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 Defective modules that cause software execution failures are common in large 

software projects. Source code for a significant number of modules may be 

found in several software repositories. This software repository includes each 
module’s software metrics and the module’s faulty status. Software 

companies face a considerable problem detecting defects in sizeable and 

complex programming code. In addition, many international reports, such as 

the comprehensive human appraisal for originating (CHAOS) report, have 
mentioned that there are countless reasons for the failure of software projects, 

including the inability to detect errors and defects in the programming code of 

those projects at an early stage. This research employs a statistical analysis 

technique to reveal the characteristics that indicate the faulty status of software 
modules. It is recommended that statistical analysis models derived from the 

retrieved information be merged with existing project metrics and bug data to 

improve prediction. When all algorithms are merged with weighted votes, the 

results indicate enhanced prediction abilities. The proposed statistical analysis 

outperforms the state-of-the-art method (association rule, decision tree, Naive 

Bayes, and neural network) in terms of accuracy by 9.1%, 10.3%, 13.1%, and 

13.1%, respectively. 
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1. INTRODUCTION 

Using statistical analysis makes it possible to unearth many previously unknown software 

characteristics [1]. This procedure includes a long-standing interest in the success of software projects, 

assistance with software testing management, and the discovery of fault patterns [2], [3]. The program’s quality 

is considered by the estimation and prediction approaches for software problems [4]. In addition, they are used 

after the product has been delivered to estimate the effort and expenditure associated with maintenance [5]. 

Maintainability is heavily influenced by software design metrics [6]. 

There is a clear relationship between software quality and process maturity [7]. Many studies [8], [9] 

have stressed the need for inspections, especially requirements and design inspections, to limit faults’ density. 

During the coding phase, the number of defect densities decreased exponentially because faults were corrected 

as soon as they were identified and did not propagate to further stages of the process. However, because the 

code review process is labour-intensive, this peer review-based inspection technique becomes prohibitively 

expensive and unsustainable throughout the coding phase: it is possible to evaluate 8–20 LOC every minute, 

and this effort is repeated for each review team member.  

The ability to predict, at the code level, which modules are most likely to encounter issues can assist 

in determining which ones require costly code reviews, inspections, and testing. Nevertheless, it is imperative 
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to exercise caution when utilizing this prediction method in order to avoid perpetuating the issue [9]. Ensuring 

that all parts of a system are accessible is crucial to prevent errors from being overlooked. To achieve this, 

various suggested static code measure-based fault detectors have been proposed. This approach is particularly 

relevant in software assessment, where certain regions are deemed mission-critical and require special  

attention [10]. 

In order to create and verify static defect models for several software projects or different versions of 

the same project, empirical data from software repositories has been collected and analysed [11]. Examples of 

such efforts include the NASA data sets available online [12], comprising five massive software projects, 

including hundreds of modules and five large software projects. For each set, the static measurements and other 

factors are mentioned and discussed in the first paragraph of the introduction. The data points represent 

statistical measures and a binary variable indicating whether or not the module is malfunctioning [13].  

The primary emphasis of static measurements generated from source code is on identifying whether 

or not a module is problematic to model the causes of faulty modules [14]. Statistical analysis approaches are 

applied when identifying patterns indicating modules likely to fail [15]. Support vector machine (SVM) based 

service-oriented architecture and expert constructive cost model (COCOMO)-based service-oriented 

architecture are two other possibilities [16], [17]. Many studies from the literature review used NASA’s 

projects [16], [17]. The data sets are arranged in descending order of module size. The bigger the number of 

modules, the better the forecast performance. Using these data, practitioners may develop a set of criteria for 

defect prediction that they can use in their work. For example, observations by some researchers [18], [19] 

revealed poor pre-prediction performance, which might be improved by following the suggestions. As things 

stand, these criteria have not been implemented into an existing software system or integrated with compilers, 

allowing developers to guarantee that they are followed, and code is written in a way that decreases the 

probability of defective modules being generated.  

It is difficult, if not impossible, to compare techniques when there is no standard for defect prediction 

[20], [21] giving a publicly accessible data set of numerous software systems and a comprehensive comparison 

between well-known bug prediction methodologies, such as a regression model. The experimental method tried 

[22] to develop a process for evaluating software defect classification models and showed no significant 

performance variations among the top 17 classifiers. Moreover, this study sought [23] to provide an 

examination of several software defect models. In order to compare a broad variety of machine learning 

approaches [24], the PROMISE data sets are used. Unfortunately, predictive power was not a clear winner in 

this comparison, and no obvious winner emerged.  

In general, the three issues described above may be summarised as follows: to begin, project managers 

and quality teams need realistic software tools that can be used to predict which new software modules will be 

problematic based on data from publicly available software repositories. This facet allows them to allocate 

their testing and debugging resources properly. Furthermore, these tools should use and integrate a variety of 

statistical analysis methodologies and compare and contrast the results to address the problem of predicting 

defective modules in software projects since there is no definite finding of the most effective statistical analysis 

methodology at this time.  

The contributions made by this study are noteworthy for two reasons. First, software repositories may 

be employed to enhance software development, and this architecture provides the framework for doing so. It 

has already been mentioned that many references converted the software measurements into rules and 

knowledge that experienced developers may apply to their code. A software architecture that can be 

implemented and integrated with compilers is required to use this extracted knowledge to warn less experienced 

members of the software development team of potentially defective modules and allow the project manager to 

allocate more resources to these potentially defective modules. Second, more accurate results may be achieved 

when statistical analysis methods are used with bug-tracking databases and metrics derived from software 

source code. As a bonus, it provides an objective baseline for comparing the results of various statistical 

analysis algorithms for predicting faulty modules. Throughout this benchmark, the input dataset, the percentage 

of the training dataset, and the feature selection approach are all identical. In this study, it is advised that 

accuracy and error ratio rate values be combined to improve the prediction of software defects. 

According to the following structure, the remainder of this paper will be: concerning extracting 

software fault models, section 2 analyses relevant work and emphasises the most significant techniques. 

Section 3 explains the research approach followed. Metrics, architecture, data gathering methods, and statistical 

analysis techniques are all part of this. Section 4 presents the scientific steps to building regression models. 

Section 5 presents the architecture solution to reveal defects in programming code. The results of using 

statistical analysis technologies on various projects are shown in section 6. Analysis and debate are given in 

detail. The paper comes to a close in section 7. 
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2. RELATED WORKS 

Software defects are defined as a deficiency or problem that arises from utilising a software product 

that causes it to operate abnormally. Identifying and prioritising flaws has been the subject of various studies, 

including practical ones [25]. The ten best techniques (e.g., neural network and regression models) for reducing 

flaws were outlined in the programming code [26].  

Defects may be seen as actual and visible progress before a new software modification is released to 

the public, whether the change is buggy or clean [27]. According to technical reports in software companies 

and following the Pareto principle, around 80% of the problems originate from 20% of the modules. In contrast, 

the other half of the modules are defect-free. Software defects cause operational failures. The more errors there 

are, the worse it becomes [28]. Faults during program execution may be discovered and corrected using the 

systemically performed unit and system tests. However, defects will inevitably be found once the program has 

been implemented. The cost of defect repair during operation is far higher than that of defect repair during 

development or testing. Factors of cost growth vary from 5 to 100 [29].  

As a result of a vast number of issues that have been reported throughout time, models are employed 

in software development to predict how many defects may arise in the future. When using these dynamic 

models, the independent variable is the number of faults discovered during the early phases of the development 

process. These models, which estimate the total number of defects and the distribution of those problems over 

time, are referred to as defect prediction and estimation models [30]. Dynamic models are used to track the 

progress of issues after they have been identified. If a considerable number of faults exist in an application in 

development, they may result in difficulties in the final product that need a comprehensive investigation. This 

statistic is critical in determining whether a piece of software is suitable for consumer distribution. An older 

overview of these investigations, which is accessible online, may be found [31].  

The Rayleigh and related curves are used in dynamic defect models [30], [31]. By beginning with the 

Rayleigh distribution, it demonstrated that the preceding assumption was no longer valid and argued for the 

use of a linear combination of Rayleigh curves to better fit the facts [30]. As discovered by the researchers 

[31], using COQUALMO software estimating models aided in properly allocating labour to satisfy quality 

objectives.  

“Static defect models” are models for predicting faults in a software product or project based on the 

features and data collected about the product or project (i.e., measurements of software products) [25]. Software 

quality may be assessed by a range of parameters, including complexity, lines of code, volume, and  

size [21], [22]. Complexity, lines of code, volume, and size are only a few examples. As researchers [24] point 

out, many software metrics and statistical models rely primarily on size and complexity measures in order to 

predict and prevent issues. Their favoured approach for forecasting software defects was Bayesian belief 

networks (BBNs). Many researchers have subsequently utilised and improved Bayesian networks [28], [32]. 

A commercial software program that makes use of BBNs was shown. A framework for making software defect 

prediction was described [32] in order to assist project managers and act as a roadmap for future research into 

defect prediction.  

Several types of defect model studies have been conducted, including regression models [19], [20], 

statistical models [11], [12], and machine learning-based models [17], [18]. To mention a few examples: 

artificial intelligence includes a variety of techniques such as neural networks and rule induction. A range of 

tactics is used in order to better predict unclear or missing data [28]. Regression and metric-based technologies, 

among other things, are examples of static models [19], [30]. With the help of the static analysis and dynamic 

instrumentation phases in SUDS, users may develop tools that take advantage of both paradigms [19], allowing 

them to construct dynamic bug detection tools.  

It is possible to compensate for the lack of data on numerous parameters by employing approximation 

data sets [12], [13]. Researchers have [33] built many models that make use of (easily measurable qualities) in 

order to properly forecast the traits that are harder to measure. For example, to determine the most efficient 

mathematical models for a certain kind of software system or a given task, such as maintenance.  

Models for defect detection are affected by noise. Using moving averages and exponential smoothing 

algorithms produces defect-occurrence predictions that are poorer than those obtained by just utilising the 

original data [22]. Researchers have [28] confirmed the presence of time-dependent variability in the accuracy 

of a bug prediction model.  

The references show that the software defect prediction issue has two unresolved difficulties. This 

juncture is an excellent place to start with statistical models used to turn the available software repositories into 

knowledge and recommendations for the software development team. With the use of compilers and bug-

tracking tools, the development team will be notified of any potentially problematic modules as soon as they 

are discovered. Second, the use of single detector models is not expected to lead to reliable predictions, 

according to this theory. To solve the issue of predicting malfunctioning software modules, a software system 

that incorporates several statistical analysis algorithms and compares them is needed. 
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3. METHOD 

According to this new proposal, defects in software projects may be predicted using a statistical 

model. This section outlines a statistical model that may be used to anticipate software faults. Figure 1 depicts 

the suggested model’s detailed stages, which are as follows:  

i) Comprehensive literature searches for measurements, data sources, and mathematical and computational 

methodologies that may be used to anticipate software project failures at the field’s cutting edge.  

ii) The NASA data sets are accessed online, and the data is retrieved. For each of these reasons, we decided 

to use NASA data. Firstly, gathering large amounts of data from software businesses to identify software 

project flaws is difficult. Because of its enormous and high-quality data, NASA is the second choice. 

Software projects may benefit greatly from including static measurements and other factors in their 

testing. There is also a binary variable that indicates whether the module is broken.  

iii) In the pre-processing stage, it is vital to examine the data thoroughly and, if necessary, data transformation 

to correctly reveal the data’s valuable substance. Outlier removal, discretisation, handling missing values, 

a reduction in the number of variables, and/or a reduction in dimensionality are all techniques that may 

be used (adopting regression models). 

iv) Normalisation aims to convert dataset features to be on an identical scale. This step enhances the rendering 

and training constancy of the model (adopting the z-score method). 

v) Feature selection: in order to determine the most critical metrics and faults that will be utilised in the 

upcoming IST investigation, logistic regression and multivariate linear regression are employed. Make a 

logistic-to-multiple-linear regression mapping in order to obtain the final list of critical indicators that 

may be used to predict software project failures.  

vi) Build a statistical model (training stage) for anticipating software project flaws based on multiple linear 

and logistic regression, respectively.  

vii) Statistical model for testing and verification: it should be run over the whole dataset to determine whether 

the model accurately predicts software faults. It will also use various metrics such as accuracy, precision, 

recall, F1 measure, and the error rate to assess logistic and MLR and compare them to select the optimal 

one.  

viii) In the final stage, generate software defects report to help stakeholders in the software development field 

determine flaws in the software projects before delivering it to the clients finally, in order to save money, 

effort, and time to repair those defects that appear in the software after they are finally delivered. 

 

 

 
 

Figure 1. A proposed statistical model for detecting defects in software projects 

 

 

4. THE PROPOSED ALGORITHMS OF STATISTICAL ANALYSIS 

This section introduces two algorithms that are widely used in statistical analysis. These algorithms 

are binary logistic regression (BLR) and multiple linear regression (MLR). BLR is a technique that models the 

probability of a definite outcome, while MLR models the relationship between one dependent variable and 

multiple independent variables. Both algorithms have their strengths and weaknesses, and their selection 

depends on the nature of the problem and the data. The following sections will provide a detailed explanation 

of each algorithm and its application in different scenarios. 
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4.1.  Algorithm of binary logistic regression 

This part presents a BLR approach for finding the critical defect variables that impact software 

projects. The standard error (SE), the pseudo-R-squared (PRS), and the P-value (PV) are all crucial statistics 

in BLR. The SE is used to assess the accuracy of a sample distribution of the population [7]. The logistic 

regression model’s power is shown via the usage of PRS [29]. Also, it determines the ratio of the effects of the 

independent factors on the dependent variable. A PV ratio shows an independent variable’s impact on the 

dependent variable statistically. According to the following explanation, it is also a number between 0 and 1. 

The model rejects the null hypothesis if the PV is greater than 0.05 to put it in another method. Steps 3 to 14 

represent the parameters of the BLR model. Steps 15 to 21 represent the construction of our model based on 

obtaining a little SE to ensure its accuracy. Steps 22 to 35 represent the evaluation of the proposed model based 

on PRS and PV. Finally, the final list of factors influencing software project defects has been selected. The 

following are the stages in the Algorithm 1, we have come up with:  

 

 

4.2.  Multiple linear regression algorithm  

This section offers a MLR analysis approach to detect the most crucial failure variables affecting agile 

software development initiatives. The SE, R-squared (RS), adjusted R-squared (ARS), and PV were introduced 

by multiple regression analysis. The SE first assesses the equation’s ability to match the specimen data. The 

dependent variable’s units of measurement are crucial. Regression coefficients RS measure the model’s 

predictive power. ARS is a reworked version of RS that considers the model’s additional predictors. Only if 

the innovative words improve the model more than expected do they increase in value. A predictor’s impact 

Algorithm 1. BLR is an algorithm for identifying critical defects in software projects 
1. Input: Input: σ (the dependent variable degree to which software project fault variables have an impact) 

                     x (independent variables Factors contributing to software project defects)    

2. Output: β (list of the most common causes of software project defects) 

3. BLR = Binary Logistic Regression 

4. n = sample size 

5. M full = model with predictors 

6. M intercept = model without predictors 

7. L(M) = estimated likelihood 

8. Ȃ = sample proportion 

9. A0 = Null hypothesis: percentage of the total population  

10. Fi = the prediction value 

11. Ý = the mean of Yi  

12. SE = Standard Error 

13. PRS = Pseudo R- Square 

14. PV = P-value 

15. Construct the BLR model based on the group of α and σ 

16. Start with random weights and biases: wi, wn, b 

17. For every point (x1, x2, ….., xn): do 

18.         For i = 1, 2, ……., n do 

19.         Update 𝑤𝑖
′́    new weights 

20.         Update �́�      new biases 
21. Repeat until the error is small 

22. Evaluate BLR Model 

23. Calculate the value of PRS. PRS is formulated as follows: 

24.  

                   PRS = 1 - {
𝐿(M full)

M intercept 
}2/n           

 

25. If (PRS is small) 

26.      Change the explanatory defect factors 

27.      Go to step 15  

28. Else 

29.       Approve BLR Model 

30. End If 

31. Calculate the value of PV. PV is formulated as follows: 

32.  

                   PV = 
Ȃ−A0

√
𝐴0(1−𝐴0)

𝑛

                         

 

33. If (PV > 0.05) 

34.       Refuse the other defect factors 

35. Else   

36.          Approve β 

37. End If 

38. Return β 
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on a model falls if it boosts it less than expected. It’s always lower than the RS, of course. The significance of 

statistical findings may be assessed with the use of PV.  

One may think of it as something in the range of 0 to 1, and one can explain it like this: the null 

hypothesis is strongly refuted by a low PV (usually 0.05). We may conclude that the null hypothesis is false 

from the statistical data. Steps 3 to 14 represent the parameters of the MLR model. Step 15 represents the 

construction of our model based on the dependent variable and independent variables. Steps 16 to 31 represent 

the evaluation of the proposed model based on ARS and PV. Finally, the final list of factors influencing 

software project defects has been selected. The following are the stages in the algorithm we have developed. 

The Algorithm 2 stages are as follows:  

 

Algorithm 2. MLR is an algorithm for identifying critical defects in software projects 
1. Input: Input: σ  (the dependent variable degree to which software project fault variables have an impact) 

              x  (independent variables Factors contributing to software project defects)    

2. Output: β (list of the most common causes of software project defects)   

3. MLR = Multiple linear regression 

4. SSR = Sum of Squares Regression 

5. SST = Sum of Squares Total  

6. n = The Number of Data Points 

7. Fi = the prediction value  

8. Yi = the true value 

9. Ý = the mean of Yi  

10. SSR = ∑𝐢(𝐅𝐢 − Ý) 2 
11. SST = ∑𝐢(𝐘𝐢 − Ý) 2 
12. SE = Standard Error 
13. ARS = Adjusted R- Squared 
14. PV = P-value 
15. Build the MLR model based on the set of α and σ  
16. Estimate the MLR model  
17. Check the value of SE. SE is calculated as follows:     

                               

                                SE = √
𝑆𝑆𝑅

𝑛−2
  

 

18. Check the value of RS. RS is calculated as follows: 
 

                                RS = 1- 
𝑆𝑆𝑅

𝑆𝑆𝑇
 

 

19. Check the value of ARS. ARS is calculated as follows:   
        

                                        ARS = 1- 
𝑆𝑆𝑅/(𝑛−𝑘−1)

𝑆𝑆𝑇/(𝑛−1)
 

 

20. If (ARS < 0.5) 
21.      Change the explanation of software defect factors 
22.      Go to step 15  
23. Else 
24.       Approve MLR Model 
25. End If 
26. Check PV for each variable to determine β 
27. If (PV < 0.05) 
28.       Approve β 
29. Else   

30.          Refuse the other failure factors 
31. End If 

Return β   

 

 

5. SOLUTION ARCHITECTURE  

The proposed solution architecture is displayed in Figure 2. The repository data and software metrics 

are directed to statistical analysis techniques. The user should determine which software projects to include in 

the statistical analysis process and which to eliminate, based on their propinquity to the software project to be 

forecast. Two statistical techniques are launched, such as multiple linear and logistic regression. When the 

existing project development lifecycle begins, the source code in this project is estimated by the metrics 

estimator and directed with the bug tracking data to the predictor statistical analysis techniques. The outputs of 

applying the statistical analysis to the existing project data to forecast which modules are prospective to be 

faulted are directed to the development group. In addition, these faulted modules are passed to the programmer 

to fix them accurately. Finally, the programmer should deliver the software projects without any defects to 

save effort, team, money, and time. 
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Figure 2. Solution architecture stage to detect defects in programming code 

 

 

6. PERFORMANCE CRITERIA 

The accuracy and SE rate are used to assess the performance of various statistical analysis models, as 

shown in (1) and (2) [9]. 

 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 

Error Rate = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (2) 

 

where: 

TP=correctly identified data 

TN=correctly rejected data 

FP=incorrectly identified data 

FN=incorrectly rejected data 

 

 

7. RESULTS AND DISCUSSION 

7.1.  Multiple linear regression 

We are undertaking research to determine which features may be beneficial in preventing software 

projects from failing. In this experiment, which uses MLR analyses, there are many independent variables 

(defect factors in software projects) and one dependent variable (the degree to which those factors affect the 

grade of those factors in software projects). In (3) [28] may be used to explain the MLR analysis in more detail:  

 

Y = β0 + β1x1 + β2x2 + ⋯ . + β11x11 + ε (3) 

 

where: 

Y: is the degree of effecting the defeat factors in software projects  

β0: is the y-intercept  

βi: is the regression coefficient  

Xi: critical failure factors  

ε: the random error term 

A series of stages was used to carry out the application of the model in question. The requested data 

is broken down into dependent and independent variables as a starting point. In addition, it comprises 70% 

training and 30% testing data. The suggested model assumes a strong linear connection between the dependent 

and independent variables, and ARS is utilised to check this assumption. After that, the proposed model’s 

quality is improved by L2 regularization.  

This section offers a flowchart for discovering the essential aspects that affect software projects using 

MLR and LR analysis. Figure 3 depicts the suggested model’s flowchart. The SE, RS, ARS, and PV were 

introduced in MLR and LR analysis (PV). SE supplies a first assessment of the equation’s suitability for the 

data. The dependent variable’s units of measure rely on it. RS shows the regression model’s explanatory power. 

ARS is a reworked version of RS that considers the model’s additional predictors. When relative terms 
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encourage the model more than would be anticipated, it rises to the surface. Predictors that promote the model 

less than predicted are less likely to have an impact on the model’s accuracy. It is always lower than the RS, 

of course. MLR and LR have an ARS of 0.78. The significance of the statistical findings may be established 

by using PV.  

 

 

 
 

Figure 3. The proposed scientific steps for the MLR and LR model 

 

 

According to the following formula, its value ranges from 0 to 1. Powerful evidence against the null 

hypothesis may be shown by the modest PV (usually less than 0.05). The statistical findings rule out the null 

hypothesis, the final list of critical factors that impact software projects in MLR, as shown in Table 1.  

Accuracy, SE, and the model-based premier list of software defect factors (PLSDF) are given in 

Figures 4 and 5 for the MLR model based on critical defect factors (CDF). Two models have been created, 

which are MLR-PLSDF and MLR-CDF, and compared in terms of accuracy and SE rate. In addition, the 

accuracy in MLR-PLSDF and MLR-CDF is 0.79 and 0.82, respectively. Moreover, the SE rate in those models 

is 0.28 and 0.26, respectively. Therefore, the MLR-CDF model outperforms the MLR-PLSDF model in terms 

of accuracy and SE rate. 
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Table 1. The final list of critical factors that impact software projects in MLR 
No Factor ID  P-value 

1 loc ✓ 0 

2 v(g)  ✓ 0 

3 ev(g)  X 0.4341 

4 iv X 0.0537 

5 n ✓ 0 

6 v X 0.4804 

7 l X 0.2107 

8 d ✓ 0.0002 

9 i ✓ 0.0075 

10 e X 0.9454 

11 b X 0.7833 

12 t X 0.9454 

13 IOCode ✓ 0 

14 IOComment ✓ 0.0461 

15 IOBlank X 0.0809 

16 locCodeAndComment      X 0.0667 

17 Column1op ✓ 0 

18 Column2opnd X 0.2169 

19 Column1totalopnd ✓ 0.0001 

20 Column1totalop ✓ 0.0003 

21 Column1branch ✓ 0 

 

 

  
 

Figure 4. The comparison between MLR-CDF 

model and MLR-PLSDF in terms of accuracy 

 

Figure 5. The comparison of the MLR-CDF model 

and MLR-PLSDF in terms of SE ratio 
 

 

7.2.  Logistic regression 

During our experiment, we want to demonstrate the effectiveness of our suggested method. Logistic 

regression is used to carry out the strategy’s implementation. The suggested model is implemented via a series 

of pre-processing processes. Defect factors in software projects are broken down into two different variables, 

one of which will be used as a dependent variable: the degree to which these factors affect the project. It is 

likewise divided into 70% training data and 30% test data. Third, the dependent variable was transformed from 

having two possible values (true or false) into just having two possible values (true or false) (0:1). For the 

fourth time, the independent variables were all set to range from 0 to 1. in this case, let’s suppose that (as 

indicated in (4)) [28]. 

 

Xnew =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥𝑋𝑚𝑖𝑛
 (4) 

 

Logistic regression was used to identify the most important types of defects that have the greatest 

effect on software projects. It may be done in two ways. The first technique is based on software projects’ LR-

CDFs (logistic regression-critical defect factors). The second model is based on a list of the most common 

causes of software failure (LR-PLSDF). Because of this stable connection, the PLSDF approach may be used 

to analyse a wide range of software projects, even those with a relatively small number of defect factors  

in (5) [28]. Here is a breakdown of the P LR-CDFs:  

 

P =
1

1+𝑒−(β0 + β1x1 + β2x2 + …..+ β13x13) (5) 
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where: 

P=degree of effecting defect factors in software projects 

β0=P-intercept 

βi=regression coefficient  

Xi=LR-CDF 

There are critical statistical findings, as shown in Table 2. There are two significant findings in this 

article (ARS and PV). The ARS value is now 0.86. The PV highlights the main characteristics that impact the 

detection of flaws in software projects, as shown in Table 2. A degree must have a PV of more than 0.05 to be 

considered statistically insignificant. According to the PV of (v(g)=0.5970), this feature should be rejected 

since it is more than 0.05. In order to choose defect factors, those characteristics having a value level (PV less 

than 0.05) would be referred to as elects. 
 

 

Table 2. The final list of critical factors that impact software projects in LR 
No Factor ID  P-value 

1 loc ✓ 0.0000 

2 v(g)  X 0.5970 

3 ev(g)  ✓ 0.0267 

4 iv ✓ 0.0447 

5 n X 0.1740 

6 v X 0.6973 

7 l ✓ 0.0003 

8 d ✓ 0.0072 

9 i ✓ 0.0084 

10 e X 0.9994 

11 b X 0.7338 

12 t X 0.9995 

13 IOCode ✓ 0.0001 

14 IOComment ✓ 0.0047 

15 IOBlank ✓ 0.0111 

16 locCodeAndComment      X 0.0747 

17 Column1op ✓ 0.0032 

18 Column2opnd ✓ 0.0000 

19 Column1totalopnd ✓ 0.0016 

20 Column1totalop ✓ 0.0437 

21 Column1branch X 0.1599 

 

 

Two models have been created, LR-PLSDF and LR-CDF, and compared in terms of accuracy and SE 

rate. In addition, accuracy in LR-PLSDF and LR-CDF is 0.83 and 0.86, respectively. Moreover, the SE rate in 

those models is 0.25 and 0.22, respectively. Therefore, the LR-CDF model outperforms the LR-PLSDF model 

in terms of accuracy and SE rate, as shown in Figures 6 and 7. The comparison between the proposed statistical 

models in terms of accuracy and SE ratio is in Figures 8 and 9. In addition, these figures indicate that the LR-

CDF model outperforms MLR-PLSDF, MLR-CDF, and LR-PLSDF inaccuracy by 7%, 4%, and 3%, 

respectively, and the SE rate by 6%, 4%, and 3% respectively. 
 
 

  
 

Figure 6. The comparison between a model of 

LR-CDF and a model of LR-PLSDF for accuracy 

 

Figure 7. The comparison between a model of LR-

CDF and a model of LR-PLSDF to SE ratio 
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Figure 8. The accuracy comparison of all proposed 

statistical model 

 

Figure 9. The SE ratio comparison of all proposed 

statistical model 
 

 

It is demonstrated in Figure 10 that the LR-CDF model beats the state-of-the-art in prior studies in 

terms of accuracy. Sharma and Chandra [18] research, the LR-CDF model surpasses the intelligence 

approaches (association rule, decision tree, Naive Bayes, and neural network) in terms of accuracy by 9.1%, 

10.3%, 13.1%, and 13.1%, respectively.  
 

 

 
 

Figure 10. The comparison between the proposed model and the state-of-the-art method 

 

 

8. CONCLUSION 

Three important topics were addressed in our study, and they are as follows: to begin, we looked at 

the factors that influence the occurrence of errors throughout the software development process. Second, we 

concentrated on identifying the production procedures utilised in the case under consideration. The next stage 

was to determine the criteria for evaluating the techniques. Statistical and intelligent ways to uncover defects 

in software projects, which is this article’s focus, have room for improvement. A statistical model was used to 

construct an altogether new method to predict defects in software projects, which is described in detail below.  

This study demonstrated that some components have the greatest influence on finding software flaws. 

These four methodologies are utilised for statistical analysis: MLR-CDF, MLR-PLSDF, LR-CDF, and LR-

PLSDF. In terms of accuracy and SE, it is evident that LR-CDF outperforms all the previous techniques that 

have been proposed. The LR-CDF outperforms existing techniques in terms of accuracy by 9.1%, 10.3%, 

13.1%, and 13.1%, respectively, compared to the current approaches (association rule, decision tree, Naive 

Bayes, and neural network). The research presented in this study is limited to scientific articles published up 

to 2020, and does not account for new and innovative approaches that may be incorporated in 2021 and 2022. 

However, it is important to note that more intelligent approaches may lead to more accurate discovery of defects 

in diverse software projects. As a prospect for future research, it is suggested to investigate various approaches 

to enhance model accuracy and identify crucial factors that indicate defects in software projects. This direction 

of research would offer valuable insights into the optimization of software development processes and the 

improvement of overall software quality. These recent research trends, such as long short-term memory, 

convolution neural networks, and deep forests, have been found to improve the accuracy of research aimed at 

enhancing the proposed model and state-of-the-art method in previous works. This study proposes processing 

revealed defects in software projects using optimisation and deep learning techniques.  
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