
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 31, No. 2, August 2023, pp. 1118~1127

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v31.i2.pp1118-1127  1118

Journal homepage: http://ijeecs.iaescore.com

A literature review for measuring maintainability of code clone

Shahbaa I. Khaleel, Ghassan Khaleel Al-Khatouni
Department of Software, College of Computer Science and Mathematics, The University of Mosul, Mosul, Iraq

Article Info ABSTRACT

Article history:

Received Nov 26, 2022

Revised Mar 23, 2023

Accepted Apr 2, 2023

 Software organizations face constant pressure due to stakeholder requirements

and the increasing complexity of software systems. This complexity, combined

with defects in code quality and failures, can pose risks to software systems. To

ensure code is understood before maintenance, developers must spend over 60%

of their time modifying and improving code quality, which is costly. This study

examines the impact of code refactoring activities on software maintainability

and quality by reviewing relevant research and explaining key terms. The

research finds that refactoring activities can enhance specific quality

characteristics, including maintainability, understandability, and testability. The

study also identifies important factors that should be considered when

developing refactoring tools. Refactoring enables code improvement without

altering program behavior and can be applied multiple times to source code.

Keywords:

Code clone

Cyclomatic complexity

Maintainability

Maintainability index

Refactoring This is an open access article under the CC BY-SA license.

Corresponding Author:

Shahbaa I. Khaleel

Department of Software, College of Computer Science and Mathematics, The University of Mosul

Mosul, Iraq

Email: shahbaaibrkh@uomosul.edu.iq

1. INTRODUCTION

The success of software is closely tied to its quality, which is influenced by two categories of traits

[1]: internal and external. Internal characteristics, such as cohesion class, are typically measured from within

the software, while external attributes, such as maintenance, are indirectly measured. A major external quality

trait and a source of concern in software engineering is software maintainability, which refers to the ease with

which a software component can be modified to correct errors, improve performance, adapt to a changing

environment, or make other adjustments. The maintainability of software is determined by various factors

related to software modification, including correction, improvement, adaptation, and prevention [2].

The issue of code cloning, which involves copying and pasting code segments, can have a negative

impact on software quality, particularly with regards to maintainability. As software expands, code cloning can

occur unintentionally, resulting in repeated code throughout the source code [3]. This repetition is also known

as software code or code clones, which can lead to challenges in software maintenance, including increased

costs and difficulty working with the software [4]. To address these issues, it is important to identify and

address code cloning early on in software development. This can be done by using tools to remove code clones,

followed by refactoring and comparing the software before and after these changes are made [5].

2. MAINTAINABILITY

Maintainability refers to how easy or difficult it is to modify a software system and is a key aspect of

software quality. It encompasses any changes made to the software after installation or release, such as fixing

errors or adding new features [3]. The quality of the source code is a major factor in determining

maintainability, and the term "maintainability" is commonly used to describe the quality of software [6].

However, measuring maintainability can be challenging and is often tied to the cost of maintenance [7].

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A literature review for measuring maintainability of code clone (Shahbaa I. Khaleel)

1119

Software systems with poor maintainability may require more costly maintenance work. Overall,

maintainability is best understood as the ease with which software can be modified, corrected, and updated,

and it is important from the moment the software is delivered to customers [8]. Software maintenance is a

critical component of the software development lifecycle and can account for up to 80% of the total costs

associated with software development. Therefore, ensuring that software is maintainable is crucial. Code

cloning can result in larger code sizes, which can hinder software maintenance. Additionally, code cloning can

lead to the creation of unnecessary or dead code, which can further complicate software maintenance [9], [10].

3. MEASURING MAINTAINABILITY

Measuring maintainability involves identifying metrics that capture the key characteristics of

maintenance programs and then quantifying them. In traditional software development practices, developers

use code standards to identify and address challenging areas of the system. This often involves refactoring code

to improve maintainability. To better assess maintainability and measure it in the early stages of development,

it would be useful to establish a set of metrics that can evaluate maintainability effectively [11].

During the software development process, maintainability is a crucial quality that is frequently

evaluated. One common way to assess maintainability is through the use of the maintainability index, a

statistical measure that produces a numerical score representing the overall maintainability of the system. The

maintainability index relies on three metrics: cyclomatic complexity, lines of code, and halstead metrics. These

measures are used to determine how maintainable the system is and to identify areas that may need

improvement [12], [13] . Knowing the maintenance of the program helps in [14] :

− Determine whether the current software and any parts of them will reused.

− Decide on maintenance or redevelopment of the components of programs.

− Estimating or guessing the amount of effort made in the maintenance of the components of programs.

− Determine the costs and criteria for admission for software.

− Providing evaluation data for reuse warehouses.

− Providing or preserving a large part of the total cost of software ownership.

4. CODE CLONE

"Code clones" refer to two or more identical or similar parts of source code. Copying or reproducing code

is a common practice in the software industry, as it allows developers to reuse existing code and resources. However,

the proliferation of code clones can create maintenance problems that are time-consuming and costly to address [15].

Code clones can be classified into two basic categories: syntactic clones, which are based on the structure of the code

(first, second, and third types), and semantic clones, which based on the functionality of the code (fourth type) [16].

− The first type: It is parts of identical software code except for white distances and comments .

− The second type: It is the clips of the code similar to each other but they have slight changes in the name,

such as renaming identifiers or variables, which are also referred to as the renamed clones.

− The third type clones or near-miss clones: It is parts of the similar code modified in addition or deletions

to the code .

− The fourth type: It is one of the semantic clones, and it is these cloned code that perform a similar function,

but it may have a different syntactic structure.

The process of cloning software involves writing code once and then reusing it in different parts of

the program with some modifications to fit the needs of each version. This practice can save time and resources.

However, inconsistencies in the cloned code can lead to the emergence of bugs or weaknesses in the system,

which can further contribute to the deterioration of the software design [17].

5. CODE CLONE DETECTION TECHNIQUES

In software development and maintenance, detecting cloned codes is essential. To minimize software

repetition, reduce maintenance costs, and enhance program productivity, various techniques are used, each with its

unique characteristics and benefits. These techniques can be categorized into six methods [18]–[20]: text-based,

token-based, tree-based, graph-based, metrics-based, and hybrid techniques. The text-based technique involves

treating the original source code as a text composed of lines or sequential words and comparing two texts or sections

to identify similarities in lines. Hash comparison algorithms are used to calculate hashes for each line, and cloned

codes are detected by comparing the hashes. In the token-based technique, the source code is converted into

sequential segments, and lexical rules specific to the programming language are used to represent each line of code

[21]. The tree-based technique involves representing the source code as an abstract syntax tree and comparing parts

of the tree using algorithms to detect code clones [22]. The graph-based technique creates a program dependency

graph (PDG) that contains information about the flow of data and control in the software and is considered the most

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 2, August 2023: 1118-1127

1120

efficient in detecting code clones [23], [24]. Metrics-based techniques involve combining several code metrics to

detect clones, while hybrid techniques combine more than one of the aforementioned techniques to detect code

clones. Finally, the hybrid technique combines two or more of the aforementioned techniques to detect clones and

find cloned code. Developers can choose the most suitable technique based on the type of code and the level of

similarity detection required [25]-[28]. All these techniques are explained in Table 1 that shows features, weaknes

and all attributes that related to them [29]. As for the sixth type, which is the last, it depends on the techniques used.

Table 1. Explains the comparison between the techniques of detecting cloned code

No
Technology

name
Features Weaknesses

Execution

Time
The type of clones

discovered
Accuracy

1 Text-based Easily implementation
The fourth type cannot be

discovered
short 1,2,3 High

2
Token-

based
expands easier

The fourth type cannot be

discovered
short 1,2,3 High

3 AST-based
Contains more information

about software

Difficulty in composition

(AST)
short 1,2,3,4 High

4 PDG-based Discover all types of clones
Difficulty in establishing

(PDG)
long 1,2,3,4 High

5
Metric-

based
Discover all types of clones

Difficulty implementing

measure
long 1,2,3,4 High

6. REFACTORING
The main goal of identifying duplicated codes is to eliminate them from the system via refactoring,

which enhances the quality of the system [27]. Refactoring is a crucial criterion for evaluating code quality, and

it involves adjusting the internal structure of a software component to make it more comprehensible and

modifiable without altering the overall functionality of the software. This method is utilized to enhance code

quality by directly measuring software metrics, indirectly measuring software quality attributes, and improving

software performance [30]. Refactoring is a technique that developers typically employ throughout the software's

lifecycle and evolution, with the goal of improving software quality attributes [31]. The aim of refactoring is to

modify the internal structure of software components to make them more straightforward to comprehend and modify

without affecting their external behavior [32]. It entails reducing the cost of code maintenance by employing a variety

of strategies, such as extracting, moving methods, fields, or classes [33]. The refactoring process includes many of

the following steps, which are used to enhance and measure the code's quality [34], as depicted in Figure 1.

Figure 1. Explains the steps refactoring process in terms of code quality

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A literature review for measuring maintainability of code clone (Shahbaa I. Khaleel)

1121

First: It defines the code that needs to be refactoring. Second: Choosing one of the refactoring methods

or techniques to be used. Third: Ensure that the refactoring methods that have been used maintain the behavior

of the programs after refactoring. Fourth: the application of specific refactoring techniques. Fifth: Assessing

the impact of refactoring techniques on software quality. Sixth: Maintaining congruence between the

refactoring software and the design of other software.

7. REFACTORING TECHNIQUES

The main objective of refactoring is to modify the internal structure of the components of the software

in this a manner easily understandability and adjustable without any change in external behavior, and this is an

effective way to make a change in an old system without compromising the functionality of the system from

the external side. Refactoring can significantly reduce the number of errors. This also contributes to improved

internal structure, readability, maintainability, and reduced complexity [32]. Software systems naturally need

to evolve. Studies have shown that over a period of time, maintenance is very costly, sometimes consuming up

to 90% of total software spending [35]. Using code refactoring techniques is an effective way to maintain

software quality without increasing maintenance costs. There are some refactoring concepts like (bad smells)

where "Bad Smells" refers to design flaws in the code. These are considered problems in the code and can be

removed and resolved using refactoring [36] . Refactoring techniques are used to remove "Bad Smells" and

clean up the code with refactoring. The research offers dozens of techniques for refactoring the code. Fowler

identified 72 techniques for refactoring [32], of which 10 are mentioned in Table 2, namely:

− Duplicate observed data.

− Replace type code with subclass.

− Replace conditional with polymorphism.

− Extract subclass.

− Extract interface.

− Form template method.

− Introduce null objects.

− Push down method.

− Introduce local extension.

− Replace type code with state/strategy.

Table 2. Refactoring techniques overview
Author Study of a case Intern al metrics Extern al metrics Technique

Kataoka et al. [37] C + + program Cohesion Maintain ability Extraction method, class extraction

Stroulia and

Kapoor [38]
Academy/theory Size, coupling De sign expansion

Super class extraction, Ab stract

class extraction

Leitch and

Stroulia [39]

Academy/

Commercial

size of the code and

number of actions

Maintenance efforts and

costs

Extraction method and

transportation method

Tahvildari and

Kontogiannis [40]

Four open-source

applications

Cohesion, coupling,

Inheritance, and

Complexity

maintainability Code transformations

Bois and Mens

[41]

Free and open-

source software
Cohesion, coupling -------

Method extraction, method transfer,

method replacement, method object,

data value ob ject replacement, class

extraction

Moser et al. [42] Industrial proj ect
CK, L OC, FOUT,

effect Metrics
Outcomes (LOC) -------

Alshayeb [43]
3 small open -

sourced projects

CK, LO C, FO UT

Metrics

Ability to adapt,

maintenance,

understanding, re -

usability, and testability

Class extraction, field encapsulation,

subclass extraction, class move,

extraction method, temporary

replace with query

Sahraoui et al.

[44]
C + + pro gram

Inheritance,

coupling
Exposure to errors

Super class extraction, subclass

extraction, and full class extraction

Tahvildari et al.

[45]

Both the industrial

project and the

open library are in

C.

Halstead effort,

LOC, number of

comment lines per

unit

Maintain ability and

performance
Pattern design

Kumari and Saha

[46]

The code is open

source.

Cohesion, coupling

and Inheritance

Ability to adapt,

maintenance,

understanding, re -

usability, and testability,

stability and

completeness

Hide return value, safe delete and

overwrite constructor

Hide the return value, delete safely,

and overwrite the constructor

By observing the above table, it is clear that the process of refactoring software directly affects the internal

and external measures of software quality. The quality of the technique used in conducting the refactoring process

has a major and direct role on the type of measures affected by it. Therefore, when choosing a refactoring technique,

care must be taken so that it is taken advantage of and does not negatively affect the quality of the software .

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 2, August 2023: 1118-1127

1122

8. CHARACTERISTICS OF SOFTWARE QUALITY

The quality model in ISO 9126 is its division of internal and external software product quality

concepts into 6 main attributes which are further subdivided into quality sub-attributes. This division is shown

in Figure 2 [47]. The focus is on maintainability, which is divided into :

− Analyzability: How simple or hard it is to detect system flaws or define components that need modification .

− Changeability: How simple or complicated it is to make changes to the system .

− Stability: How simple or hard it is to maintain the system's consistency throughout adjustment .

− Testability: How simple or hard it is to test a system after it has been modified .

Figure 2. Explains the concepts the quality of internal, external software

9. RELATED RESEARCH

This section provides an in-depth analysis of research conducted on software maintainability and how

code refactoring can enhance code quality. Additionally, it investigates the impact of software refactoring on

both the internal and external aspects of software. The results of these studies highlight the significance of code

refactoring as a beneficial technique in software development.

9.1. Related research to maintainability

Najm [48] introduced a practical implementation of the maintainability index (MI) using a new, simple

and efficient method compared to the traditional method. To find MI in relation to LOC only. To validate the

method was developed the maintainability index (MMIS) software, which finds first MI in relation to (LOC, CC,

HV) and secondly finds MI in relation to LOC only. The study showed that using the MI calculation method that

only considers LOC tended to produce more maintainable software, whereas the method that takes into account

(LOC, HV, CC) was more challenging to maintain. However, it is important to note that this research only

evaluated the maintainability of the software tool used for calculating MI, not the software code itself .

Bal and Sood [7] presented a study on cloning management (code cloning) where various aspects of

cloning management were discussed in the form of approaches, metrics, tools and techniques. The relationship

between code cloning, software reliability and maintainability of the software was explained, leading to the

following results: Modules involving code cloning are 1.7 times more reliable than non-cloned modules. Units

or modules with larger code clones are less maintainability than units with smaller code clones .

Ashtaputre et al. [49] presented an approach in 2016 that takes source code as input to identify code

clones and determine which cloned codes can be refactored without compromising software behavior. This

method has the advantage of addressing system defects and has a lower or nearly negligible computational cost .

wang and colleagues [50] developed a machine learning approach called CREC that automatically identifies

refactoring and non-refactoring code sets in software repositories and trains models to suggest cloning for

refactoring. Interestingly, they found that features derived from previous versions of the software were more

successful in this process compared to those from the current version, implying that developers tend to consider

past development more than the present when refactoring software. This finding emphasizes the significance

of taking into account historical versions of software in making refactoring decisions, according to the authors .

Biase et al. [51] introduced the delta maintainability model (DMM), a novel method for assessing

code maintainability by adapting and extending the SIG maintainability model. The DMM focuses on

measuring precise code modifications and categorizes modified lines of code into low- and high-risk categories.

The primary objectives of the DMM are twofold: to generate high-quality and actionable grades for code

maintainability, and to rank and compare maintainability based on exact changes while also quantifying the

percentage of low-risk code lines .

Devi et al. [3] developed a regression-based model to evaluate the maintainability of cloned and

refactored code, exploring the correlation between the two factors. The researchers utilized CCFinder to

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A literature review for measuring maintainability of code clone (Shahbaa I. Khaleel)

1123

identify code clones and categorize them into Type I and II, as well as measured clone classes based on file

sizes, copy group dimensions, and line-based metrics. Various metrics were applied to each code clone,

yielding different results. Ultimately, the authors concluded that while some code clones could be easily

maintained through refactoring, others showed little to no improvement even after extensive reworking.

Sood and Bal [17] evaluated the maintenance index and compliance metrics for a software

maintenance case study. They used two different tools, namely Analyze and CppDepend, to calculate the

maintenance index and compliance values, respectively. The researchers conducted a case study of the C++

program "DECEIVER" to explore the relationship between maintenance index and compliance calculations in

reproducing the software code. The findings indicated that imbalanced or inconsistent compliance values could

negatively impact the software design or architecture .

Draz [30] conducted a study to evaluate the impact of code quality refactoring by measuring several

internal and external quality characteristics of the code. Their findings showed that after refactoring, the

internal quality characteristics such as inheritance, complexity, cohesion, and coupling had improved

positively, except for the size metric. Additionally, the external quality characteristics, including reusability,

maintainability, understanding, and efficiency, showed improvement in code quality, except for performance,

which had a negative effect .

9.2. Related research to the quality of code

Shahjahan et al. [52] conducted a study to explore how graph theory techniques could be utilized to

improve code attributes. Refactoring was identified as a method to improve code quality without modifying its

internal or external behavior, while also improving response time, analytical capabilities, and the time required

to make changes. Bavota et al. [53] conducted a study where they used the RefFinder2 tool to detect refactoring

and measure development time for 3 open-source projects. The study aimed to investigate the correlation

between refactoring and program quality. The results showed that 42% of the refactoring process was

influenced by code smell, and only 7% of the refactored elements were successful in removing code smell.

Kadar et al. [54] put forward the idea to examine code refactoring as a means of creating an open

dataset that would be necessary for utilizing software code metrics and refactoring techniques across various

versions of seven systems. Through the use of refactoring methods, the authors aimed to analyze the quality

features of duplicate source code classes, as well as the effectiveness of updating source code metrics. The

study also investigated how to achieve the refactoring effect on source code metrics and the correlation between

maintenance and refactoring techniques. To achieve this, the authors proposed a dataset that encompasses

information on refactoring, as well as over 50 software code metrics, for 37 versions of seven open-source

programs at both the class and action levels .

Ouni et al. [55] suggested a multistandard refactoring approach wherein refactoring is performed

simultaneously using various automated methods. The study revealed that the results of the refactoring had a

beneficial effect on cyclomatic complexity. Cedrim et al. [56] conducted a study that involved analyzing 25

projects in order to assess improvements in software quality. Their analysis focused on the connection between

code smells and code refactoring, specifically identifying instances where bad structures were added or

removed from the code. The results of their study showed that only a small percentage of refactoring involved

the removal of software smell (2.24%), while an even smaller percentage involved the addition of smell

(2.66%) .

Kaur and Singh [57] conducted a study to analyze software and maintain different versions of the

codebase for a project. They utilized a tool called "ref-finder" to identify refactoring opportunities and assess

the impact of previous versions on the current one. The code maintainability index was used to measure the

code metrics for each update, and new functionality was introduced along with improved refactoring methods

to better measure code metrics. Finally, the most recent version was compared to the previous revision to

evaluate the outcomes.

Chavez et al. [58] conducted a study to assess the impact of refactoring on the internal quality of

software, using 25 quality metrics to evaluate 5 specific features: cohesion, complexity, inheritance, coupling,

and size. The findings of the study suggest that refactoring techniques can improve internal quality

characteristics without introducing any negative effects. Although 55% of refactoring processes resulted in

improvements, there was only a 10% decrease in quality. This indicates that refactoring is generally effective

in enhancing software quality.

Vashisht et al. [59] conducted an empirical study to examine the impact of copy refactoring on

software products, using four different open-source tools. Their findings revealed that the refactoring process

led to a decrease in the software's complexity, while enhancing its functionality, reusability, and certain quality

attributes. However, other quality characteristics such as effectiveness, scalability, understandability, and

flexibility were diminished. The study suggests that refactoring techniques can have either positive or negative

effects on software quality characteristics .

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 2, August 2023: 1118-1127

1124

Pantiuchina et al. [60] conducted an empirical study to explore the relationship between seven

software code metrics and quality improvement. Their research showed that not all metrics related to quality

had a significant impact on the efforts of developers to improve quality. Additionally, they found that

refactoring had minimal impact on software quality .

Alawairdhi [32] investigated the impact of code refactoring on quality attributes(external, internal)

like performance, maintainability, efficiency, and code lines next refactoring, 6 internal and 4 external quality

metrics were quantified for each component. The findings indicate that refactoring had a powerful effect on

parts of the internal quality. Yet, the impact of refactoring code on external quality was little.

Alomar et al. [61] developed a research design study based on 8 features for internal quality, also 27

metrics to assess the relationship between software metrics and quality improvement The findings indicate

enhancement and deterioration of quality. Many of the metrics used to enhance quality attributes (coupling,

complexity, and cohesion) provide ideas for improving quality for developers. Kiyak [62] utilized data mining

and refactoring even though refactoring automated not provide the required performance; the manual

refactoring process takes a long time through algorithms for unsupervised learning that decrease the numeral

of refactoring choices and had a positive impact on quality. Increases code readability and source code

maintainability; reduces the complexity of the software system .

Fernandes et al. [63] conducted a study analyzing 23 software projects that underwent 29,000

refactoring measures, nearly half of which involved re-refactoring. The study aimed to understand the impact

of refactoring and re-refactoring on five factors: cohesion, complexity, coupling, inheritance, and size, using

both illustrative analysis and statistical studies. The findings indicate that 90% of refactoring and 100% of re-

refactoring were performed on code components with only one required feature . Table 3 shows a summary of

previous studies related to software refactoring and its impact on code quality, and the researchers' findings.

Table 3. Shows a summary of previous studies with code quality and software quality
Author year Methodology result

Shahjahan et

al. [52]
2015

Using graphic the ory techniques. refactoring code is

a method of beneficent quality with out affecting its

external and intern al behavior.

The response time has been improved, to

analyzability, changeability, and improve

the quality of the code.

Bavota et al.

[53]
2015

used the RefFinder2 tool and this not only to detect

re factoring but also to record development time for

three open-source projects.

The study showed that 42% of the Code Smell

was affected. there 7% of the components, the

refactoring was able to delet code smell.

Ouni et al. [55] 2016
Multi-standard refactoring as structurally was

automatically repeated using different techniques.

refactoring had a positive impact on

software cyclomatic complexity, according

to the findings.

Cedrim et al.

[56]
2016

Presented an analysis included 25 project to verify

quality improvement. They investigate the

relationship between code smell and code

refactoring. of code to identify refactoring based on

adding or removing bad structures to the code.

According to the findings, only 2.24% of

refactoring was removed from software

smell, while 2.66% was added.

Chavez et al.

[58]
2017

Presented a validation of using 25 quality metrics,

we looked into the effect of refactoring on five

aspects of quality (cohesion, coupling, complexity,

inheritance, and size).

The study shows that refactoring processes

Internal quality attributes should be

enhanced, not aggravated.

Vashisht et al.

[59]
2018

Through an empirical analysis, they investigated the

impact of copy refactoring on soft ware quality

using four different open-source software.

It turns out that refactoring methods have a

positive or negative impact on the

characteristics of quality.

Pantiuchina et

al. [60]
2018

Applying an experimental study to verify the

relationship between seven measures of software

codes and quality improvement .

They discovered that refactoring changes

had little impact on software quality.

Alawairdh [32] 2019

Investigate the impact of re factoring the code on

internal, external quality properties such as maintain

ability, execution, efficiency and code lines.

Re factoring had a major impact the internal

quality of the application. Like complexity.

Alomar et al.

[61]
2019

Developed an exploratory research study to evaluate

the relationship between quality improvement and

software metrics based on (8) internal quality

characteristics and (27) metrics.

The findings that there are numerous

measures available to improve and degrade

program quality.

Kiyak [62] 2020

Utilized data mining and refactoring even though

refactoring automated not provide the required

performance; the manual refactoring process takes a

long time through algorithms for unsupervised learning

that decrease the number of refactoring choices.

The software quality improved because of

the restructuring. Reduces the complexity

of the software system by improving

readability and maintainability.

Fernandes et

al. [63]
2020

Used 23 software systems for more than 29,000

refactoring actions, about half of them a refactored

in order to understand the effect of re factoring and

re-refactoring.

According to this study, 90% of re factoring

and 100% of re-re factoring are performed

on code segments that have one required

characteristic.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A literature review for measuring maintainability of code clone (Shahbaa I. Khaleel)

1125

The Table 3 briefly shows all relevant conclusions about whether code refactoring has a positive effect

on program quality. Most research has focused on internal or external quality traits. Nor has anyone provided

coverage of both quality attributes and the effect of large-scale refactoring on all quality attributes. Most

research focuses on measuring the effect of software refactoring on quality characteristics. On the other hand,

previous research has shown that re-engineering improves software quality. Increases code readability and

maintainability while reducing system complexity. It was concluded from previous works that in order to obtain

high quality, all quality characteristics must be taken into account and their importance in improving the quality

of the program when restructuring it.

10. CONCLUSIONS

Refactoring is activities that increase the quality of software and allow software engineers to repair

software code that is difficult to maintain. There are many methods and tools for the application of restructuring

activities. The method or tool chosen depends on the nature of the program. In this study, some terms were

explained review studies for previous and relevant research that identifies code refactoring activities and their

impact on software maintainability. It also examines their impact on software quality characteristics and

outlines the important factors that need to be filled when creating refactoring tool. The research concludes:

First, the application of refactoring activities will increase the values of certain quality characteristics such as

understandable, maintainability and testability. Second, there are many factors that affect refactoring activities.

Third, refactoring helps improve code without changing program behavior. Finally, refactoring can be applied

to the source code several times.

ACKNOWLEDGEMENTS

Authors would like to thank the University of Mosul in Iraq for providing Moral support.

REFERENCES
[1] S. Khaleel, “Designing a tool to estimate software projects based on the swarm intelligence,” International Journal of Intelligent

Systems, vol. 14, no. 4, pp. 524–538, 2021, doi: 10.22266/ijies2021.0831.46.

[2] H. Alsolai, S. Arabia, U. Kingdom, M. Roper, and U. Kingdom, “A systematic literature review of machine learning techniques for

software maintainability prediction,” Information and Software Technology, vol. 119, no. 0950–5849, pp. 1–52, 2020, doi:

10.1016/J.INFSOF.2019.106214.

[3] U. Devi, N. Kesswani, and A. Sharma, “An efficient model for measuring maintainability from code cloning and refactoring using

regression,” International Journal of Scientific and Technology Research, vol. 8, no. 12, pp. 4019–4023, 2019.

[4] D. Hou, F. Jacob, and P. Jablonski, “Exploring the design space of proactive tool support for copy-and-paste programming,” In

Proceedings of the 2009 Conference of the Center for Advanced Studies on Collaborative Research, 2009, pp. 188–202, doi:

10.1145/1723028.1723051.

[5] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “Method and implementation for investigating code clones in a software system,”

Information and Software Technology, vol. 49, no. 9–10, pp. 985–998, 2007, doi: 10.1016/j.infsof.2006.10.005.

[6] A. Calleja, J. Tapiador, and J. Caballero, “The malsource dataset: Quantifying complexity and code reuse in malware development,”

IEEE IEEE Transactions on Information Forensics and Security, vol. 14, no. 12, pp. 3175–3190, 2019, doi:

10.1109/TIFS.2018.2885512.

[7] S. Bal and S. Sood, “Software clone management-an insight,” Journal Computer Technology, vol. 5, no. 2, pp. 43–51, 2015.

[8] M. Gradišnik, S. Karakatič, T. Beranič, M. Heričko, G. Mauša, and T. G. Grbac, “The impact of refactoring on maintability of Java

code: A preliminary review,” CEUR Workshop Proceddings, vol. 2508, no. September, pp. 22–25, 2019.

[9] S. Khaleel and R. Khaled, “Selection and prioritization of test cases by using bees colony,” AL-Rafidain Journal of Computer

Sciences and Mathematics, vol. 11, no. 1, pp. 179–201, Jul. 2014, doi: 10.33899/csmj.2014.163746.

[10] S. Schulze, “Analysis and removal of code clones in software product lines,” PhD diss., Magdeburg, Universität, Diss, 2013.

[11] A. Awad and S. Saleh, “Identifying metrics for measuring maintainability of models defined in systemweaver,” 2020.

[12] S. Khaleel and A. Al Thanoon, “Design a tool for generating test cases using swarm intelligence,” AL-Rafidain Journal of Computer

Sciences and Mathematics, vol. 10, no. 1, pp. 421–444, Mar. 2013, doi: 10.33899/csmj.2013.163468.

[13] S. Kadi, “Measuring Maintainability and latency of Node. js frameworks,” 2021.

[14] C. Chen, R. Alfayez, K. Srisopha, B. Boehm, and L. Shi, “Why is it important to measure maintainability and what are the best

ways to do it?,” in Proceedings - 2017 IEEE/ACM 39th International Conference on Software Engineering Companion, ICSE-C

2017, 2017, pp. 377–378, doi: 10.1109/ICSE-C.2017.75.

[15] X. Zhang, T. Wang, Y. Yu, Y. Zhang, Y. Zhong, and H. Wang, “The development and prospect of code clone,” CHI ’22 ACM CHI

Conference on Human Factors in Computing Systems April 30-May 6, 2022, New Orleans, LA, vol. 1, no. 1, 2022, [Online].

Available: http://arxiv.org/abs/2202.08497.

[16] A. Kumar, R. Yadav, and K. Kumar, “A systematic review of semantic clone detection techniques in software systems,” IOP

Conference Series: Materials Science and Engineering, vol. 1022, no. 1, 2021, doi: 10.1088/1757-899X/1022/1/012074.

[17] S. Sood and S. Bal, “Analyzing maintainability and compliance of different version of software in code cloning,” Think India

Journal, no. 14, pp. 14222–14228, 2019.

[18] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone detection with syntax and semantics fusion learning,” in

ISSTA 2020 - Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Jul. 2020,

vol. 20, pp. 516–527, doi: 10.1145/3395363.3397362.

[19] S. Karthik, “Detection of metrics based code cloning using optimised SVM algorithm,” no. 6641. EasyChair, 2021.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 2, August 2023: 1118-1127

1126

[20] C. K. Roy and J. R. Cordy, “A survey on software clone detection research,” Citeseer, 2007. Accessed: Sep. 28, 2022. [Online].

Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.9931&rep=rep1&type=pdf

[21] W. Toomey, “Ctcompare: Code clone detection using hashed token sequences,” in 2012 6th International Workshop on Software

Clones, IWSC 2012 - Proceedings, 2012, pp. 92–93, doi: 10.1109/IWSC.2012.6227881.

[22] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related bugs,” in 6th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE 2007, 2007,

pp. 55–64, doi: 10.1145/1287624.1287634.

[23] J. Li and M. D. Ernst, “CBCD: Cloned buggy code detector,” in Proceedings - International Conference on Software Engineering,

2012, pp. 310–320, doi: 10.1109/ICSE.2012.6227183.

[24] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, “SIGMA: A semantic integrated graph matching approach for identifying reused

functions in binary code,” in Proceedings of the Digital Forensic Research Conference, DFRWS 2015 EU, Mar. 2015, vol. 12,

pp. S61–S71, doi: 10.1016/j.diin.2015.01.011.

[25] P. Batta and M. Himanshi, “Hybrid technique for software code clone detection,” International Journal of Computer Technology,

vol. 2, no. 2, pp. 98–102, 2012, doi: 10.24297/ijct.v2i2b.2639.

[26] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of code clone detection techniques and tools: A qualitative

approach,” Science of Computer Programming, vol. 74, no. 7, pp. 470–495, May 2009, doi: 10.1016/j.scico.2009.02.007.

[27] C. K. Roy and J. R. Cordy, “A survey on software clone detection research,” vol. 541, p. 115, 2007, [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.62.7869%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1

.67.9931&rep=rep1&type=pdf

[28] H. Nasirloo and F. Azimzadeh, “Semantic code clone detection using abstract memory states and program dependency graphs,” in

2018 4th International Conference on Web Research, ICWR 2018, Jun. 2018, pp. 19–27, doi: 10.1109/ICWR.2018.8387232.

[29] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool, “A systematic review on code clone detection,” IEEE Access,

vol. 7, pp. 86121–86144, 2019, doi: 10.1109/ACCESS.2019.2918202.

[30] A. M. Draz, “A survey of refactoring impact on code quality,” FCI-H Informatics Bulletin, vol. 3, no. 1, pp. 16–22, 2021.

[31] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia, “How does refactoring affect internal quality attributes?: A multi-

project study,” in ACM International Conference Proceeding Series, 2017, pp. 74–83, doi: 10.1145/3131151.3131171.

[32] M. Alawairdhi, “Code refactoring and its impact on internal and external software quality : an experimental study,” International

Journal of Computer Science and Network Security (IJCSNS), vol. 19, no. 6, pp. 12–17, 2019.

[33] B. S. G. Kaur, “Improving the quality of software by refactoring,” International Conference on Intelligent Computing and System,

pp. 185–191, 2017, doi: 10.1109/ICCONS.2017.8250707.

[34] A. M. E. S. M. Draz, M. S. Farhan, and M. M. Eldefrawi, “A survey of refactoring impact on code quality,” FCI-H Informatics

Bulletin, vol. 3, no. 1, pp. 16–22, Feb. 2021, doi: 10.21608/FCIHIB.2021.54539.1007.

[35] J. Koskinen, “Software maintenance costs l,” University of Jyksky, 2010.

[36] D. B. Roberts and R. Johnson, “Practical analysis for refactoring,” Univ. Illinois Urbana-Champaign, Champaign, 1999.

[37] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A quantitative evaluation of maintainability enhancement by refactoring,” in

Conference on Software Maintenance, 2002, pp. 576–585, doi: 10.1109/icsm.2002.1167822.

[38] E. Stroulia and R. Kapoor, “Metrics of refactoring-based development: an experience report,” in OOIS 2001, Springer London,

2001, pp. 113–122, doi: 10.1007/978-1-4471-0719-4_13.

[39] R. Leitch and E. Stroulia, “Assessing the maintainability benefits of design restructuring using dependency analysis,” in

Proceedings - International Software Metrics Symposium, 2003, vol. 2003-Janua, pp. 309–322, doi:

10.1109/METRIC.2003.1232477.

[40] L. Tahvildari and K. Kontogiannis, “Improving design quality using meta-pattern transformations: A metric-based approach,” in

Journal of Software Maintenance and Evolution, 2004, vol. 16, no. 4–5, pp. 331–361, doi: 10.1002/smr.299.

[41] B. D. Bois and T. Mens, “Describing the impact of refactoring on internal program quality,” In International Workshop on Evolution

of Large-scale Industrial Software Applications, pp. 37-48, 2022, [Online]. Available:

http://soft.vub.ac.be/FFSE/Workshops/ELISA-submissions/07-DuBoisMens-full.pdf

[42] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi, “A case study on the impact of refactoring on quality and

productivity in an agile team,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), vol. 5082 LNCS, pp. 252–266, 2008, doi: 10.1007/978-3-540-85279-7_20.

[43] M. Alshayeb, “Empirical investigation of refactoring effect on software quality,” Information and Software Technology, vol. 51,

no. 9, pp. 1319–1326, 2009, doi: 10.1016/j.infsof.2009.04.002.

[44] H. A. Sahraoui, R. Godin, and T. Miceli, “Can metrics help to bridge the gap between the improvement of OO design quality and

its automation?,” in Conference on Software Maintenance, 2000, pp. 154–162, doi: 10.1109/icsm.2000.883034.

[45] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos, “Quality-driven software re-engineering,” Journal of Systems and Software,

vol. 66, no. 3, pp. 225–239, 2003, doi: 10.1016/S0164-1212(02)00082-1.

[46] N. Kumari and A. Saha, “Effect of refactoring on software quality,” in airccj.org ,2014 pp. 37–46, doi: 10.5121/csit.2014.4505.

[47] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring maintainability - A preliminary report,” In 6th international

Conference on the Quality of Information and Communications Technology (QUATIC 2007), pp. 30–39, 2007, doi:

10.1109/QUATIC.2007.7.

[48] N. M. A. M. Najm, “Measuring maintainability index of a software depending on line of code only,” IOSR Journal of Computer

Engineering, vol. 16, no. 2, pp. 64–69, 2014, doi: 10.9790/0661-16276469.

[49] P. Ashtaputre, C. Kulkarni, and Y. Lonkar, “An effective approach to find refactoring opportunities for detected code clones,”

International Journal of Innovative Research in Science, Engineering and Technology, pp. 10042–10046, 2016, doi:

10.15680/IJIRSET.2015.0506071.

[50] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, and J. D. Morgenthaler, “Automatic clone recommendation for refactoring based on

the present and the past,” In 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), no. 1, 2018,

pp. 115–126, doi: 10.1109/ICSME.2018.00021.

[51] M. D. Biase, A. Rastogi, M. Bruntink, and A. V. Deursen, “The delta maintainability model: Measuring maintainability of fine-

grained code changes,” Proc. - 2019 IEEE/ACM Int. Conf. Tech. Debt, TechDebt 2019, pp. 113–122, 2019, doi:

10.1109/TechDebt.2019.00030.

[52] A. Shahjahan, W. H. Butt, and A. Z. Ahmad, “Impact of refactoring on code quality by using graph theory: An empirical evaluation,”

in IntelliSys 2015 - Proceedings of 2015 SAI Intelligent Systems Conference, Dec. 2015, pp. 595–600, doi:

10.1109/IntelliSys.2015.7361201.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A literature review for measuring maintainability of code clone (Shahbaa I. Khaleel)

1127

[53] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An experimental investigation on the innate relationship between

quality and refactoring,” Journal of Systems and Software, vol. 107, pp. 1–14, Sep. 2015, doi: 10.1016/j.jss.2015.05.024.

[54] I. Kádár, P. Hegedüs, R. Ferenc, and T. Gyimóthy, “A code refactoring dataset and its assessment regarding software

maintainability,” in 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering, SANER 2016,

May 2016, pp. 599–603, doi: 10.1109/SANER.2016.42.

[55] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-criteria code refactoring using search-based software

engineering: An industrial case study,” ACM Transactions on Software Engineering and Methodology, vol. 25, no. 3, Jun. 2016,

doi: 10.1145/2932631.

[56] D. Cedrim, L. Sousa, R. Gheyi, and A. Garcia, “Does refactoring improve software structural quality? A longitudinal study of 25

projects,” in ACM International Conference Proceeding Series, Sep. 2016, pp. 73–82, doi: 10.1145/2973839.2973848.

[57] G. Kaur and B. Singh, “Improving the quality of software by refactoring,” in Proceedings of the 2017 International Conference on

Intelligent Computing and Control Systems, ICICCS 2017, Jul. 2017, pp. 185–191, doi: 10.1109/ICCONS.2017.8250707.

[58] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia, “How does refactoring affect internal quality attributes?: A multi-

project study,” in ACM International Conference Proceeding Series, Sep. 2017, pp. 74–83, doi: 10.1145/3131151.3131171.

[59] H. Vashisht, S. Bharadwaj, and S. Sharma, “Impact of clone refactoring on external quality attributes of open source softwares,”

International Journal of Scientific Research in Computer Science, Engineering and Information Technology, vol. 8, no. 5,

pp. 86–94, 2018, doi: 10.32628/cseit183833.

[60] J. Pantiuchina, M. Lanza, and G. Bavota, “Improving code: The (mis) perception of quality metrics,” in Proceedings - 2018 IEEE

International Conference on Software Maintenance and Evolution, ICSME 2018, Nov. 2018, pp. 80–91, doi:

10.1109/ICSME.2018.00017.

[61] E. A. Alomar, M. W. Mkaouer, A. Ouni, and M. Kessentini, “On the impact of refactoring on the relationship between quality

attributes and design metrics,” in International Symposium on Empirical Software Engineering and Measurement, Sep. 2019, doi:

10.1109/ESEM.2019.8870177.

[62] E. O. Kiyak, “Data mining and machine learning for software engineering,” in Data Mining - Methods, Applications and Systems,

IntechOpen, 2021, doi: 10.5772/intechopen.91448.

[63] E. Fernandes et al., “Refactoring effect on internal quality attributes: What haven’t they told you yet?,” Information and Software

Technology, vol. 126, p. 106347, Oct. 2020, doi: 10.1016/j.infsof.2020.106347.

BIOGRAPHIES OF AUTHORS

Shahbaa I. Khaleel was born in Mosul, Nineveh, Iraq. She received the B.S.,

M.Sc. and Ph.D. degrees in computer science from Mosul University, in 1994, 2000 and

2006, respectively, assistant prof. since 2011, and finaly, prof. degree on 2021. From 2000 to

2020, she was taught computer science, software engineering and techniques in the College

of Computer Sciences and Mathematics, University of Mosul. She has research in a field

computer science, software engineering, and intelligent technologies. She can be contacted

at email: shahbaaibrkh@uomosul.edu.iq.

Ghassan Khaleel Al-Khatouni received his Bachelor's degree in Software

Engineering from the University of Mosul, in Iraq 2007. And he now a student who is a

master's in the research stage, he taught computer subject in secondary schools for the years

2010 to 2020. He can be contacted at email: chassan.kalel.1984@gmail.com.

mailto:shahbaaibrkh@uomosul.edu.iq
https://orcid.org/0000-0001-8154-0364
https://scholar.google.com/citations?user=h0_V4wEAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57221608822
https://orcid.org/0000-0001-8496-4939

