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 Resource provisioning considering scientific or realistic workload in a 

heterogeneous internet of things (IoT) environment presents significant 

challenges in terms of execution time and energy consumption. These 

challenges arise due to the dynamic nature of scientific or realistic-time 

workloads and the diverse characteristics of IoT devices. In this study, we 

propose a resource provisioning model that takes into account the dynamic 

and real-time nature of IoT workloads in a heterogeneous environment.  

The model aims to allocate computational resources effectively, considering 

the real-time demands of IoT applications while optimizing execution time 

and energy consumption. Three scientific workloads have been used to 

evaluate the proposed model. The results have been compared with the 

existing models. The results show that the proposed model attains better 

performance in terms of reducing time and energy consumption for the 

execution of workload tasks. 
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1. INTRODUCTION 

A heterogeneous internet of things (IoT) environment refers to a system where diverse devices, 

technologies, and platforms come together to create interconnected networks and enable a wide range of IoT 

applications. In this environment, a variety of IoT devices with different capabilities, such as sensors, actuators, 

and controllers, coexist [1]. These devices can vary in terms of computational power, memory capacity, 

communication protocols, and energy constraints [2]. The communication infrastructure supporting the 

heterogeneous IoT environment includes a mix of technologies such as Wi-Fi, Bluetooth, Zigbee, and cellular 

networks, allowing devices to connect and communicate seamlessly [3]. The heterogeneity in device types and 

communication technologies poses both challenges and opportunities in terms of interoperability, data 

management, and system integration [4]. However, it also enables the deployment of IoT solutions that cater 

to specific use cases and application requirements, leveraging the strengths of different devices and 

technologies [5]. Resource provisioning in a heterogeneous IoT environment is the process of efficiently 

allocating and managing computational resources to support the diverse devices and applications within the 

system [6]. 

With a wide range of devices, each having unique capabilities and requirements, resource provisioning 

becomes crucial for ensuring optimal performance and utilization. This involves assessing the capabilities of 

IoT devices in terms of their computational power, memory capacity, energy constraints, and communication 

capabilities [7]. Based on this assessment, resources can be allocated accordingly to meet the specific needs of 
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different devices and applications. Resource provisioning considering realistic workload in a heterogeneous 

IoT environment is a critical aspect of ensuring optimal performance and responsiveness. In this context, 

resource provisioning involves dynamically allocating and managing computational resources based on the 

real-time demands of IoT applications and devices [8]. Realistic workload monitoring plays a key role in this 

process, as it enables continuous tracking of the workload and performance metrics of IoT applications and 

devices. By analyzing factors such as data processing requirements, communication patterns, latency 

constraints, and resource utilization in real-time, resource provisioning algorithms can make informed 

decisions about resource allocation [9]. These algorithms dynamically adjust the allocation of computational 

resources, scaling up or down as needed to match the changing workload. This dynamic allocation ensures that 

resources are efficiently distributed to meet the real-time demands of IoT applications, while also optimizing 

resource utilization and minimizing response times. By considering realistic workload in resource provisioning, 

the heterogenous IoT environment can effectively adapt to changing demands and deliver reliable and 

responsive IoT services [10]. 

Resource provisioning considering realistic workload in a heterogeneous IoT environment poses 

significant challenges in terms of execution time and energy consumption [11]. Addressing these challenges is 

crucial to ensure efficient and sustainable operation of IoT applications. One of the key challenges is the 

dynamic nature of realistic workload in IoT environments [12]. Workload patterns can fluctuate rapidly, 

leading to unpredictable resource demands. Resource provisioning mechanisms must be capable of quickly 

adapting to these changes to meet real-time execution requirements. This involves continuously monitoring the 

workload, predicting future resource needs, and dynamically adjusting resource allocations in response. 

Optimizing execution time is another critical aspect. Real-time applications often have strict latency 

requirements, and delays in resource provisioning can lead to missed deadlines and degraded performance. 

Efficient scheduling algorithms are needed to allocate resources in a way that minimizes execution time, 

ensuring timely processing of real-time tasks. Energy consumption is a significant concern in resource 

provisioning for IoT environments [13]. IoT devices are often resource-constrained and operate on limited 

battery power. Inefficient resource allocation can lead to unnecessary energy consumption, reducing the overall 

system lifetime and increasing operational costs [14]. 

Resource provisioning algorithms should aim to minimize energy usage by intelligently allocating 

resources based on workload characteristics and device capabilities. To address these challenges, resource 

provisioning algorithms need to strike a balance between meeting real-time execution requirements and 

optimizing energy consumption. This requires sophisticated optimization techniques, such as dynamic voltage 

and frequency scaling (DVFS) [15], task consolidation [16], and load balancing [17], to achieve efficient 

resource allocation. Furthermore, considering energy-aware scheduling policies and incorporating energy 

models for IoT devices can help guide resource provisioning decisions that minimize energy consumption 

while meeting realistic workload demands. Overall, resource provisioning considering realistic workload in a 

heterogeneous IoT environment requires careful consideration of execution time and energy consumption. By 

developing intelligent resource provisioning algorithms that dynamically adapt to workload changes and 

optimize resource allocation, it is possible to achieve efficient and sustainable operation of IoT applications in 

terms of both execution time and energy consumption. Hence, in this work we propose a model which provides 

the execution of the scientific or realistic workload in heterogenous IoT environment consuming less time and 

energy. 

 
 

2. LITERATURE SURVEY 

In this section, survey on various research work for executing workload in heterogenous Internet of 

Things environment has been conducted. Jangu and Raza [18], they have presented an efficient algorithm 

which mainly focusses on executing the tasks of the workload on the basis of the priority and deadline. In this 

algorithm, the have proposed an improved jelly-fish searching optimizer (IJFA) to execute the tasks. This 

algorithm considers various parameters such as virtual machines, size of the task and speed of the virtual 

machine before allocating the resources for the execution. The IJFA has been experimented using small and 

large real-time workloads. For evaluating their algorithm, they have used the quality-of-service (QoS) 

parameters. The results show that the proposed algorithm attains better resource utilization and reduces the 

cost for execution when compared with the existing works. Nayagi et al. [19], they have proposed called as 

fault-tolerant aware (FTA) to reduce the energy and cost during the execution of the workload. They have used 

the DVFS method in their work and proposed a novel model. The results show that the proposed model attains 

better result in reducing the energy when compared with the other workload execution methods. Prakash et al. [20], 

they have proposed a model called as parent to child (P2C) which executes the workload in the given deadline. 

This work considers the node dependency of the workload. In this work, they use the resources efficiently to 

provide better resources for the execution of the workload tasks in the given deadline. For evaluating their 

model, they have used five scientific applications which are represented using the directed-acyclic-graphs and 
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executed them in the WorkflowSim simulator. The results show that the proposed P2C method reduces the 

time for the execution by considering the parent to child nod dependencies.  

Adhikari and Gianey [21], in this work, they have proposed a model which considers the task 

offloading of the workload to the edge environment for better and fast execution. This work main focus was to 

reduce the energy consumption during the execution of the tasks of the workload. The tasks of the workload 

are given resources on the basis of their requirement. The results show that the proposed model reduces the 

energy-consumption by 41% to 62%. Tian et al. [22], they have proposed an algorithm called predictive 

energy-consumption scheduling (PECS), which considers at which frequency a task will come after the 

execution of the previous task. Their main focus was to execute the tasks of the workload in the given deadline. 

To allocate the tasks better resources they have proposed a matrix called as extracellular matrix (ECM) which 

will predict the amount of energy a task will consume. Using the results of the matrix, the resources are 

allocated for the execution. Finally, a strategy is made to execute tasks of the workload in the given deadline. 

The results show that the proposed PECS algorithm reduces energy by 13.33% and 48.28% when compared 

with two existing resource efficient workload execution methods. 

 

 

3. MODEL 

In Figure 1, the architecture of the proposed model has been given. In an edge-cloud environment 

where the workload is distributed across the edge, middle layer (edge servers), and the cloud, the execution of 

the workload typically follows a multi-tiered architecture. The workload is divided into different tasks or 

components, and each component is executed at the appropriate layer based on its requirements and the 

available resources. In this execution model, the workload is distributed and executed across multiple layers 

based on the specific requirements of each task. The edge layer focuses on real-time and time-sensitive tasks, 

the middle layer handles intermediate processing and collaboration, and the cloud layer deals with resource-

intensive and non-real-time tasks. This tiered architecture enables efficient utilization of resources, reduces 

network congestion, improves response time, and optimizes the overall performance of the system in an edge-

cloud environment. 

 

 

 
 

Figure 1. Architecture of proposed heterogenous IoT environment 
 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Resource provisioning model for executing realistic workload in … (Naveen Kumar Chowdaiah) 

321 

3.1.  Workload representation 

For building a model in a heterogenous IoT environment, which consider realistic workload, in this 

work, the tasks of the workload which contain various activities such as data collection, processing, analysis 

and communication are characterized using the directed-acyclic-graph (DAG). In the DAG, the tasks are 

represented as 𝑋. The 𝑋 is represented using the given: 

 

𝑋(𝐾, 𝐷) (1) 

 

the task 𝑋 comprises of various set of tasks which is represented using 𝐾. The set of tasks refers to a collection 

or group of individual activities or operations that need to be performed to accomplish a specific goal or 

objective. Further, the set of tasks may have more tasks, i.e., subtasks. These subtasks in this work are 

represented using the 𝐷. When representing a set of tasks with subtask dependencies in a DAG, it is important 

to capture the hierarchical relationships between tasks by organizing them into parent and child nodes. The 𝐾 

and 𝐷 are represented using the (2) and (3). 

 

𝐾 = {𝐾1, 𝐾2, … , 𝐾𝑛} (2) 

 

𝐷 = {(𝐾𝑞 , 𝐾𝑟)|𝐾𝑞 , 𝐾𝑟 ∈ 𝐾} (3) 

 

Where, 𝐾𝑞  is the parent node and 𝐾𝑟  is the child node. In the context of a scientific or realistic workload which 

is represented using DAG, the QoS parameters has to be defined to ensure that the execution of the workload 

meets the specific performance and reliability requirements. Hence, in this work, the QoS has been defined for 

each task on the basis of the virtual machine (VM). Further, in this work, to capture the characteristics and 

requirements of the data flow which has to be communicated between the tasks, the edge parameters have been 

defined. The QoS-aware computational time for the 𝐾𝑞  is represented using 𝑆(𝐾𝑞) and the data flow between 

the parent node 𝐾𝑞  and child node 𝐾𝑟  is represented using 𝐸(𝐾𝑞 , 𝐾𝑟). Further, the precedent task of the parent 

node 𝐾𝑞  is attained by using the (4). 

 

𝑆(𝐾𝑞) = {𝐾𝑞|(𝐾𝑞 , 𝐾𝑟) ∈ 𝐷} (4) 

 

While the primary focus in this section is to represent the scientific or realistic workload in the form 

of DAG. The DAG helps to define the dependencies and sequencing of tasks. The incoming tasks of the DAG 

can provide valuable insights for analysis, optimization, and resource allocation in certain scenarios. Hence, in 

this work, the incoming tasks have been defined which is represented as 𝐾←. The 𝐾← for a given scientific or 

realistic task of the workload is represented using the (5). 

 

𝐹(𝐾←) = ∅ (5) 

 

Similar to the incoming tasks, the outgoing tasks can also help for analysis, optimization, and resource 

allocation in certain scenarios. Hence, in this work, the incoming tasks have been defined which is represented 

as 𝐾→. The 𝐾→ for a given scientific or realistic task of the workload is represented using the (6). 

 

∄𝐾𝑞 ∈ 𝐾: 𝐾→ ∈ 𝐹(𝐾𝑞) (6) 

 

3.2.  Execution model for workload processing 

In this section, the executional model for the processing the scientific or realistic workload has been 

presented. The heterogenous IoT environment comprises of the physical machine (PM), VMs, internet and 

users. These set of interconnected devices and systems vary in terms of their capabilities, characteristics, and 

functionalities. In such an environment, different types of IoT devices, protocols, platforms, and technologies 

coexist, creating a complex ecosystem. In a heterogeneous IoT environment, these components interact and 

collaborate to enable various IoT functionalities, such as data collection, processing, communication, and user 

interactions. The internet serves as the backbone, connecting the physical and virtual machines and facilitating 

the flow of data and services between them. In this work, we consider a heterogenous IoT environment where 

there various PM are defined as 𝐼. The 𝐼 is expressed as (7). 

 

𝐼 = {𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑜} (7) 
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Where, 𝑜 represents the PMs which exist in the heterogenous IoT environment. PM in a heterogeneous IoT 

environment can have different parameters and characteristics that define their capabilities and capacities. 

These parameters help define the capabilities and limitations of the PM in the IoT environment. They play a 

crucial role in resource provisioning, workload management, and decision-making processes related to task 

allocation, data processing, and system optimization. By considering these parameters, IoT systems can make 

informed decisions regarding resource allocation, load balancing, and optimization strategies based on the 

specific requirements and characteristics of each PM. In this work, the different parameters for the PM have 

been defined using 𝐼𝑙 . Also, for each PM, 𝐼𝑙 ∈ 𝐼. The 𝐼𝑙  is expressed as (8). 

 

𝐼𝑙 = {𝑠𝑡𝑙 , 𝑛𝑙 , 𝑞𝑙
↑, 𝑜𝑙 , (𝑔𝑙 , 𝑤𝑙), 𝑉𝑙} (8) 

 

Where, 𝑠𝑡𝑙 represents the storage-size, 𝑛𝑙 represents the processing-capacity, 𝑞𝑙
↑ represents the maximum level 

of energy, 𝑜𝑙  represents the maximum amount of data that can be transmitted over a network within a given 

time frame, (𝑔𝑙 , 𝑤𝑙) represents the voltage-level and frequency-level respectively and 𝑉𝑙 represents the VM 

which exist inside PM. The (𝑔𝑙 , 𝑤𝑙) is expressed as (9); 

 

(𝑔𝑙 , 𝑤𝑙) = {(𝑔𝑙
1, 𝑤𝑙

1), (𝑔𝑙
2, 𝑤𝑙

2), … , (𝑔𝑙
↑, 𝑤𝑙

↑)} (9) 

 

further, the 𝑉𝑙 is expressed as (10); 

 

𝑉𝑙 = {𝑣𝑙,1, 𝑣𝑙,2, … , 𝑣𝑙,|𝑉𝑘|} (10) 

 

each VM in the PM is expressed as (11); 

 

𝑣𝑙,𝑚 = {𝑔𝑙,𝑚, 𝑛𝑙,𝑚 , 𝑠𝑡𝑙,𝑚} (11) 

 

where, 𝑔𝑙,𝑚 represents the VM frequency-level, 𝑛𝑙,𝑚 represents VM storage-capacity and 𝑠𝑡𝑙,𝑚 represents 

storage-size. The VM in this work can shift between the PM depending on the task requirement.  

 

3.3.  Energy consumption modeling for physical machines 

Energy consumption modeling for PM in heterogenous IoT environments involves quantifying and 

predicting the amount of power or energy consumed by these PMs during operation. This modeling helps in 

understanding and optimizing energy usage, enabling more efficient resource allocation, energy management, 

and sustainability in IoT systems. Hence, in this section, we propose a model which helps to reduce the energy-

consumption during the execution of the scientific or realistic workloads. To process or execute each task of 

the workload, energy is consumed. Consider a PM which is processing a task, in this scenario, the PM consumes 

energy which can be defined as 𝑡𝑙 and the maximum energy consumed by the PM can be defined as 𝑖𝑙.  

Ali et al. [23], they have presented a model to evaluate the energy-consumption of PM. Using this model, the 

energy consumed by each PM can be expressed as (12): 

 

𝐼𝑙 = 𝑡𝑙 ∗ 𝑞𝑙
↑ ∗ 𝑧𝑙

𝑢 + (1 − 𝑡𝑙) ∗ 𝑞𝑙
↑ ∗ ((𝑔𝑙

↑)
3

)
−1

∗ (𝑔𝑙)3 (12) 

 

where, 𝑡𝑙 represents the maximum consumption of energy by the PM, 𝑞𝑙
↑ represents the maximal level of energy 

of the PM, 𝑧𝑙
𝑢 represents whether the PM is executing a task or in idle state and 𝑧𝑙

𝑢 ∈ {1,0}, 𝑔𝑙 represents the 

CPU-frequency at a given time frame 𝑢 and 𝑔𝑙
↑ represents the CPU-maximum frequency. From all these 

parameters, the energy-consumption can be reduced by optimizing the parameters and the energy consumption 

can be evaluated by the (13): 

 

ℰ = ∑ ∫ (𝑡𝑙 ∗ 𝑞𝑙
↑ ∗ 𝑧𝑙

𝑢 + (1 − 𝑡𝑙) ∗ 𝑞𝑙
↑ ∗ ((𝑔𝑙

↑)
3

)
−1

∗ (𝑔𝑙)3) 𝑑𝑡
yt

xt
𝑜
𝑗=1  (13) 

 

where, 𝑔𝑙 as well as 𝑧𝑙
𝑢 are time-dependent as they change depending on the time frame 𝑢 and depending on 

the task of the workload.  

 

3.4.  Optimization model for task scheduling in heterogenous IoT environment 

Various PMs and VMs are required for scheduling and executing the scientific or realistic workload 

tasks in the heterogenous IoT environment. Consider a PM which consists of different VMs represented as 𝑣𝑙,𝑚 
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which is used for executing the scientific or realistic workload tasks represented as 𝐾𝑞
𝑟. For execution of these 

tasks, a mapping-relationship among the 𝑣𝑙,𝑚 as well as 𝐾𝑞
𝑟 has to be defined. The mapping-relationship is 

defined as 𝑦𝑞,𝑙𝑚
𝑟  in this work. The 𝑦𝑞,𝑙𝑚

𝑟  is expressed as (14). 

 

𝑦𝑞,𝑙𝑚
𝑟 = {

0, 𝑖𝑓 𝐾𝑞
𝑟  is not mapped to 𝑣𝑙,𝑚

1,                                         otherwise
 (14) 

 

The task 𝐾𝑞
𝑟 which needs to be executed might have various data-dependency. Hence, the data-

dependency for each task can be expressed as (15); 

 

𝑔𝐾𝑞,𝑙𝑚
𝑟 + 𝐾𝐾𝑞𝑘

𝑟 ≤ 𝑠𝑡𝑞,𝑙𝑚
𝑟 ,   ∀𝑓𝑞𝑘

𝑟 ∈ 𝐹𝑗 (15) 

 

where, 𝑔𝐾𝑞,𝑙𝑚
𝑟  represents the time taken for completing the execution of 𝐾𝑞

𝑟, 𝐾𝐾𝑞𝑘
𝑟  represents the time 

consumed for transmitting data between the tasks 𝐾𝑞  and 𝐾𝑟  and 𝑠𝑡𝑘,𝑙𝑚
𝑟  represents the storage-size. After 

execution of 𝐾𝑞
𝑟 in 𝑣𝑙,𝑚, the time consumed for execution of 𝐾𝑘

𝑟 is expressed as (16); 

 

𝑔𝐾𝑟 = max
𝐾𝑞

𝑟∈𝑈𝑟

{𝑔𝐾𝑞,𝑙𝑚
𝑟 } (16) 

 

the 𝐾𝑞
𝑟 has to be executed in the given time frame. Hence, optimal resources have to be provided to execute the 

𝐾𝑞
𝑟 in that time frame. The time frame for the execution of the 𝐾𝑞

𝑟 is expressed as (17). 

 

𝑔𝐾𝑟 ≤ 𝑒𝑟 ,   ∀𝑥𝑟 ∈ 𝑋 (17) 

 

Consider a scenario where a PM is executing a task in the VMs and another task arrives to the PM 

having higher priority. Then in this scenario, the other task has to be given some resources or VMs. This issue 

can be expressed as; 

 

𝑔𝑙
↑ − ∑ 𝑔𝑙,𝑚 ≥ 0,

|𝑉𝑙|
𝑚=1    ∀𝑖𝑙 ∈ 𝐼 (18) 

 

𝑛𝑙 − ∑ 𝑛𝑙,𝑚 ≥ 0,
|𝑉𝑙|
𝑚=1    ∀𝑖𝑙 ∈ 𝐼 (19) 

 

the constraints presented in the (15)-(19) have to be addressed and resolved for reducing the energy-

consumption and providing optimal resources for the execution of 𝐾𝑞
𝑟. Hence, to resolve these constraints, the 

given equation is used; 

 

Min ∑ ∫ (𝑡𝑙 ∗ 𝑞𝑙
↑ ∗ 𝑧𝑙

𝑢 + (1 − 𝑡𝑙) ∗ 𝑞𝑙
↑ ∗ ((𝑔𝑙

↑)
3

)
−1

∗ (𝑔𝑙)3)
yt

xt
𝑜
𝑙=1 𝑑𝑡 (20) 

 

where, 𝑜 represents the size of PMs which exist in the heterogenous IoT environment, 𝑥𝑡 represents the time 

at which the execution started, 𝑦𝑡 represents the time at which the execution ended. Also, 𝑔𝑙 as well as 𝑧𝑙
𝑢 are 

time-dependent as they change depending on the time frame 𝑢 and depending on the task of the workload. This 

model main aim is to provide optimal resources for the execution of the tasks of the workload. Hence, to 

achieve this the following equation is used; 

 

Max (∑ ∑ 𝑐𝑝𝑢𝑞
𝑟 ∗ 𝒯𝑘

𝑟|𝑈𝑟|
𝑘=1

𝑛
𝑗=1 ) (∑ 𝑔𝑙

↑ ∗ 𝒜𝑙
𝑜
𝑙=1 )⁄  (21) 

 

where, 𝑛 represents the workload-size of 𝑋, |𝑈𝑗| represents the task-size of the 𝑋, 𝑐𝑝𝑢𝑞
𝑟  represents the CPU-

frequency for the 𝐾𝑞
𝑟, 𝒯𝑞

𝑟  represents the completion of the workload execution, 𝑜 represents the size of PMs 

which exist in the heterogenous IoT environment and 𝒜𝑙  represents the state (idle or active) of the PM. 

Furthermore, task scheduling is said to be a NP-Hard problem. Hence, to solve this, the proposed model 

executes the 𝐾𝑞
𝑟 using the flow presented in the Figure 2. The proposed model attains better performance in 

terms of execution time and energy consumption when compared with the existing works which has been 

discussed in the next section. 
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Figure 2. Flow for the workload task scheduling 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Experimental setup 

In this section, the results obtained during the experimentation have been discussed. The experiments 

have been conducted on a Windows 10 operating system containing 8 GB RAM and 500 GB of harddisk.  

The experiments have been conducted using CloudSim. The experiments have been performed based on 

execution time, power sum, average power, and energy consumption required by the resources for the execution 

of the tasks of the scientific workloads. Host and VM sizes are heterogeneous. Three scientific workload 

cybershake [24], inspiral [25], and SIPHT [26] have been considered for evaluating the proposed model and 

comparing it with the existing works. The proposed model has been compared with the EMS model [27]. 

 

4.2.  Execution time 

The execution time has been evaluated in this section. The proposed model has been evaluated by 

considering three scientific workloads. Further, the results have been compared with the existing EMS model. 

The results for the execution time have been given in the Figures 3-5 for the cybershake, inspiral, and SIPHT 

workloads. The results show that the proposed model has attained 79.16%, 83.32%, and 51.46% better 

performance for the cybershake, inspiral, and SIPHT workloads respectively. 
 

 

  
 

Figure 3. Execution time for cybershake workload 

 

Figure 4. Execution time for inspiral workload 
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Figure 5. Execution time for SIPHT workload 

 

 

4.3.  Energy consumption 

The energy consumption has been evaluated in this section. The proposed model has been evaluated 

by considering three scientific workloads. Further, the results have been compared with the existing EMS 

model. The results for the energy consumption have been given in the Figures 6-8 for the cybershake, inspiral, 

and SIPHT workloads. The results show that the proposed model has attained 24.35%, 44.85%, and 29.18% 

better performance for the cybershake, inspiral, and SIPHT workloads respectively. 

 

 

  
 

Figure 6. Energy consumption for cybershake 

workload 

 

Figure 7. Energy consumption for inspiral workload 

 

 

 
 

Figure 8. Energy consumption for SIPHT workload 
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5. CONCLUSION 

Resource provisioning for scientific or realistic workload in a heterogeneous IoT environment poses 

significant challenges related to execution time and energy consumption. The dynamic nature of workloads 

and the diverse characteristics of IoT devices require efficient resource allocation strategies. In this study, we 

have proposed a resource provisioning model that specifically addresses these challenges. The model takes into 

account the dynamic and realistic nature of IoT workloads, aiming to allocate computational resources 

effectively while optimizing execution time and energy consumption. To evaluate the effectiveness of the 

proposed model, we conducted experiments using three scientific workloads and compared the results with 

existing models. The evaluation focused on performance metrics such as execution time and energy 

consumption. The results of the evaluation indicate that the proposed model outperforms existing models in 

terms of reducing both time and energy consumption for the execution of workload tasks. This demonstrates 

the efficacy of the proposed resource provisioning model in meeting the real-time demands of scientific 

workloads while optimizing resource utilization and energy efficiency. The findings of this study contribute to 

the field of resource provisioning in heterogeneous IoT environments, providing insights and practical 

guidelines for designing efficient resource allocation mechanisms. By effectively managing resource allocation 

in real-time, the proposed model enables improved performance and energy efficiency in scientific or realistic 

workload scenarios. Future research could explore the integration of security mechanisms and privacy-

preserving techniques into the resource provisioning model. This would ensure that sensitive data and resources 

are adequately protected in the provisioning process. 
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