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Abstract 
In this paper, the problems of the existence and uniqueness of solutions and stability for a class 

of fractional-order neural networks are studied by using Banach fixed point principle and analysis 
technique, respectively. A sufficient condition is given to ensure the existence and uniqueness of solutions 
and uniform stability of solutions for fractional-order neural networks with variable coefficients and multiple 
time delays. The obtained results improve and extend some previous works to some extent, and they are 
easy to check in practice. An illustrative example is presented to show the validity and application of the 
proposed results. 
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1. Introduction 

In recent years, much attention has been focused on the study of fractional calculus. As 
a branch of mathematical analysis and an ongoing topic, fractional calculus deals with 
derivatives and integrals of arbitrary non-integer order (rational, irrational or even complex). The 
applications of fractional calculus have been found in many areas such as chemistry [1], optics 
[2], biology [3], economics [4], finances [5], electricity [6], mechanics [7], physics [8], and control 
theory [9]. The one of the main reason for the extensive applications of fractional calculus is that 
fractional derivatives provide an efficient and excellent instrument for the description of memory 
and hereditary properties of various materials and processes compared to integral-order 
derivatives. So there are two advantages in models of fractional-order, one is more degrees of 
freedom in the models, the other is “memory” in the models. Neural networks have been proven  
to be very efficient at handling a wide range of engineering application [10-12]. Nowadays, 
fractional calculus has been used in modeling artificial neural networks; the fractional-order 
formulation of neural network models is also justified by research results about biological 
neurons [13-16]. Especially, the authors emphasized the utility of developing and studying 
fractional-order mathematical models of neural network in [14]. 

The problem of stability is a very fundamental and crucial issue for fractional-order 
neural networks, however, due to the high complexity of fractional calculus, it has been 
investigated and discussed only in some recent literature, and only very few relevant results 
have been obtained, for instance [17] and [18]. In [17], stability and multi-stability of fractional-
order Hopfield neural networks were discussed, but in the case of no time delay and constant 
coefficient. In [18], a sufficient condition ensuring uniform stability and the existence, 
uniqueness of equilibrium point was established for a class of fractional-order neural networks 
with single constant delay, but the initial conditions was assumed to be zero initial conditions, 
and without considering variable coefficients. As we all know, there is no related work on the 
stability analysis of fractional-order neural networks with variable coefficients up till now, 
although some excellent results concerning the stability of integer-order neural networks with 
variable coefficients have been obtained [19-24]. In addition, it is well known that 
communication delays are ubiquitous in many real world phenomena, and often become 
sources of instability. Motivated by the above discussions, this paper is devoted to presenting a 
theoretical stability analysis for a class of fractional-order neural networks with variable 
coefficients and multiple time delays.  
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The paper is structured as follows. In Section 2, some basic definitions and lemmas of 
fractional calculus are given. In Section 3, the description of fractional-order neural networks 
with variable coefficients and multiple time delays is presented, and the main results are 
derived. In Section 4, an example is used to illustrate the results obtained in this paper. Some 
conclusions are drawn in Section 5.  
 
 
2. Preliminaries 

We introduce the space ( ([0 ] ) )nC T R        as a Banach space, where ([0 ] )nC T R   is 

the class of all continuous column n -vectors function. For ([0 ] )nC T R    , the norm is defined 

by 
1

{ ( ) }sup
n Nt

iti
e t 


    . Besides, for a matrix ( ( ))ij n n

a tA


 , we define the norm 

1 1
( )sup

n n

i ijt ji i
A a a t 

      .  

Definition 1.  The fractional order integral of a function ( )f t  of order R   is defined by: 

  

0
0

1

1 ( )
( )

( ) ( )

t

t t

f
I f t d

t




 
   

                                                                         (1) 

 
Where ( )   is the gamma function defined as:   

  
1

0
( ) z tz t e dt

                                                                      (2) 
 
Definition 2.  The Caputo fractional derivative D  of order   of a function ( )f t  is given by: 

 

0
0

( )

1

1 ( )
( )

( ) ( )

n
t

t nt

f
D f t d

n t




 
    

                                                           (3) 

 

Where [ ] 1n   , [ ]  denotes the integer part of the number  .  
Lemma 1 [25]. If the Caputo fractional derivative 

0
( )tD f t  ( 1 )n n    is integrable, then: 

 

0 0

( )1
0

0
0

( )
( ) ( ) ( )

in
i

t t
i

f t
I D f t f t t t

i
 





   
                                                             (4) 

 
Especially, for 0 1  , one can obtain: 
  

0 0 0( ) ( ) ( )t tI D f t f t f t    
                                                                             (5) 

 
 
3. Research Method 

Consider the following neural network model with variable coefficients and multiple time 
delays:  

 

1 1

( ) ( ) ( ) ( ) ( ( )) ( ) ( ( ))

( ) [0 ]

n n

i i i ij j j ij j j ij
j j

i

D x t c t x t a t f x t b t f x t

I t t T

 
 

    

    

 

   

(6) 

 
Where T   ; D  denotes Caputo fractional-order derivative of order   ( 0 1  ); 

1, 2, ,i n   and n  corresponds to the number of units in a neural network; ( )ix t  denotes the 

state of the i th unit at time t ; ( ( ))j jf x t  denotes the activation functions of the j th unit at time t



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 2, February 2014:  1086 – 1093 

1088

; ( ) 0ic t   corresponds to the rate with which the i th unit will reset its potential to the resting 

state in isolation when disconnected from the network and external inputs at time t ; ( )ija t  and 

( )ijb t  represent the connection strength of the j th unit on the i th unit at time t  and ijt  , 

respectively; ( )iI t  denotes the external inputs at time t ; ij corresponds to the transmission 

delay along the axon of the j th unit, and 0 max{ | , 1, 2, , }ij ij i j n       . 

The initial conditions associated with (6) are of the form: 
  

   ( ) ( ), [ ,0], 1, 2, , ,i ix t t t i n                                                                     (7) 

 
Where ( ) ([ 0] )i t C R     , and the norm of an element in ([ 0] )nC R    is    

[ 0 ]1
{ ( ) }sup

n Nt
iti

e t 
 

  ，
. 

Throughout this paper, we impose the following assumptions to obtain our results.  
Assumption 1. ( ) ( ) ( )i ij ijc t a t b t   and ( )iI t  are continuous on [0 ]T .  

Assumption 2. The activation functions jf  are Lipschitz continuous, i.e., there exist positive 

constants jL  such that:  

 
( ) ( )j j jf u f v L u v                                                                         (8) 

 
For all u v R  , where 1,2,j n  .  

For convenience, we introduce the following notation related to model (6):  
 

,1 1
|| || sup | ( ) |,

n n

i t j iji i
A a a t 

   ,1 1
|| || sup | ( ) |,

n n

i t j iji i
B b b t 

   *
1 2max{ , , , } max{nc c c c 

1 2sup | ( ) |,sup | ( ) |, ,sup | ( ) |},t t t nc t c t c t 1 2max{ , , , }nL L L L  . 

 
3.1. Existence and Uniqueness 
Theorem 1. Assume assumption 1 and 2 hold, the system (6) has a unique solution 

1 2( ) ( ( ), ( ), , ( )) ([0, ], )T n
nx t x t x t x t C T R    satisfying the initial condition (7).  

Proof. According to the properties of the fractional calculus, one can obtain a solution of (6) in 
the form of the equivalent Volterra integral equation:  
 

1

0
1

1

( ) (0) ( )

1
(0) [ ( ) ( ) ( ) ( ( ))( )

( )

( ) ( ( )) ( )] ,

i i i

nt

i i i ij j j
j

n

ij j j ij i
j

x t I D x t

c s x s a s f x st s

b s f x s I s ds

 
















 

   


  





    (9) 

 
Where [0 ]t T  .  

We transform the problem (9) into a fixed problem. Consider a mapping defined by: 
  
 n nF R R                                                                                                 (10) 
 

Where 1 1 2 2( , , , )T
n nFx F x F x F x  , and iF  is defined as follow: 

  

1

0

1

1
( ) (0) [ ( ) ( )( )

( )

( ( ) ( )) ( ( )) ( )] .

t

i i i i i

n

ij ij j j i
j

F x t c s x st s

a s b s f x s I s ds








  


  




                                                       (11) 

 
For any two different functions 1 2 1 2( ) ( ( ), ( ), , ( )) , ( ) ( ( ), ( ), , ( ))T T

n nx t x t x t x t y t y t y t y t   , we 

have:  
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1

0 1

1

0 1

0

( ) ( ) |

1 [ ( ) ( ) ( ) ( ( ) ( ) ) ( ( )) ( ( )) ]( )
( )

1 [ ( ) ( ) ( ) ( ( ) ( ) ) ( ) ( ) ]( )
( )

1 sup ( )
( )

i i i i
nt

i i i ij ij j j j j
j

nt

i i i ij ij j j j
j

t

i
t

F x t F y t

c s x s y s a s b s f x s f y s dst s

c s x s y s a s b s L x s y s dst s

c t



















 

            

            

  





1

1

0 1

( ) ( )( )

1 (sup ( ) sup ( ) ) ( ) ( )( )
( )

i i

nt

ij ij j j
t j t j j

x s y s dst s

a t b t L x s y s dst s










  

  

        





           (12) 

1

0

1

0
1

1
( ) ( )( )

( )

1
( ) ( ) ( )( )

( )

t

i i i

nt

i i j j
j

c x s y s d st s

a b L x s y s d st s















   


     






 

 
Which implies that:  
 

1

0

1

0
1

1 ( )

0

1 ( )

0
1

( ) ( ) |

1
( ) ( )( )

( )

1
( ) ( ) ( )( )

( )

1
( ) ( )( )

( )

1
( ) (( )

( )

N t
i i i i

tN t
i i i

ntN t
i i j j

j

t N t s N s
i i i

nt N t s N s
i i j

j

e F x t F y t

c e x s y s dst s

a b Le x s y s dst s

c e e x s y s dst s

a b L e e xt s

























   

   



 

   


    


   


  









1 ( )1

( ) 0

1 ( )1
( ) 0

1

( )

) ( )

sup { ( ) ( ) } ( )

( ) sup { ( ) ( ) } ( )

sup { ( ) ( ) } ( ) ( )i i i

j

tN t N t s
i i i

t

n tN t N t s
i i j j

tj

c a b LN t
i iN N

t

s y s ds

c e x t y t e dst s

a b L e x t y t e dst s

e x t y t x t y t 







  


  






 

    

     

        



 

                          (13) 

 
Obviously, we have:  
 

              1

( )

1 1

( )

( ) ( )

sup { ( ) ( ) }

sup { ( ) ( ) } ( ) ( )

( ) ( ) ( )

i i i

n
Nt

i i i i
ti

n n
c a b LNt

i iN N
ti i

A B Lc

N N

Fx t Fy t

e F x t F y t

e x t y t x t y t

x t y t

 

 









 

   

  

   

       

     



 
                                   (14) 

 
Now, choose N  large enough such that ( )c A B L N        , then we have: 

  
( ) ( ) ( ) ( )Fx t Fy t x t y t                                                                                      (15) 

 
Therefore the mapping F  is a contraction mapping. As a consequence of the Banach 

fixed point theorem, the problem (9) has a unique fixed point, so that we conclude that system 
(6) has a unique solution, which complete the proof of the theorem.  

 
3.2. Stability 

Definition 5. The solution of system (6) will be called stable if for any 0  , 0 0t  , 

there exists a corresponding value 0( ) 0t     such that 0 0( ) ( )y t t x t t          for 0t t  as 

soon as initial conditions satisfy 0( ) ( ) ( )t t t       . The solution of (6) will be called uniformly 

stable if the above   can be chosen independently of 0t  : 0( ) ( )t     .  
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Theorem 2. If assumption 1 and 2 are satisfied, the solution of system given by (6) 
satisfying initial condition (7) is uniformly stable.  

 Proof. Let 1 2( ) ( ( ), ( ), , ( ))T
nx t x t x t x t   and 1 2( ) ( ( ), ( ), , ( ))T

ny t y t y t y t   be two solutions 

of (6) with the different initial condition ( ) ( )i ix t t , ( ) ( )i iy t t , 1, 2, ,i n  . Then for [0 ]t T  , 

we have:  
 

1

1

( ( ) ( )) ( )( ( ) ( )) ( )( ( ( )) ( ( )))

( )( ( ( )) ( ( ( ))))

n

i i i i i ij j j j j
j

n

ij j j ij j j ij
j

D y t x t c t y t x t a t f x t f y t

b t f x t f y t t



 





     

    




                         (16) 

 
Which is equivalent to the nonlinear Volterra integral equation, given by the following form:  
 

1
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1

0

1
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n
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j

n
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j

t
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n

ij j j j j
j
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
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











      

   

    

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







1
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n
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j
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

   

               (17) 

 
From (17), we get:  
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Then we have: 
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It follows from (19) that: 
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Here we choose N  large enough such that ( ( ) ) 1c A B L N         , then for 0  , 

there exists 
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solution of system (6) is uniformly stable.  
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Remark 1. It should be noted that when activation functions at time t  and t   have 
the same form, the obtained results in this paper improve and extend the work presented in [18].  

Remark 2. To the best of our knowledge, whatever in the area of theoretical research or 
numerical simulations, related results on the stability analysis of fractional-order neural networks 
with variable coefficients have not yet seen.  
 
 
4. Analysis of  The Proposed Results 

An illustrative example is given to compare the main results studied in this paper with 
results proposed  in [18]. 

Consider a class of fractional-order delayed neural networks described by the following 
differential equation:  

 

 

1 1 1 1 2 2 1 1

2 2

2 2 1 1 2 2 1 1

2 2

( ) 2 ( ) 0 75 ( ( )) 0 4 ( ( )) 0 15 ( ( ))

0 1 ( ( )) 1 7

( ) ( ) 0 25 ( ( )) 0 6 ( ( )) 0 12 ( ( ))

0 7 ( ( )) 1 2

D x t x t f x t f x t f x t

f x t

D x t x t f x t f x t f x t

f x t











         


     


        
      

                               (21) 

 
Where the fractional order   is chosen as 0 7   , the activation functions are described by 

1 2( ) ( ) 0 6 0 5f x f x x x          , and the time delay 0 01   .  

Obviously, in system (21), 1 2max{ } max{2 1} 2 1 35 0 85C c c A B             2L  . 

Under the above parameters, we have 1 2min{1 }A L B L c c        , hence the assumption 2 

made in [18] is not satisfied. However, system (21) has a unique uniformly stable solution 
according to Theorem 1 and Theorem 2.  

In fact, system (21) has a unique fixed point, which satisfies: 
  

1 1 1 2 2

2 1 1 2 2

2 0 6 ( ) 0 3 ( ) 1 7 0

0 37 ( ) 0 1 ( ) 1 2 0

x f x f x

x f x f x

  

  

        

        

                                                        (22) 

 

By virtue of Matlab, we can compute that the fixed point is ( 1 345 1 497)Tx      . Figure 1 shows 

that the solution of system (21) converges to the fixed point x  in the time domain.  
  
 

  
 

                                               Figure 1. The dynamic behavior of system (23) 
 
 
5. Conclusion 

In this paper, the uniform stability problem is discussed for a class of fractional-order 
neural networks with variable coefficients and multiple time delays, a criteria on the existence 
and uniqueness of solutions and the uniform stability of solutions is established for this kind of 
neural networks. Finally, an example is given to demonstrate the effectiveness of our results.   
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