,805,253 

Eclipse datasets 

Bug dataset 

Eclipse 3,087,826 

Bug prediction 

Datasets 

Equinox Framework, Eclipse JDT Core, Eclipse PDE 

UI, Lucene, and Mylyn 

1,171,220 

Bug catchers 

Datasets 

Eclipse JDT Core, ArgoUML, and Apache commons 1,833,876 

GitHub 

Bug datasets 

Antlr 4, Broadleaf Commerce, Loader, and Android 

Universal Image, Ceylon IDE Eclipse Plugin, Hazelcast, 

Elasticsearch, MapDB, JUnit, MCT, Neo4J, Netty, 

Titan, mcMMO, OrientDB, and Oryx 

1,707,446 

 

 

Table 2. Shows the file and class-level metrics used in the public unified bug dataset [24] 
Metrics level Metric name 

File-level metrics Logical lines of code (LOF) 

Cyclomatic complexity (CC) 

Class-level metrics Weighted methods per class (WMC) 

Coupling between object classes (CBOC) 

Coupling between object classes inverse (CBCI) 

Response for a class (RFC) 

Depth of inheritance tree (DIT) 

Number of children (NC) 

Number of public methods (NPM) 

Lines of code (LC) 

 

 

6.2.  Data pre-processing and features selection 

Before building a model, it is imperative to carry out pre-processing of the gathered data. This step is 

essential for streamlining the model training process and ensuring the creation of reliable and robust models 

[23], [25]. Data pre-processing involves a set of procedures utilized to improve the quality of data before 

constructing models. These procedures encompass activities such as eliminating noise and undesirable outliers, 

handling missing values, converting feature types, and more [17]. In order to enhance the model’s efficacy, it 

is essential to normalize the values by scaling numeric data to a range of 0 to 1. In this regard, Min-Max 

normalization was employed on the dataset. The equation for calculating the normalized score is presented in 

(10). Features selection is a critical process that entails selecting a relevant subset of features from a larger pool 

of available attributes. The ultimate goal is to pinpoint the most informative and discriminative characteristics 

that exert a substantial influence on the performance of ML models. By carefully choosing these pertinent 

features, feature selection enhances model efficiency, mitigates overfitting, and improves overall predictive 

accuracy [23], [25]. Diverse techniques and algorithms, such as filter methods, wrapper methods, and 

embedded methods, are utilized for feature selection, each with its own specific guidelines and criteria. The 

ultimate aim of feature selection is to enhance the efficiency, interpretability, and generalization capability of 

ML models by concentrating on the most crucial and informative features [26]. In this study, embedded 

methods were employed as the foundation for our models, as they demonstrate better alignment with ML 

models. The maximum value of attribute x is represented by max (x), while the minimum value is denoted as 

min (x). 

 

𝑥𝑖 =   
(𝑥𝑖 — 𝑋 𝑚𝑖𝑛)

 (𝑋 𝑚𝑎𝑥 — 𝑋 𝑚𝑖𝑛)
   (10) 

 

6.3.  Class imbalance and data sampling methods 

Class imbalance is a term used in ML to describe the condition where the number of instances in one 

class is notably lower than in the other classes. This uneven distribution of classes can present difficulties for 

ML models as they may face challenges in effectively learning and predicting the minority class [23].  

Class imbalance is frequently encountered in diverse domains, such as software bug data, where one class 

occurs significantly less frequently compared to the other classes. As a result, misclassification of cases in the 

minority class may occur, making it a significant issue to address [27]. The chosen reference dataset for this 

study is imbalanced, indicating a lack of the true distribution of learning instances. To address this issue, we 

modified the original dataset to make the data more realistic. Using the undersampling method called  

“near miss,” the dataset’s distribution was modified. Data sampling methods aim to address class imbalance 

by manipulating the dataset, typically by removing the majority of class samples, to achieve a more balanced 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improving the accuracy of recurrent neural networks models … (Nasraldeen Alnor Adam Khleel) 

485 

distribution [28], [29]. Among these methods, near miss is a technique used to tackle class imbalance by 

removing instances from the majority class. Its purpose is to equalize the class distribution by selectively 

eliminating examples that are in close proximity to the majority class instances, based on a predefined distance 

metric [30]. Figure 4 displays the distribution of learning instances across all datasets. 

 

 

 
 

Figure 4. Displays the distribution of learning instances across all datasets 

 

 

6.4.  Models construction and evaluation 

In this study, the models were developed using Keras, an advanced API built on the TensorFlow 

framework [23]. The training datasets consisted of 80% of the complete dataset, where the features were 

randomly selected, while the test datasets accounted for 20% of the dataset. The development of each model 

was carried out individually, using distinct parameters that are presented in Table 3. The assessment of the 

proposed models’ performance involves employing various performance measures derived from the confusion 

matrix, as well as MCC, AUC, AUCPR, and MSE. The MCC is a performance metric for binary classification, 

considering true positives, true negatives, false positives, and false negatives [13]. Higher MCC values indicate 

better model performance [23]. AUC is a widely-used evaluation metric in binary classification, assessing ML 

model performance based on the ROC curve [8]. The ROC curve plots true positive rate against false positive 

rate across different threshold levels [12]. AUCPR measures the area under the precision-recall curve, ranging 

from 0 to 1. A perfect classifier achieves AUCPR of 1, indicating perfect precision and recall, while a random 

classifier has an AUCPR value close to the ratio of positive examples in the dataset, representing random 

performance [23]. MSE is a widely used evaluation metric in classification and regression tasks, quantifying 

model error by averaging the squared differences between predicted and actual values. It provides valuable 

insights into prediction accuracy and guides improvements [23]. A confusion matrix is a tabular representation 

in binary classification, summarizing model predictions and comparing them to actual labels [18]. It consists 

of four components: true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) 

[23], [28]. Table 4 displays the layout of a confusion matrix. 

 

 

Table 3. Displays the parameter configurations of the models 

Parameters 
Models 

LSTM GRU 

Cell type LSTM (64, 32), return sequences=True - 

Layers. GRU - 100 

Activation function ReLU+sigmoid  Tanh+Sigmoid 

Dropouts 0.2 0.2 

Dense 64, 1 1 

Optimizer Adam Adam 

Learning rate 0.01 0.01 

Loos function Mean squared error Mean squared error 

Batch size 64 64 

Epochs 100 100 

Validation split 0.1 0.1 

Verbose 1 1 

 

 

Table 4. Displays the layout of a confusion matrix 

Predicted 
Actual 

Positive Negative 

Positive TP FP 

Negative FN TN 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 1, October 2023: 478-493 

486 

Accuracy =   
(TP+TN) 

(TP+FP+FN+TN)
   (11) 

 

Precision =   
TP  

(TP+FP)
 (12) 

 

Recall =   
TP 

(TP + FN) 
   (13) 

 

F − Measure =   
(2 .  Recall .  Precision)

(Recall + Precision) 
   (14) 

 

MCC =  TP. TN −  FP. FN / √(TP + FP). (TP + FN). (TN +  FP). (TN + FN) (15) 

 

AUC =   
∑ rank(𝑖𝑛𝑠𝑖)− 

M(M+1)

2
   

𝑖𝑛𝑠𝑖 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠

M .  N
 (16) 

 

in this context, ∑ rank(𝑖𝑛𝑠𝑖)   
𝑖𝑛𝑠𝑖 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠 signifies the sum of ranks for all positive samples, while M and 

N respectively represent the numbers of positive and negative samples: 

 

AUCPR  =    ∫ Precision(Recall ) d(Recall)
1

0
 (17) 

 

MSE =   
1

n
∑ (x(i) − y(i))2 

n

i=1
 (18) 

 

in this context, n represents the number of observations, x(i) denotes the actual value, and y(i) represents the 

observed or predicted value for the ith observation. 

 

 

7. EXPERIMENTAL RESULTS AND DISCUSSION 

For the experimental setup, we utilized a Python environment, and the identical project data served 

for both training and testing purposes. The RNN models proposed in this study were specifically crafted using 

classification patterns and subsequently assessed using various standard performance measures. This 

meticulous approach ensures a comprehensive evaluation of the proposed RNN models’ effectiveness in 

predicting software defects, providing valuable insights for practitioners and researchers in the field of software 

engineering and ML. To answer the RQ1: Tables 5 and 6, as well as Figures 5 to 14, report the performance of 

the prediction models. 

 

 

Table 5. Illustrates the performance measures for the proposed models on the class-level metrics dataset 

Parameters Proposed models 
Performance measures 

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE 

Original dataset LSTM 0.83 0.60 0.25 0.35 0.30 0.78 0.48 0.125 

GRU 0.82 0.58 0.16 0.26 0.23 0.77 0.44 0.130 

Balanced dataset LSTM 0.93 0.95 0.92 0.93 0.86 0.97 0.97 0.051 

GRU 0.93 0.94 0.92 0.93 0.86 0.96 0.97 0.063 

 

 

Table 6. Illustrates the performance measures for the proposed models on the file-level metrics dataset 

Parameters Proposed models 
Performance measures 

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE 

Original dataset LSTM 0.78 0.62 0.18 0.28 0.24 0.75 0.49 0.152 

GRU 0.78 0.61 0.22 0.33 0.27 0.75 0.49 0.152 

Balanced dataset LSTM 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.090 

GRU 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.093 

 

 

The results of our LSTM and GRU models are presented in Table 5. The outcomes are reported for 

both the original and balanced datasets, with a focus on class-level metrics. Notably, we observed that both the 

LSTM and GRU models attained the highest accuracy of 93% on the balanced dataset, while the GRU model 

exhibited the lowest accuracy of 82% on the original dataset. In terms of precision, the LSTM model achieved 

the highest value of 95% on the balanced dataset, while the GRU model demonstrated the lowest precision of 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improving the accuracy of recurrent neural networks models … (Nasraldeen Alnor Adam Khleel) 

487 

58% on the original dataset. As for recall, both models obtained the highest score of 92% on the balanced 

dataset, whereas the GRU model exhibited the lowest recall of 16% on the original dataset. Both models 

achieved the highest F-Measure score of 93% on the balanced dataset. However, on the original dataset, the 

GRU model had the lowest score of 26%. Both models achieved the highest MCC of 86% on the balanced 

dataset, whereas the GRU model had the lowest MCC of 23% on the original dataset. The LSTM model attained 

the highest AUC score of 97% on the balanced dataset, and the GRU model achieved the lowest score of 77% 

on the original dataset. On the balanced dataset, both models demonstrated the highest AUCPR score of 97%, 

while the GRU model exhibited the lowest AUCPR score of 44% on the original dataset. Additionally, the 

GRU model recorded the highest MSE of 0.130 on the original dataset, while the LSTM model achieved the 

lowest MSE of 0.051 on the balanced dataset. 

The results of our LSTM and GRU models are presented in Table 6. The outcomes are reported for 

both the original and balanced datasets, with a specific focus on file-level metrics. Remarkably, both the LSTM 

and GRU models achieved the highest accuracy of 88% on the balanced dataset, whereas the lowest accuracy 

of 78% was observed for both models (LSTM and GRU) on the original dataset. Furthermore, the balanced 

dataset yielded the highest precision of 94% for both models (LSTM and GRU), while the GRU model had the 

lowest precision of 61% on the original dataset. In terms of recall, the balanced dataset produced the highest 

score of 81% for both models. Conversely, the LSTM model achieved the lowest recall of 18% when applied 

to the original dataset. Similarly, the balanced dataset resulted in the highest f-measure of 87% for both the 

LSTM and GRU models. Conversely, the LSTM model exhibited the lowest f-measure of 28% when working 

with the original dataset. Furthermore, both models (LSTM and GRU) attained the highest MCC of 76% on 

the balanced dataset, while the LSTM model had the lowest MCC of 24% on the original dataset. Similarly, 

the balanced dataset resulted in the highest AUC of 93% for both models (LSTM and GRU), while the original 

dataset yielded the lowest AUC of 75% for both models (LSTM and GRU). Both models also achieved the 

highest AUCPR on the balanced dataset, which is 95%, and the lowest AUCPR on the original dataset, which 

is 49%. In conclusion, both models (LSTM and GRU) achieved the highest MSE of 0.152 on the original 

dataset, while the LSTM model obtained the lowest MSE of 0.090 on the balanced dataset. 

 

 

 
 

Figure 5. Displays the accuracy of the models across all datasets, including both class-level and file-level 

metrics 

 

 

 
 

Figure 6. Showcases the boxplots illustrating the performance measures achieved by the proposed models on 

all datasets, encompassing both class-level, and file-level metrics 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 1, October 2023: 478-493 

488 

 

 
 

Figure 7. Represents the training and validation accuracy of the models across all datasets-class-level metrics 
 

 

 

 
 

Figure 8. Represents the training and validation loss of the models across all datasets-class-level metrics 
 

 

 

 
 

Figure 9. Represents the training and validation loss of the models across all datasets-file-level metrics 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improving the accuracy of recurrent neural networks models … (Nasraldeen Alnor Adam Khleel) 

489 

 
 

Figure 10. Represents the training and validation loss of the models across all datasets-file-level metrics 

 

 

 
 

Figure 11. Illustrates the ROC curves of the models across all datasets-class-level metrics 

 

 

 
 

Figure 12. Illustrates the ROC curves of the models across all datasets-file-level metrics 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 1, October 2023: 478-493 

490 

 
 

Figure 13. Illustrates the AUCPR of the models across all datasets-class-level metrics 

 

 

 
 

Figure 14. Illustrates the AUCPR of the models across all datasets-file-level metrics 

 

 

Figure 5 presents a graphical representation of the accuracy performance of the models across all 

datasets. Additionally, Figure 6 displays Box plots, which effectively depict a range of performance measures 

for all datasets. Figures 7 to 10 illustrate the accuracy and loss values of the models during the training and 

validation phases across all datasets. These figures demonstrate a consistent trend of increasing accuracy and 

decreasing loss as the number of epochs advances. The high accuracy achieved and the low loss obtained serve 

as evidence of the effective training and validation of the proposed models. The AUC values achieved by the 

models on both the original and balanced datasets are presented in Figures 11 and 12, respectively. 

Furthermore, Figures 13 and 14 display the AUCPR scores obtained by the models on the original and balanced 

datasets, respectively. 

After analyzing the outcomes of the proposed models, it was evident that they consistently achieved 

the highest scores across all datasets, underscoring their effectiveness in handling class imbalance. This notable 

performance validates the significance of employing undersampling methods to enhance the accuracy of RNN 

models in SBP. The success of the proposed models in addressing class imbalance further reinforces the 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improving the accuracy of recurrent neural networks models … (Nasraldeen Alnor Adam Khleel) 

491 

practicality and value of these techniques in mitigating the challenges posed by imbalanced datasets. The results 

of this study emphasize how undersampling methods have the potential to significantly enhance the 

performance of RNN models in SBP, presenting promising opportunities for more robust and reliable software 

defect detection strategies. These findings provide valuable insights into the effectiveness of undersampling 

techniques, paving the way for advancements in the field of bug prediction and fostering the development of 

more accurate and dependable bug detection systems. 

To answer RQ2, we performed a detailed comparison between our research results and the outcomes 

of previous studies, with a particular focus on accuracy and AUC metrics. The comprehensive findings, 

presented in Table 7, showed that while certain earlier studies displayed higher values, our proposed method 

surpassed other techniques on the majority of datasets. This indicates the superior performance of our approach 

and its potential to outperform existing methods in the context of SBP. By conducting this rigorous evaluation 

and providing empirical evidence, our study contributes valuable insights to the field and underscores the 

effectiveness of our novel approach in improving bug prediction accuracy. 

 

 

Table 7. Presents a comparison between the proposed method and other existing methods based on accuracy 

and AUC 
Methods Datasets Accuracy AUC 

LSTM [1] JIRA dataset 0.89 - 

Naive bayes [5] software fault datasets (DS1, DS2, and DS3) 0.89, 0.95, 0.95 - 

Decision tree [5] software fault datasets (DS1, DS2, and DS3) 0.95, 0.97, 0.99 - 

ANN [5] software fault datasets (DS1, DS2, and DS3) 0.93, 0.95, 0.96 - 

RNNs [9] PROMISE datasets (Camel, Lucene, Poi, Xerces, 

Jedit, Xalan, and Synapse) 

 

- 

0.79, 0.68, 0.79, 0.76, 

0.82, 0.67, 0.64 

Credibility-based 

imbalance boosting [13] 

NASA datasets (CM1, KC1, PC1, and JM1) - 0.72, 0.67, 0.85, 0.67 

LSTM [14] Bug report datasets (Eclipse platform UI and JDT) 0.67, 0.76 - 

GRU-LSTM [16] Code4Bench for C/C++code 0.69 - 

CNN and random forest 

with boosting [17] 

Bug report datasets (Mozilla, Eclipse, JBoss, 

OpenFOAM, and Firefox) 

0.94, 0.95, 0.94, 

0.98, 0.97 

- 

DNN [20] Unified bug dataset (bug drediction dataset, 

PROMISE dataset, and GitHub bug dataset) 

 

- 

 

0.81 

Our models (LSTM and 

GRU) 

Unified bug dataset_balanced dataset  

(class-level) 

0.93, 0.93 0.97, 0.96 

Our models (LSTM and 

GRU) 

Unified bug dataset_balanced dataset (file-level) 0.88, 0.88 0.93, 0.93 

 

 

8. CONCLUSION 

The process of software bug identification is one of the most common causes of wasted time and 

increased costs during the software lifecycle. Improving the quality and reliability of software systems can be 

achieved by detecting software bugs in the early stages of development. In the ever-changing software 

development landscape, ensuring precise bug prediction remains an indispensable factor in delivering 

dependable and top-notch software products. Embracing undersampling methods represents a pivotal stride 

towards realizing this objective, as they foster a balanced and unbiased training environment for RNNs. In this 

study, a novel method is introduced that combines LSTM and GRU with the undersampling technique to tackle 

the challenge of class imbalance and improve the accuracy of classifying defective or non-defective software 

modules. To validate the effectiveness of our models in predicting software bugs, we conducted a comparison 

using several performance measures. Python programming language with rich data science packages was 

chosen to implement the experiments. Using a public dataset is advised for ensuring the replicability, 

falsifiability, and verifiability of bug prediction models. Typically, public datasets that offer a wide range of 

metrics to explore are commonly utilized in bug prediction studies. Consequently, this study utilized combined 

datasets, comprising bugcatchers bug dataset, PROMISE, eclipse, bug prediction dataset, and GitHub bug 

dataset. The experimental findings indicated that our models exhibit promise and competitiveness, 

demonstrating the feasibility of utilizing RNNs in conjunction with sampling methods for SBP. We evaluated 

our proposed SBP method by comparing it with existing methods using various standard performance 

measures. The outcomes of the comparison indicate that the proposed method exhibits superior performance 

compared to the majority of existing state-of-the-art SBP methods across diverse datasets. Moving forward, 

our future work aims to evaluate the robustness of the proposed method on a wide range of datasets. 

Furthermore, we aspire to enhance the accuracy of SBP by incorporating additional ML techniques with various 

data-balancing methods. 

 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 1, October 2023: 478-493 

492 

ACKNOWLEDGEMENTS 

The authors express their sincere gratitude for the financial support extended to this study by the 

Institute of Information Science, Faculty of Mechanical Engineering and Informatics, University of Miskolc. 

 

 

REFERENCES 
[1] H. Bani-Salameh, M. Sallam, and B. A. shboul, “A deep-learning-based bug priority prediction using RNN-LSTM neural 

networks,” E-Informatica Software Engineering Journal, vol. 15, no. 1, pp. 29–45, 2021, doi: 10.37190/E-INF210102. 

[2] A. Majd, M. Vahidi-Asl, A. Khalilian, P. Poorsarvi-Tehrani, and H. Haghighi, “SLDeep: statement-level software defect prediction 

using deep-learning model on static code features,” Expert Systems with Applications, vol. 147, p. 113156, Jun. 2020, doi: 

10.1016/j.eswa.2019.113156. 

[3] H. Tong, B. Liu, and S. Wang, “Software defect prediction using stacked denoising autoencoders and two-stage ensemble learning,” 

Information and Software Technology, vol. 96, pp. 94–111, Apr. 2018, doi: 10.1016/j.infsof.2017.11.008. 

[4] J. A. Fadhil, K. T. Wei, and K. S. Na, “Artificial intelligence for software engineering: an initial review on software bug detection 

and prediction,” Journal of Computer Science, vol. 16, no. 12, pp. 1709–1717, Dec. 2020, doi: 10.3844/jcssp.2020.1709.1717. 

[5] A. Hammouri, M. Hammad, M. Alnabhan, and F. Alsarayrah, “Software bug prediction using machine learning approach,” 

International Journal of Advanced Computer Science and Applications, vol. 9, no. 2, pp. 78–83, 2018, doi: 

10.14569/IJACSA.2018.090212. 

[6] E. Öztürk, K. U. Birant, and D. Birant, “An ordinal classification approach for software bug prediction,” Dokuz Eylül Üniversitesi 

Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 21, no. 62, pp. 533–544, May 2019, doi: 10.21205/deufmd.2019216218. 

[7] S. K. Pandey, R. B. Mishra, and A. K. Tripathi, “BPDET: An effective software bug prediction model using deep representation 

and ensemble learning techniques,” Expert Systems with Applications, vol. 144, p. 113085, Apr. 2020, doi: 

10.1016/j.eswa.2019.113085. 

[8] M. Samir, M. El-Ramly, and A. Kamel, “Investigating the use of deep neural networks for software defect prediction,” in 

Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA, Nov. 2019, vol. 2019-

November, pp. 1–6, doi: 10.1109/AICCSA47632.2019.9035240. 

[9] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Software defect prediction via attention-based recurrent neural network,” Scientific 

Programming, vol. 2019, pp. 1–14, Apr. 2019, doi: 10.1155/2019/6230953. 

[10] Z. Yang and H. Qian, “Automated parameter tuning of artificial neural networks for software defect prediction,” in ACM 

International Conference Proceeding Series, Jun. 2018, pp. 203–209, doi: 10.1145/3239576.3239622. 

[11] R. Ferenc, P. Gyimesi, G. Gyimesi, Z. Tóth, and T. Gyimóthy, “An automatically created novel bug dataset and its validation in 

bug prediction,” Journal of Systems and Software, vol. 169, p. 110691, Nov. 2020, doi: 10.1016/j.jss.2020.110691. 

[12] X. Zhou and L. Lu, “Defect prediction via LSTM based on sequence and tree structure,” in Proceedings - 2020 IEEE 20th 

International Conference on Software Quality, Reliability, and Security, QRS 2020, Dec. 2020, pp. 366–373, doi: 

10.1109/QRS51102.2020.00055. 

[13] H. Tong, S. Wang, and G. Li, “Credibility based imbalance boosting method for software defect proneness prediction,” Applied 

Sciences (Switzerland), vol. 10, no. 22, pp. 1–29, Nov. 2020, doi: 10.3390/app10228059. 

[14] X. Ye, F. Fang, J. Wu, R. Bunescu, and C. Liu, “Bug report classification using LSTM architecture for more accurate software 

defect locating,” in Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018, Dec. 

2019, pp. 1438–1445, doi: 10.1109/ICMLA.2018.00234. 

[15] T. T. Khuat and M. H. Le, “Evaluation of sampling-based ensembles of classifiers on imbalanced data for software defect prediction 

problems,” SN Computer Science, vol. 1, no. 2, p. 108, Mar. 2020, doi: 10.1007/s42979-020-0119-4. 

[16] H. S. Munir, S. Ren, M. Mustafa, C. N. Siddique, and S. Qayyum, “Attention based GRU-LSTM for software defect prediction,” 

PLoS ONE, vol. 16, no. 3 March, p. e0247444, Mar. 2021, doi: 10.1371/journal.pone.0247444. 

[17] A. Kukkar, R. Mohana, A. Nayyar, J. Kim, B. G. Kang, and N. Chilamkurti, “A novel deep-learning-based bug severity 

classification technique using convolutional neural networks and random forest with boosting,” Sensors (Switzerland), vol. 19, no. 

13, p. 2964, Jul. 2019, doi: 10.3390/s19132964. 

[18] N. A. A. Khleel and K. Nehez, “Comprehensive study on machine learning techniques for software bug prediction,” International 

Journal of Advanced Computer Science and Applications, vol. 12, no. 8. pp. 726–735, 2021, doi: 10.14569/IJACSA.2021.0120884. 

[19] H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: a semantic LSTM model for software defect prediction,” IEEE Access, vol. 7, pp. 

83812–83824, 2019, doi: 10.1109/ACCESS.2019.2925313. 

[20] R. Ferenc, D. Bán, T. Grósz, and T. Gyimóthy, “Deep learning in static, metric-based bug prediction,” Array, vol. 6, p. 100021, Jul. 

2020, doi: 10.1016/j.array.2020.100021. 

[21] Y. Verma, “Complete guide to bidirectional LSTM (with python codes),” Analytics India Magazine Pvt Ltd., 2021, [Online]. 

Available: https://analyticsindiamag.com/complete-guide-to-bidirectional-lstm-with-python-codes/. 

[22] M. Z. Ansari, T. Ahmad, M. M. S. Beg, and F. Ahmad, “Hindi to English transliteration using multilayer gated recurrent units,” 

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 27, no. 2, pp. 1083–1090, Aug. 2022, doi: 

10.11591/ijeecs.v27.i2.pp1083-1090. 

[23] N. A. A. Khleel and K. Nehéz, “A novel approach for software defect prediction using CNN and GRU based on SMOTE Tomek 

method,” Journal of Intelligent Information Systems, vol. 60, no. 3, pp. 673–707, Jun. 2023, doi: 10.1007/s10844-023-00793-1. 

[24] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, “A public unified bug dataset for Java,” in ACM International Conference 

Proceeding Series, Oct. 2018, pp. 12–21, doi: 10.1145/3273934.3273936. 

[25] M. W. Thant and N. T. T. Aung, “Software defect prediction using hybrid approach,” 2019 International Conference on Advanced 

Information Technologies, ICAIT 2019, pp. 262–267, 2019, doi: 10.1109/AITC.2019.8921374. 

[26] T. A. Assegie, R. L. Tulasi, V. Elanangai, and N. K. Kumar, “Exploring the performance of feature selection method using breast 

cancer dataset,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 25, no. 1, pp. 232–237, Jan. 

2022, doi: 10.11591/ijeecs.v25.i1.pp232-237. 

[27] S. Sharma and S. Kumar, “Analysis of ensemble models for aging related bug prediction in software systems,” in ICSOFT 2018 - 

Proceedings of the 13th International Conference on Software Technologies, 2019, pp. 256–263, doi: 10.5220/0006847702560263. 

[28] N. A. A. Khleel and K. Nehéz, “Deep convolutional neural network model for bad code smells detection based on oversampling 

method,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 26, no. 3, pp. 1725–1735, Jun. 2022, 

doi: 10.11591/ijeecs.v26.i3.pp1725-1735. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improving the accuracy of recurrent neural networks models … (Nasraldeen Alnor Adam Khleel) 

493 

 

[29] T. T. Khuat and M. H. Le, “Ensemble learning for software fault prediction problem with imbalanced data,” International Journal 

of Electrical and Computer Engineering (IJEECS), vol. 9, no. 4, pp. 3241–3246, Aug. 2019, doi: 10.11591/ijece.v9i4.pp3241-3246. 

[30] N. M. Mqadi, N. Naicker, and T. Adeliyi, “Solving misclassification of the credit card imbalance problem using near miss,” 

Mathematical Problems in Engineering, vol. 2021, pp. 1–16, Jul. 2021, doi: 10.1155/2021/7194728. 

 

 
BIOGRAPHIES OF AUTHORS 

 

 

Nasraldeen Alnor Adam Khleel     received a B.Sc. degree in Information 

Systems from the University of Kassala, Kassala-Sudan, in 2011. He got an M.Sc. degree in 

Software Engineering at Khartoum University, Khartoum-Sudan, in 2015. He is currently 

pursuing a Ph.D. at the University of Miskolc under the Faculty of Mechanical Engineering 

and Informatics, Miskolc-Hungary, since 2019. His primary research interests include 

Artificial Intelligence and Software Engineering. He can be contacted by email: 

nasr.alnor@uni-miskolc.hu. 

 

 

Károly Nehéz     received an M.Sc. degree in mechanical engineering from the 

University of Miskolc, Hungary, in 1997 and a Ph.D. degree in software engineering in 2003. 

He currently works as an associate professor at the Institute of Computer Science, head of 

the institute since 2019. His primary research interest is software engineering, although he 

has concurrent research in machine learning and artificial intelligence. He can be contacted 

by email: aitnehez@uni-miskolc.hu. 

 

https://orcid.org/0000-0003-1093-8732
https://orcid.org/0000-0002-6953-3898

