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 Human activities are dependent on energy and lifestyles that important 

provide services on a daily basis. Currently, polluting and energy consumption 

worldwide is dominated by sources non-renewable, for instance fossil fuels. 

Due to their environmental impact, research and investment have increased in 

alternative and renewable energy sources, such as photovoltaic and wind 

energy. Buildings use energy management systems to monitor real-time 

consumption and plan the operation of appliances so that the energy bill is 

minimized or based on other factors. The purpose of energy management 

systems in buildings is mainly to monitor real-time energy consumption and 

adjust the device's operation to minimize energy bills or achieve another 

specific goal. The purpose of this work is review the latest literature on energy 

management systems based on heuristic learning of buildings in the smart 

home. In addition, the literature has been updated a list of techniques that 

managed appliances and the planning goals and how use these techniques to 

in the energy scheduling. 
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1. INTRODUCTION  

During certain times of the day, high power consumption can be stressful for the distribution network 

[1]. To reduce electrical energy costs, a home energy management system controls electricity consumption [2]. 

It is possible to increase the balance between supply and demand using energy management systems (EMS). 

EMS are required to guide the flow of energy as smart grids (SGs) when more than one energy source is present 

in the grid [3]. The main challenge for EMS is improving its cost-effectiveness through secure and reliable 

communications, multi-agent systems can be developed that are hybridized with optimization algorithms, 

based on metaheuristics, in order to achieve energy management that meets a wide range of objectives and 

constraints [4], [5]. Energy management schemes, such as renewable energy sources (RES) management, 

battery management, and management, have been developed using different of optimization and programming 

methods [6]. Machine learning (ML) models are essential for predictive modeling of production, consumption, 

and demand in EMS because of their accuracy, efficiency, and speed [7], [8].  

Furthermore, ML models can also be used to understand how energy systems function in complex 

human interactions [9]. In smart grids, information and communication technology (ICT) used ICT in points 

of generation to consumers [10]. More importantly integral the part of the SG, they can contribute to balancing 

production, consumption, and distribution, automatically, as shown in Figure 1, comparison of four load-
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forecasting models [11]. In this paper, in order to reduce electricity costs, we will used some techniques in 

heuristic learning to find the best pattern of energy consumption.  

 

 

 
 

Figure 1. The concept of smart grid (SG) [11] 

 

 

2. ENERGY MANAGEMENT SYSTEM 

An EMS in a smart building includes internet of things (IoT) and artificial intelligence (AI) 

technologies that improve comfort, safety, health, and energy efficiency in buildings [12]. EMS is important of 

generation management in distributed power, especially in energy renewable sources such as hydro, solar and 

wind [13]. In addition, individual households also become participants in the production of their own electricity 

through local (micro) solar and wind energy systems, as shown in Figure 2 [14]. However, "when power 

generation exceeds local demand, the resulting surplus can be used to charge local batteries, for subsequent 

domestic use, or inject into the grid with a given profit" [15]. 

 

 

 
 

Figure 2. EMS in general [14] 
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2.1.  EMS components (EMSC) 

The following components make up the basic architecture of an EMS (Figure 2) [16]:  

- Capture detailed energy consumption of individual devices and other information related to human 

activity using sensors and measuring devices. 

- Smart appliances: consists of typical household appliances (such as dishwashers, refrigerators, or air 

conditioners) with computing and communication capabilities. Power generation equipment such as 

photovoltaic (PV) panels and wind turbines are also considered. Smart devices communicate with a 

central platform that manages all measurement data and coordinates device usage. 

- User interface: "A device that allows residents to interact with emergency services. The interface can be 

used to display information such as current consumption or energy costs, and to set occupant preferences, 

including equipment priority, comfort parameters or planning goals".  

- Central platform: designed to manage and optimize energy consumption. It receiving from smart meter 

information and applies scheduling mechanisms that calculated by optimization methods, assuming 

specific performance metrics.  

In EMS, sensors continuously collect information about household activities. Typically, consumption 

signals are collected from individual devices, although decomposition techniques such as non-intrusive load 

monitoring (NILM) can being applied to extract consumption from individual devices [17]. 

 

 

3. MANAGEMENT IN BUILDINGS (MiB) 

Energy efficiency and reduction cost can achieved in two main ways [18]; first by reducing overall 

energy consumption or by second shifting the operation of certain equipment with self-generation and off-peak 

electricity prices [19]. This can be categorized as a decrease in consumption or a change in consumption. 

Reducing consumption as said [20] refers to reducing overall energy use, usually by increasing consumer 

awareness, turning off equipment that is not in use, purchasing energy-efficient equipment, or improving 

buildings and building designs. The Table 1 shows a survey of management in buildings and related work on 

EMS. 
 

 

Table 1. A survey of previous and related work on EMS  
Authors Objective 

[21] It discusses the key concepts of demand-side management (DSM) schemes in relation to consumer demand management. 

DSM schemes under different categories and DSM based on home energy management are also discussed along with DSM 

performance metrics, optimization goals, and solution methodology. 
[22] It provides a complete overview of cyber-attack vectors in traditional and intelligent measurement networks, as well as 

common defense and mitigation strategies to adapt to these types of events. 

[23] An overview of home energy management systems (HEMSs) "is presented, including operational goals and strategies to 
achieve them, appliance management", decision uncertainties, and performance metrics for HEMSs. 

[24] Described as a system that shares or exchanges energy between alternative energy sources as well as providing loads under 

all conditions necessary for an efficient electricity grid operation, a comprehensive energy management system integrates 
not just sharing and exchanging energy, but also providing safe, secure, and effective loads. 

This 

work 

It presents energy managements system using heuristic learning to ensure the distribution of energy to the buildings as well 

as the cost that led to reducing the bill. 

 

 

4. PARAMETER TUNING (PT) 

Performance optimization of ML forecasting methods is achieved by optimizing the model parameters 

[25]. A model's parameters are related to its training approach and the characteristics that can be altered to 

improve goal matching accuracy (minimizing the error between the fitted and actual goals) [26]. A non-convex 

optimization problem can lead to an estimation of the minimum optimal parameters rather than global 

parameters if an inappropriate optimization approach is chosen for training the ML forecasting system. ML 

models are commonly optimized using descent gradient algorithms [27]. The following section reviews some 

of the parameter optimization applications of ML models used to predict renewable energies are used two 

algorithms swarm-based optimization algorithm and an evolutionary optimization algorithm. 

 

4.1.  Tuning ML parameters using evolutionary optimization (TMLuEO) 

To approximate the optimal solution, minimize evolutionary optimization techniques use a population 

of solutions [28]. In their working mechanism, these techniques mimic biological evolution. Evolutionary 

optimization approaches determine solutions by reproducing, mutationing, recombinating, and selecting [29]. 

Because there are no specific assumptions about fitness performance. Evolutionary optimization has therefore 

become a research focus and has attracted the attention of researchers [30]. 
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4.2.  Tuning ML parameters using swarm optimization (TMLuSO) 

General minimization inspired by the natural motion of biological congestion, a congestion-based 

optimization system consists of locally interacting factors [31]. By following simple rules, the agent finds the 

best solution from a set of possible solutions in a given search space [32]. Density-based meta-innovations 

have been used to optimize performance and outcomes in a variety of engineering, medical, military, and 

commercial applications [33]. 

 

 

5. LITERATURE REVIEW AND RELATED WORK (LRaRW) 

5.1.  Prediction (P) 

In fact, using optimization algorithms in energy planning should be supported by a suitable forecasting 

system [34], for example, in SGs and large micro-grids, prediction accuracy can be achieved by using large 

amounts of historical data on locally distributed generation and loads associated with microgrids such as 

photovoltaics (PV) and wind turbines [35]. This makes it possible to use statistical methods to calculate the 

optimal scheduling of the day ahead, which in real time using a centralized EMS, the acceptance of non-optimal 

solutions due to forecasting errors is applied [36]. However, day-to-day planning of small microgrids, 

especially for residential use, smart homes (SHs) or monolithic buildings, can be dangerous due to the high 

random behavior of local and load production [37]. To circumvent this problem, mathematically programmed 

EMS are often equipped with appropriate prediction systems that can work with alternative optimization 

methods, possibly in multi-stage designs [38]. 

 

5.2.  Scheduling (S) 

To improve efficiency in energy for residents, EMS monitors consumption and coordinates equipment 

operations [39]. In this way can be achieved by reducing consumption or changing consumption, the latter 

being more popular in residential construction. Changes in consumption depend on optimal planning of timing 

technology and appliance performance [40]. The equipment can be managed, planning criteria, operational 

constraints, and planning techniques must be considered before accepting and deploying them in real-world 

scenarios. Optimizing load management, potential storage, and ultimately energy exchange with the grid is 

possible via prediction of local loads and renewable energy production [41]. 

The home appliance-scheduling problem in Table 2 can be solved by a variety of techniques, many of 

which are based on the common goals of minimizing carbon emissions and cost. To improve energy 

consumption through load scheduling, a variety of methods and techniques have been proposed [48]. There are 

two types of methodologies: mathematical optimization, appliance scheduling [49], [50]. 

 

 

Table 2. EMS techniques used in buildings 
Authors Techniques Objective 

Chen et al. [42] Home Energy Management (HEM) Cost reduction, Peak to average ratio (PAR) 
Bayram and Ustun [43] HEM Cost minimizing, PAR  

Hu and Xiao [44] GA Cost reduction, PAR reduction 
Yang and Shami [45] GA Cost reduction, PAR, UC  

Li et al. [46] ACO Cost reduction, PAR reduction 

Tian et al. [47] EMC PAR reduction, Cost minimizing 
This work HL Cost minimizing and scheduling appliances. 

 

 

5.2.1. Mathematical and heuristic (MaH) 

Mathematical optimization methods are computationally intensive for large problems [51]. Because 

mathematical optimization relies on high-level procedures to find good solutions, it is less accurate than 

heuristic and meta-heuristic approaches [52]. Those algorithms are especially attractive for problems in which 

finding a good solution is usually easier than finding a non-optimal solution [53]. Examples include genetic 

algorithms, swarm intelligence algorithms, particle swarm optimizations (PSOs), Tabu Search algorithms [54]. 

 

5.2.2. Scheduling appliance (AS) 

The use of supervised training can teach artificial neural networks to solve scheduling problems [55]. 

It is usually the feed architectures that are chosen among artificial neural network (ANN) topologies, and inputs 

such as demands and production forecasts in time of every day, and occupation information are taken into 

account. Multiple devices can be managed simultaneously using two strategies. Using one approach, one ANN 

is trained for each device, while using another approach; one ANN is trained for multiple devices [55]. 
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6. OPTIMIZATION (O) 

In EMS, optimization methods are mainly divided into mathematical programming, computational 

intelligence and hybrid techniques. The optimization of the performance that achieved through optimizing, the 

model parameters to EMS based on heuristic learning. In Table 3, a group of meta-heuristic techniques used in 

the energy management system [56]. 

 

 

Table 3. Literature review of using a heuristic algorithm in EMS 
Author's Meta-heuristic Objective Advantage Disadvantage 

Liemthong et al. [57] Ant colony 
optimization (ACO) 

Operating cost 
reduced 

To schedule smart appliances 
optimally to attain our desired 

objectives 

High computational 
time, difficult real-

time implementation 

Hassan et al. [58] Artificial bee 
Colony (ABC) 

Operating cost of 
MG reduced 

Robust population-based 
algorithm, easy to implement. 

Adequate convergence speed. 

Complex process. 

Ghiasi et al. [59] Binary particle 

swarm optimization 

algorithm (BPSO)  

Techniques to 

minimize cost 

Operating 

EMSs using to reduce the 

electricity bill in residential 

building and Minimization of 

carbon emissions 

Difficult real-time 

implementation  

Chamandoust et al. [60] Genetic Algorithm 

(GA) 

The operation, the 

cost of emissions 

have minimized 
and increased 

commercial profit 

Scalable population-based 

algorithms including operations 

such as crossing, mutation and 
selection at find the optimal 

solution. Convergence at the 
right speed. Widely used in 

many fields. 

It is necessary to 

define crossing and 

mutation parameters, 
as well as population 

parameters and 
stopping criteria. 

Dwijendra et al. [61] Greedy algorithm Operating cost of 
MG reduced 

Solve schedule problem is 
considered to schedule multi-

energy systems in the microgrid 

to satisfy the electricity load. 

Don’t solve problem 
deal with the large 

state. 

Albogamy et al. [62] Particle swarm 

algorithm 

Reduces the MG 

operating cost 

Derivative-free, simple in 

implementation, required 

limited inputs 

High computational 

time, difficult real-

time implementation 
Sarker et al. [63] Tabu search VPP operating 

cost reduced 

Require less computational 

time 

Verification of the 

optimality of the result 

requires other methods 
such as branching and 

binding 

This Work Genetic algorithm, 
Harmony, Swarm 

algorithm. 

Reduces cost 
energy 

Use Multi-objective to solve 
predication and scheduling of 

used energy. 

High computational 
time and complex 

process. 

 

 

7. CONCLUSION  

EMSs can monitor household electricity consumption at the home level in real time. These systems 

add "smart" functionality to traditional homes and play on active role in a new grid. This survey provides an 

in-depth review of EMSs based on heuristic learning, including goals and strategies to achieve goals, as well 

as appliance management, uncertainty in level HEMs decision-making, and performance indicators. 

Furthermore, this work presents the reader with current challenges facing these systems, namely in terms of 

resource energy management consumption, dynamic scheduling in this approach of dual distributed energy 

sources, and consumer clusters, one of these challenges is how to predict energy use based on weather 

information and schedule it for home appliances so that it is sufficient for use. Energy prediction based on deep 

learning is used by some researchers, while scheduling based on deep learning is used by others, but both 

techniques aren't used in smart homes. After reviewing the literature and previous work, we find that most 

researchers use single-objective algorithms, but the recommended to use a hybrid (multi-objective) system to 

tune the parameters between them and to achieve the goal of predict energy consumption through weather 

information and reduce electricity bills through appliance scheduling, and reduce carbon emissions in the 

environment. 
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