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Abstract
A new algorithm is presented for computing one dimensional unstable manifold of a map and

Hénon map is taken as an example to test the performance of the algorithm. The unstable manifold is
grown with new point added at each step and the distance between consecutive points is adjusted
according to the local curvature. It is proved that the gradient of the manifold at the new point can be
predicted by the known points on the manifold and in this way the preimage of the new point could be
located immediately. During the simulation, it is found that the unstable manifold of Hénon map coincides
with its direct iteration when canonical parameters are chosen which means order is obtained out of chaos.
In the other several groups of parameters the two branches of the unstable manifolds are nearly
symmetric, and they serve as the borderline of the Hénon map iteration sequence. We hope that this
would contribute to the further exploration of Hénon map.
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1. Introduction
Dynamical system can simply be classified into two categories: continuous dynamical

system and discrete dynamical system. And discrete dynamical system often takes the form of
iterated functions. Various examples in applications can be depicted by iterated functions, and
Hénon map [1] is one of the most famous ones. Hénon map is chaotic for canonical parameters
and it is also widely used in Image Encrypting [2], fractal science, etc. Hénon map takes the
form as:
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It can also be written as:
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a and b are free parameters. For canonical parameters 1.4a  ， 0.3b  , the system is
chaotic. Let’s consider the second iterate of G .
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In the next section some basic concepts about stable and unstable manifold are
introduced.
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2. Mathematical Setting
Suppose : n nF R R is an orientation preserving diffeomorphism.

1 ( )m mx F x  (4)

If 0x is a starting point, then,

0 0( ) ( ( ))k l k lF x F F x  (5)

k and l are integers. If 0
nx R meets the condition 0 0( )F x x , then 0x is a fixed point

of F . From (5) we know 0x is also a fixed point of kF . Consider the Jacobian matrix
0 0( ) [ / ]( )i jA DF x F x x    of F at 0x . 0x is hyperbolic if the modulus of eigenvalues of A is

different from 1. The eigenvalues whose modulus is smaller than 1 are called stable and their

corresponding eigenvectors 1 2{ , , , }lv v v span the stable eigenspace sE . The other
eigenvalues whose modulus is bigger than 1 are called unstable and their corresponding

eigenvectors 1 2{ , , , }l l nv v v   span the unstable eigenspace uE .

Theorem 1. Suppose : n nF R R is an orientation preserving diffeomorphism and 0x is

a fixed point of F , then in the neighborhood U of 0x , there exists local stable and unstable
manifolds.

0 0( ) { : lim ( ) }s k
loc

k
W x x U F x x


  

(6)

0 0( ) { : lim ( ) }u k
loc

k
W x x U F x x


  

(7)

sE and uE are tangent to 0( )s
locW x and 0( )u

locW x at 0x respectively.
See reference [3] for more information. Global stable and unstable manifold are defined

as:
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It’s clear that the global manifold is the image of the local manifold.
Stable and unstable manifolds play an important role in analyzing the dynamics of a

given system. They form basins of attraction between different attractors, and complexed
dynamics like chaos, homoclinic and heteroclinic would occur when they intersect. Computation
of stable and unstable manifolds will contribute to the further study of all these fields.

Several algorithms [4-11] have come up. The algorithms [7, 8] use the idea of growing
the unstable manifold and one point is found and added at a prespecified distance away from a
given point each step. They have to search along the known segment on the unstable manifold
back and forth to find the preimage of the new point, and it is the choke point which reduces the
efficiency of the algorithm. It is verified in this paper that the gradient of the unstable manifold
can be predicted by the known points on the unstable manifold and the scheme can be used to
locate the preimage of the new point quickly.
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3. Gradient Prediction

According to the definition (9) of global unstable manifold, we know if 0( )ux W x ，then
0( ) ( )uF x W x . Expand F at x as Taylor series. ( ) ( ) '( ) (|| ||)i i iF x F x F x o     

Ignore the high order terms ( ) ( ) '( ) ( )i i iF x F x F x F x     Aε

( ) ( )i

j

F
F x x

x

 
   

  
A D

is the Jacobian matrix of F at x .
As shown in Fig.1, for 2D phase space
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Figure 1. Gradient prediction

When 0i  , it follows ix x  and ( ) ( )iF x F x  . So /x y  can be taken as

the gradient of the unstable manifold at x while '/ 'x y  is the gradient at ( )F x .

During the computation, x , ix  and ( )F x are known points on the unstable manifold

and ( )iF x  is unknown. The unknown gradient of 0( )uW x at ( )F x can be approximated by

known points x and ix  . And that is why we call our algorithm gradient prediction.

4. The algorithm
Evaluate the Jacobian matrix of F at the hyperbolic fixed point 0x and take a point 0p

at a distance of  away from 0x along the unstable eigenvector. When  is chosen small

enough, the segment between 0x and 0p could be a good approximation of 0( )u
locW x . The

image of 0p is 1 0( )p F p . Put 0x , 0p and 1p in the ordered sequence 0 0 1{ , , }M x p p .

The algorithm adds one point to M per step. Suppose 0 0 1{ , , , , }kM x p p p  and the

preimage of kp is 'kp . Note that 'kp does not necessarily belong to M , it is the interpolation of
the points that belong to M most of the time. If we connect the successive points in M and
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denote the new set as 'M , then ' 'kp M . Assume 'kp lies on the segment with endpoints ip

and 1ip  . The gradient at 'kp can be approximated by the gradient of segment 1i ip p  .

Suppose we want to add a new point 1kp  at a distance of k from kp . It can be done
in the following two steps,

1) Prediction: 1 'i kp p  is chosen as an initial guess for i . Then 'i iA  and the

modulus of 'i is
2 2' || ' || ( ') ( ')k i x y      .

2) Correction: The ratio between 'k and the expectation k is 'k kR    , then i is

adjusted by i iR   . Because i and 'i are linearly related so that 'k will be of the same

modulus with k after the adjustment.

Here the gradient prediction is used to approximate 'k .

Now 1 ' 'k k ip p    is a good approximation of the preimage of 1kp  . If 1 'kp  exceeds

the segment 1i ip p  , it is necessary to switch to the next segment in 'M . 1 'kp  is mapped to get

the exact position of 1kp  and the difference between 1 1( ')k kp F p  and 'k ip  is negligible.

Now it is necessary to check if k is acceptable and the strategy [6, 7] is used.


p

kp
1kp 

1kp 

Figure 2. Curvature constraint

As is exhibited in Figure 2
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(13)

p lies on the line through kp and 1kp  with the property || || || ||  k k -1 kp p p p
   

. If  is

small enough, sin( / 2) / 2  , then formula (12) can be simplified as

|| ||

|| ||






k-1

k k-1

p p

p p

 

 

(14)

 should satisfy the following condition
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< <

< <(k

  

    
mi n max

mi n max( ) ) (15)

Where || ||k k +1 kp p
 

= . The first condition keeps  small to avoid missing details of
the unstable manifold, and the second condition controls the local interpolation error. The new

point 1kp  is accepted if both < max and <(k   max) . At the same time, if <k mi n ( min is the

minimum distance between successive points), 1kp  is accepted too. When both < mi n and
<(k   mi n) , we’ll need to set 1 2k k   . If any of the condition in (15) is not satisfied, we have

to replace k with / 2k and recompute 1kp  .

Add 1kp  to the ordered sequence M and continue the computation until the arc length
of 'M reaches the desired arc length ARC .

After all of the aforementioned steps are finished, one branch of 0( )uW x is computed
and we need to start over the computation on the opposite direction of the unstable eigenvector

of A to get the other branch of 0( )uW x . 0( )uW x is the composition of the two branches.

5. Unstable manifold of Hénon map
The following parameters were used in the paper: 0.001  , max 0.3  , min 0.2  ,

max 0.001  , min 0.0001  ,
4

max( ) 10   ,
5

min( ) 10   .

By solving the equation ( , ) ( , )G x y x y , it is easy to know that

 2 2
0 ( , ) ( 1) ( 1) 4 2 , ( 1) ( 1) 4 2x x y b b a a b b a a                (16)

is a fixed point of Hénon map G . And 0x is also a fixed point of
2F G . a and b

should satisfy
2( 1) 4 0b a   to make sure that both x and y are real.

The Jacobian matrix of F at 0x is

0

2 2 2

0 0

2 (1 ) 2 (1 )
( ) [ / ]( )

2
i j

x

a ax by b ab ax by
F x F x x

ax b

      
       

A D

(17)

1) When 1.4a  , 0.3b  , the fixed point is 0 (0.6314,0.6314)x  . The Jacobian matrix of

F at 0x is

3.4251 0.5303

1.7678 0.3

 
   

A
. 0det( ) det( ( )) 0F x A D , so F is orientation preserving. A

has two eigenvalues 3.7008u  and 0.0243s  . The unstable manifold of hyperbolic fixed

point 0x is shown in Fig.3. The arc lengths of the two branches are both 50ARC  .
It is easy to see from Fig.3 that the distribution of points of unstable manifold is almost

the same with that of Hénon map iteration sequence and the difference is the sequence of
points in (a) is ordered while points in (c) is unordered. To show this, we connect the first 20
points in (c) and plot it in (d). It’s very clear that the points are unordered. That is to say, we
obtain order out of chaos.

2) When 0.2a  , 0.99b  , the fixed point is 0 (2.2112,2.2112)x  . The Jacobian matrix of

F at 0x is

1.7723 0.8756

0.8845 0.99

 
   

A
, with eigenvalues 2.3442u  and 0.4181s  .
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0det( ) det( ( )) 0A DF x  . The unstable manifold of hyperbolic fixed point 0x is shown in Fig.4.
The arc lengths of the two branches are both 70ARC  .

(a)                                                   (b)

(c)                                                   (d)

Figure 3. (a)Unstable manifold (b)An enlargement of the manifold (c) Hénon map iteration
sequence starting at (0,0) with 10,000 iterations (d)Connect the first 20 points in (c)

(a)                                                     (b)

Figure 4. (a) Unstable manifold (b) Unstable manifold and the Hénon map iteration sequence

We can see from Fig.4 that the unstable manifold tends to accumulate inside, at the
same time, it serves as the boundary which keeps the Hénon map iteration sequence (starting
at (0,0) with 10,000 iterations) inside. When 0.2a  , 0.96b  and 0.2a  , 0.98b  , the situation
is similar.

3) when 0.2a  , 0.9991b  ，the fixed point is 0 (2.2338,2.2338)x  . The Jacobian matrix

of F at 0x is

1.7975 0.8927

0.8935 0.9991

 
   

A
, with eigenvalues 2.3766u  and 0.42s  .
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0det( ) det( ( )) 0F x A D . The unstable manifold of hyperbolic fixed point 0x is shown in Fig.5.
The arc lengths of the two branches are both 50ARC  .

(a)                                                     (b)

Figure 5. (a) Unstable manifold (b) Unstable manifold and the Hénon map iteration sequence

Compared to Fig.4, the unstable manifold in Fig.5 begins to “walk” outward. From Fig.5
(b) we know the Hénon map iteration sequence (starting at (0,0) with 10,000 iterations) is still
surrounded by the unstable manifold.

5. Conclusion
A new algorithm is put forward for computing the one dimensional unstable manifold of

a map. The algorithm grows the manifold with one point added each step. And the distance
between consecutive points are adjusted according to the local curvature and distance
constraint. The preimage of the newly added point is located quickly with a gradient prediction
scheme and this is the main advantage over the algorithm proposed in reference [7]. Rather
than using bisection algorithm to find the preimage of the new point, this paper uses a two-step
Prediction-Correction scheme to find it.

The performance of the algorithm is tested by Hénon map. During the simulation, it is
found that when 1.4a  , 0.3b  , the distribution of points of the unstable manifold is almost the
same with that of Hénon map iteration sequence. The former is ordered while the latter is in
chaos, it is to say, we obtain order out of chaos in Hénon map. And I didn’t notice anyone else
had ever gotten the same result. When some other groups of parameters are chosen, the
unstable manifold behaves as the borderline of the direct Hénon map iteration sequence and
the two branches of the manifold are symmetric in a certain sense, e.g. each branch of the
unstable manifold in Figure 4 contains 9 folds. The unstable manifold in Figure 5 possesses a
similar character.

Further exploration of the unstable manifold of Hénon map requires more work on
experimenting different values of a and b , and we believe more beautiful pictures will come up
to reveal the hidden properties of Hénon map. We hope our results be helpful to the further
exploration of Hénon map.
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