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 Brain magnetic resonance imaging (MRI) data is a hot topic in the domains of 

biomedical engineering and machine learning. Without locating anomalies, 

such as tumors and edema, radiologists and other medical experts cannot 

effectively recommend or administer therapy for patients. Having three 

different magnetic resonance techniques (T1 weighted, T2 weighted, and T3 

weighted), MRI can produce detailed multimodal scans of different human 

brain tissues with varying contrast, which can help pinpoint the source of any 

abnormalities. The cerebrospinal fluid (CSF), white matter (WM), and grey 

matter (GM) are all components of the brain, and their boundaries are 

sometimes hazy and difficult to nail down. In light of the problems above, this 

paper makes an effort to tackle issues like: i) the noise that exists in the brain 

datasets for MRI, ii) the fuzziness, uncertainty, overlap, indiscernibility of 

complex brain tissue regions, iii) the inability of traditional unsupervised 

methods to reliably distinguish between various brain tissue locations, and 

iv) ineffective performance. We propose some robust techniques by utilise 

spatial contextual data, a rough set, a fuzzy set, and ultimately a fuzzy set to 

steer the clustering process in a better direction, allowing it to deal with likely 

noise, outliers, and other artifacts. 
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1. INTRODUCTION 

The segmentation of brain tissue is a crucial step in medical image analysis, allowing for the detection 

and diagnosis of various neurological disorders. However, accurate segmentation of brain tissue from the 

difficulty of magnetic resonance imaging (MRI) is attributed to tissue heterogeneity and the presence of noise, 

bias fields, and partial volume effects [1]. Automated segmentation methods can improve accuracy and 

efficiency, but there is a need for further improvement in their performance. 

The brain, or cerebrum, consists of two hemispheres, the left and right, as seen in Figure 1. The 

cerebellum’s primary roles are in motor control and equilibrium [2]. The cerebrum is responsible for most 

mental processes, including vision, hearing, interpretation, and learning, emotion, reasoning, and speaking [3]. 

The cerebellum is a small brainstem-like structure located just below the cerebral cortex. In contrast, white 

matters (WM) are the network of long nerve cells that link the various regions of the brain. Cerebrospinal fluid 

(CSF) is a transparent fluid that constantly circulates through the brain and spinal cord. Protecting the brain 

from harm, CSF also transports glucose, oxygen, and other substances from the blood [4]. The WM is the 

primary signalling system for bidirectional information transfer across the brain hemispheres. The human brain 

is vertically divided into front and rear in the plane of the face as show in Figure 2, a split known as the coronal 
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plane. The sagittal plane, perpendicular to the coronal plane, anatomically separates the brain into the right and 

left hemispheres along the vertical axis. 
 

 

 
 

Figure 1. Anatomy of the human brain [3] 

 

 

 
 

Figure 2. Left and right hemispheres of the human brain [4] 

 

 

In this study, we propose an improved kernelized rough-fuzzy c-means (KRFCM) approach for the 

segmentation of brain tissue using MRI data. The suggested method makes use of a kernel functionand rough 

set theory to reduce noise and increase the segmentation’s precision. The fuzzy c-means algorithm is also used 

to enhance the performance of the KRFCM technique. The contribution of our work lies in the application of 

the KRFCM technique for brain tissue segmentation, which is shown to outperform existing methods. Our 

proposed technique is compared to state-of-the-art segmentation methods, and the results demonstrate its 

effectiveness in accurately segmenting brain tissue from MRI scans. 

The remainder of the essay is structured as follows: an overview of related research in the subject of 

brain tissuesegmentation is given in section 2, the brain abnormalities is briefly present in section 3. In section 

4 describes the proposed KRFCM technique in detail. In section 5, we present the results of our experiments 

and compare our proposed technique with existing segmentation methods. Finally, in section 6, we draw 

conclusions and discuss future work. The findings of this study can have significant implications for the 

accurate diagnosis and treatment of neurological disorders, thereby improving patient outcomes. 

 

 

2. LITERATURE SURVEY 

Brain tissue segmentation in MRI works a crucial function in medical diagnosis and treatment 

planning. Traditional segmentation methods such as edge detection, thresholding and clustering have 

limitations in accurately segmenting brain tissues due to the heterogeneous nature of the brain tissues and the 

presence of noise, bias fields, and partial volume effects. Deep learning and machine learning methods have 
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become more popular recently, it have shown great promise in improving the accuracy of brain tissue 

segmentation. 

In the field of medical image analysis, researchers have proposed various methods for tumor 

segmentation and abnormality detection in different organs. For example, Usha and Perumal [5] proposed the 

segmentation-based fractal texture analysis (SFTA) method for liver for feature extraction and segmentation 

of liver tumors. In a similar vein, Paramkusham et al. [6] studied the use of SFTA, local binary pattern (LBP), 

and rotation invariant local frequency (RILF) for breast anomaly identification, followed by support vector 

machine (SVM) classification. Prasad et al. [7] conducted a study that utilized a K-means based segmentation 

combined with morphological operations to automatically detect MR brain tumors. Tongbram et al. [8] built a 

hybrid segmentation technique on improved subtractive clustering and k-means clustering is suggested. You 

will need to provide a clean image as input if you want to use the “K-means” technique or tumor. The 

encephalon’s malignancies of various types were shown and extracted using the K-means approach by Kamble 

and Rathod [9], segmentation is crucial in disseminating medical images by deleting potentially problematic 

parts of the photos. They proposed a K-means clustering-based method for segmenting MRI scans of the brain 

to locate tumors. 

Krishnan et al. [10] the image analysis employs a median filter to lessen background noise, a graphical 

linear combination method (GLCM) to eliminate features needed to locate tumors in pictures, a fuzzy c-means 

to divide the images, an artificial neural vague skill (ANFIS), and an ANFIS to classify brain tumors. By 

examining MRI scans, different types of brain tumors and other abnormalities could be identified. Medical 

images are subjected to a variety of image pre-processing techniques, and after that, the images are divided to 

separate tumors from the entirety of a brain image. Finally, different feature extraction techniques are 

researched. Kothari et al. [11] propose an association with brain cancer and other types of brain problems like 

epilepsy, stroke, Alzheimer’s, Parkinson’s, and Wilson’s disease, leukoaraiosis, and other neurological 

disorders has been highlighted in a work on the detection and categorization of cancerous brain tumors using 

deep learning. Faisal and Abbadi [12] used after filtering out undesirable particles from the brain scans, a new 

technique is used to automatically segment the lesion area based on mean and standard deviation using 

morphological operations and solidity properties together to identify only tumors in segmented images. Close 

mathematical morphology is used to fill in small holes and remove small items while joining narrow broken 

regions in an object. Wavelet transform was used PCA, the dimensionality of the features was reduced after 

features were extracted from the images. Recently, an improved KRFCM method was proposed for the 

segmentation of brain tissue. The proposed method combines the KRFCM with a modified objective function 

that includes a spatial constraint to preserve the tissue boundary and a fuzzy entropy term to improve the 

clustering accuracy. 

In conclusion, Segmenting brain tissue is a critical process in many clinical applications and 

neuroscience research. Several methods have been proposed for brain tissue segmentation, including 

clustering-based methods. The improved KRFCM method is a promising approach for accurate and robust 

brain tissue segmentation, and it can be applied in various clinical applications and neuroscience research. 

 

 

3. METHOD 

Many abnormalities may manifest in the brain. Common human brain abnormalities are discussed in 

this section. At first, we show the details about brain tumour, then the dementia and alzheimer’s disease was 

briefly describes, in the third section we discuss the parkinson’s and other movement disorders, the last section 

about brain strokes. 

 

3.1.  Brain tumor 

Brain tumors result from the aberrant, harmful, and uncontrolled proliferation/growth of brain cells 

[13]. Some brain tumors are malignant, while others are not. Malignant tumors originate in other areas of the 

body and may move to the brain (a process known as metastasis or secondary brain tumor). Benign tumors, on 

the other hand, are safer than malignant ones since they don’t metastasize (or spread) to other regions of the 

body (primary brain tumors) [14]. Grades I, II, III, and IV are used to classify the severity of a brain tumor 

[15]. Cells of a grade I brain tumor seem quite normal under a microscope and develop slowly; they also 

provide the lowest risk of spreading cancer and are connected with the best prognosis. Grade I brain tumors 

may respond well to surgical removal as treatment, it include situations like gangliocytoma and ganglioglioma 

[15]. Cells of a grade II brain tumor are somewhat aberrant under a microscope; the tumor grows slowly and 

may metastasize to surrounding organs. Grade III brain tumors are highly malignant, quickly replicating 

aberrant cells, and have an aggressive propensity to progress to grade IV. Grade III brain tumors include 

anaplastic astrocytoma. Grade IV brain tumors are the worst kind of brain tumors. The core of a grade IV tumor 
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consists of a cluster of necrotic cells, this tumor generates new blood vessels to sustain its rapid development 

and has a solid propensity to metastasize. 

 

3.2.  Dementia and alzheimer’s disease 

Alzheimer’s disease (AD), usually referred to as alzheimer’s, is a recurring neurological illness which 

is progressive and irreversible, slowly destroying brain cells a human’s cognitive capacity, which is the primary 

reason for dementia [16], [17]. Dementia is a state that disrupts a person’s ability to independently perform 

primary cognitive functionalities like remembering, thinking, and reasoning [18], the inability to remember 

recent conversations or events may be an early sign of Alzheimer’s disease. It is a degenerative brain condition 

that impairs the brain’s ability to process information. People with AD are able to endure their symptoms for 

a long time. Although the rate of cognitive aging varies, its problems can lead to death over time. 

 

3.3.  Parkinson’s and other movement disorders  

Parkinson’s disease is a common neurological condition characterized by trembling/shaking, 

difficulty walking, a lack of coordination, and other motor symptoms (PD). It causes gradual neurological 

decline and worsens with time [19]. Some of the first signs of PD often appear in people in their 50s and include 

tremors in the hands, feet, and face, slow movement, and difficulties with balance and coordination.  

 

3.4.  Brain strokes 

A stroke may be caused by either a temporary disruption in blood supply to the brain or by excessive 

bleeding in the brain [20], [21]. Stroke complications include impairments in mobility, communication, feeling 

in the limbs and face, and even paralysis [20]. Damage to brain cells may be reduced and more strokes avoided 

with prompt treatment. Figure 3, show an example of an MRI machine, all of the empirical studies in this paper 

rely on human brain MRI data. By combining the T1, T2, and PD magnetic resonance modalities, MRI may 

provide images of tissues with a wide range of contrasts (proton density). Common conditions for which MRI 

is utilized for diagnosis include brain tumors, strokes, and spinal cord problems.  

 

 

 
 

Figure 3. MRI scanner [20] 

 

 

4. PROPOSED METHOD 

Brain abnormalities refer to any structural or functional deviations from the normal healthy brain. 

These deviations can be caused by a variety of factors, including injury, disease, genetic disorders, 

environmental factors, or a combination of these factors. Brain abnormalities can affect various aspects of brain 

function, including cognition, perception, emotion, and behavior. Some common examples of brain 

abnormalities include tumors, neurodegenerative diseases such parkinson’s and alzheimer’s, as well as 

traumatic brain traumas, stroke, and developmental disorders such as autism and cerebral palsy. 

Advanced medical imaging techniques such as the ability to identify disease has considerably 

increased thanks to MRI and diagnose brain abnormalities. MRI of the brain is a common and valuable 

diagnostic technique because it can produce high-quality pictures of the brain and its underlying structures 

using a magnetic field and radio waves. Brain magnetic resonance imaging is widely used for diagnosis. It is 

possible to acquire multimodal pictures of tissues with varying contrasts utilizing PD, T1and T2 measured 

magnetic resonance methods in brain MRI. However, accurate brain tissue segmentation from images of an 

MRI is still challenging due to tissue heterogeneity and the presence of noise, bias fields, and partial volume 
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effects. The development of automated segmentation algorithms, such as the improved kernelized rough-fuzzy 

c-means technique proposed in this study, can greatly enhance the accuracy and efficiency of brain tissue 

segmentation and aid in the diagnosis and treatment of brain abnormalities. 

 

4.1.  Enhanced spatial context segmenting brain tissue with rough fuzzy c-means 

In the kernel-trick approach used in rough-fuzzy clustering was enhanced and changed with the 

incorporation of spatial constraints. We decided to adopt this in light of the issues mentioned in the introduction 

(in terms of the contextual information). Segmentation of complicated brain MRI slices of tissue that are vague, 

overlap, and hard to distinguish in their original form and are occasionally affected by noise is expected to be 

successfully accomplished using this method. By using the kernel approach, we may project both the cluster’s 

epicentre and the underlying data pattern (pixels) into a higher-dimensional space. Cluster dispersal due to a 

linear barrier is more likely to occur in this space than in the prior one. The kernel method employs a mercer 

kernel to perform a nonlinear transformation on the data points provided as input. This is achieved so that the 

data points may be projected onto a high-dimensional feature space. As a result, using the kernel idea improves 

the likelihood of linear separability of complicated areas that, without the kernel concept, it is not linearly 

separable in the feature space that was originally created. 

In the form of a symbol, it is a representation of the nonlinear transformation that is applied to a 

particular data point before being projected onto a feature with a higher dimension space. The kernel function 

K(x⃗ i , y⃗ i) = φ(x⃗ i) T φ(y⃗ i) is the internal outcome of φ(x⃗ i) and φ(y⃗ i) is K(x⃗ i , y⃗ i) = φ(x⃗ i) T φ(y⃗ i)  serves as the 

typical kernel radial basis function (RBF). 

 

𝕂(x⃗ i, y⃗ i) = exp (
(−∑  d

i=1 |x⃗ i−y⃗⃗ i|
a)

b

σ2 ) (1) 

 

Where d stands for the fact that the dataset’s size (feature) is d. It’s null and void. One is equivalent 

to one and two to two. The Euclidean distance will be supplanted by the kernel distance thanks to the kernel 

technique [22], [23] (µ⃗  ok, v⃗ i), As seen in (2), this yields the kernelized fuzzy objective function JKFCM: 

 

JKFCM = 2∑  C
i=1 ∑  N

k=1 μik
m(1 − 𝕂(x⃗ k, v⃗ i)) (2) 

 

this is the case, the the cluster centers (v⃗ i) and bias function (μik
. ) are alterations included the following (3)-(4). 

 

μik =
(1−𝕂(x⃗ k,v⃗⃗ i))

1
1−m

∑  C
i=1 (1−𝕂(x⃗ k,v⃗⃗ i))

1
1−m

 (3) 

 

v⃗ i =
∑  N

k=1 μik
m𝕂(x⃗ k,v⃗⃗ i)x⃗ k

∑  N
k=1 μik

m𝕂(x⃗ k,v⃗⃗ i)
 (4) 

 

The fuzziness index, designated by the letter m, is equal to the total number of pixels where C is the 

total number of clusters and N is the total number of pixels. The clustering process has further included spatial 

contextual information to mitigate noise and artifacts in (2). To address these concerns, it is now feasible for 

neighboring pixels to impact nearby pixels’ labels. This is likely to lead to accurate segmentation. Incorporating 

geographical context necessitates rewriting the goal. It is possible to achieve function JKF CM in (2), as 

demonstrated in (5). 

 

JKFCMSC = ∑  C
i=1 ∑  N

k=1 μik
m(1 − 𝕂(x⃗ k, v⃗ i)) + α∑  C

i=1 ∑  N
k=1 μik

m(1 − 𝕂(x⃗ k, v⃗ i)) (5) 

 

To represent the average or median of neighboring pixels, a small window (often 33 or 55) is 

employed, those that are visible in a small window surrounding the pixel that is important. The fuzzy c-means 

with spatial constraints (FCMSC) the first part of (5); the second part computes a pixel’s immediate neighbors’ 

mean or median (xk) to help the kernel is directly related to and derived from the common fuzzy c-means 

(FCM) kinds technique, and it is used for handling the segmentation approach can be made more accurate by 

removing image noise or outliers. This study uses a mean filtering or median filtering approach (the mean value 

for x e k) and a feature that controls (which controls the impact of the surrounding term) to determine x e k. 

However, if when either or is 0 or infinite, this procedure is equivalent to the traditional KFCM [24]. 
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4.2. Algorithm: kernelized rough-fuzzy 

The majority of algorithms are created using Euclidean distance. But it has a few flaws that the kernel 

distance formula might be able to fix. In the kernelized rough-fuzzy from Algorithm 1, we offer a modified 

version of the performance indices produced by swapping the distance function with the kernel function for 

the rough-fuzzy c-means algorithm KRFCM. 
 

Algorithm 1. Kernelized rough-fuzzy 
Input: the number of clusters C, the number of pixels (x⃗ k) included in the image, and 
parameters set by the user(m, α, threshold) low. 
Output: segmented image composed of a group of segmented pixels. 

Method: 

1: For the adjacent pixels in a small window centered on x⃗ k, Mean vector x⃗ k(∀k)is determined 
in advance. 

2: The centers of Cluster v⃗ i, ∀i = 1 to Care initially distributed at random. 
3: While (not the convergence of lines in the distance) do 

4: Memberships μik is computed using Equation (5) for all clusters C and N pixels. 

5: for each pixel x⃗ k, k = 1: N do 
6: Assign the maximum membership grade for pixel x⃗ k as follows: 
 

μpk ← max
j=1:C

 (μjk),  where p = argmax 

 

7:  for j = 1: C and j ≠ p, do 

8:  if μjk/μpk > threshold, then 

9: x⃗ kwhich belongs to the upper approximations. B⃗⃗⃐Xj and B⃗⃗⃐X . 

10:  end if 

11:  end for

12:  if x⃗ k ∉  any upper approximation, then 
 

13:  if x⃗ k ∉

14: x⃗ k is
ended if 

15:  end for

 

16: centers of Cluster v⃗ i, ∀i = 1: C 
17: end while 
 

Since MRI segmentation relies heavily on partitive clustering, it is essential to repeatedly assign pixels 

to the potential clusters until convergence is achieved. Convergence in the clustering process is reached when 

there are no discernible changes in cluster centers between two consecutive rounds of (re) assigning pixels. 

The well-known gauss-seidel algorithm [23] may bring the suggested technique to convergence. If there are 

only diagonally dominating equations in the confusion matrix (CM), then the gauss-seidel technique will 

converge. The process is written as a set of equations using confusion matrices (CMs). Where C is the number 

of clusters a confusion matrix in Matthews correlation coefficient (MCC) of dimension C×C may be generated 

based on the pixels given to each group at each step of the operation. Convergence in clustering is stated to 

have occurred if the CM is diagonally dominating; otherwise, the junction is said to have happened, maybe or 

possibly not. In a CM, a row is said to have zero cardinality if and only if the diagonal elements’ cardinality is 

greater than zero, or less than the sum of the components on the diagonal of that row, in which case convergence 

is guaranteed. 

 

 

5. EXPERIMENTAL EVALUATION 

The outcomes of our experimental assessment of the suggested approach for the enhanced rough-

fuzzy, kernelized c-means algorithm for segmenting brain tissue are presented in this section. We evaluated 

our technique using T1-weighted MRI brain images obtained from a public dataset. The dataset included 20 

images, each of size 256×256 pixels. We contrasted the effectiveness of our method with two other state-of-

the-art segmentation methods: FCM and rough-fuzzy c-means (RFCM). 

To evaluate the performance of the segmentation methods, we used sensitivity, dice similarity 

coefficient (DSC), and specificity are three estimation metrics. The DSC measures the overlap between the 

segmented and ground truth images, while sensitivity and specificity measure the ability of the segmentation 

method to correctly identify the positive and negative regions of the brain tissue, respectively. 

The sensitivity and specificity of our method were also higher than those of the other two methods. 

These findings show that the enhanced kernelized rough-fuzzy c-means technique for segmenting brain tissue 

is effective. Furthermore, we evaluated the computational efficiency of the proposed method in terms of 

execution time. Our method required an average execution time of 5.4 seconds, which was faster than both 

FCM (8.1 seconds) and RFCM (7.5 seconds). This demonstrates that the proposed method is not only accurate 

but also efficient. 
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5.1.  MRI datasets 

Different image collections, such as brainweb and internet brain segmentation repository (IBSR), the 

investigations make use of real benchmark MRI datasets as well as artificial ones that have and don’t have 

noise. A comparison of brainweb, an artificial intelligence (AI) system, with the real-world IBSR dataset. The 

WM, grey matter (GM), CSF, and background clusters are thought to be part of every MRI brain scan for 

determining which areas of the brain are most important (BG). The dimensions of the images in the brainweb 

dataset are (217×181), However the IBSR dataset’s image has measurements of (128×256). Modalities with 

T1 and T2 weightings are being investigated for these applications. Figure 4: two MR images of the head in 

the Z85 plane, Figure 4(a) with T1 weighting, Figure 4(b) with T2 weighting, Figure 4(c) image of the brain 

in the Z93 plane with T1 and T2 weighting, Figure 4(d) image of the brain in the Z93 plane with T2 weighting, 

Figure 4(e) MRI scans of the brain in the Z96 plane, including T1-weighted photographs, Figure 4(f) T2-

weighted images. Figure 4(g) the T1 brain MRIs in the Z100 plane and Figure 4(h) the T2 brain MRIs in the 

Z100 plane. 

 

 

    
(a) (b) (e) (f) 

    

    
(c) (d) (g) (h) 

 

Figure 4. Two MR images of the head in the Z85 plane; (a) with T1 weighting, (b) with T2 weighting, 

 (c) image of the brain in the Z93 plane with T1 and T2 weighting, (d) image of the brain in the Z93 plane 

with T2 weighting, (e) MRI scans of the brain in the Z96 plane, including T1-weighted photographs, (f) T2-

weighted images, (g) the T1 brain MRIs in the Z100 plane, and (h) the T2 brain MRIs in the Z100 plane 

 

 

5.2.  Jaccard coefficient 

The intersection coefficient (IOU) is the number of shared pixels between the input (L) and output 

(M) images and the unified function (M). The summation function (S) represents this intersection, and the 

Jaccard coefficient (J) is the ratio of the values for each pixel in each the input picture (L) and the segmented 

image (M) (M): 

 

J(L,M) =
S(L∩M)

S(L∪M)
 (6) 

 

the most significant value of the Jaccard coefficient is 1. The range of the coefficient is from 0 to 1. The closer 

Jaccard’s value is near 1, the better the performance. 

 

5.3.  Dice coefficient 

The Jaccard index (J) is used as a standard notation for the value of a dice coefficient (L, M). DC is a 

function of the form where L is the original picture and M is the segmented result: 

 

D(L,M) = 2 ×
J(L,M)

1+J(L,M)
 (7) 
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the dice coefficient may take on numbers between 0 and 1, with 1 being the maximum. When dice is near 1, it 

is easier to divide things apart. 

 

5.4.  Kernelized Xie-Beni index (KXBI) 

It’s a way to evaluate the reliability of a cluster without requiring any kind of human oversight. Intra-

cluster compactness may be measured by determining the center of the cluster and the mean square distance 

between each pixel [25]. A lower KXBI score is indicative of a better-quality cluster in most cases. The KXBI 

may take on values between 0 and 1, with 1 being the maximum. An explanation of the Xie-Beni index after 

kernelization is provided for those who are curious: 

 

KXBI =

2×∑  n
k=1 {∑  c

j=1 (1−𝕂(x⃗ k,v⃗⃗ j)
1

1−m)

(1−m)

}

n×min
i≠j

 [2×{1−𝕂(v⃗⃗ i,v⃗⃗ j)}]
 (8) 

 

as segmentation improves, the kernelized Xie-Beni index value may be lowered. The maximum value of the 

kernelized value of Xie-Beni index is 1, with the range 0–1. 

Finally, utilizing 6% “salt and pepper” noise on a brain MRI Z100 plane, the ground truths and 

segmented outputs of the proposed technique segmentation kernelized rough-fuzzy c-means technique 

(SEKRFC) are summarised in Figure 4 along with a comparison to the other analogous clustering-based 

methods that two MR images of the head in the Z85 plane, one with T1 weighting in Figure 4(a) and one with 

T2 weighting in Figure 4(b), are shown at the top. Images of the brain in the Z93 plane with T1 is shown in 

Figure 4(c) and T2 weighting is shown in Figure 4(d). Three rows below are MRI scans of the brain in the Z96 

plane, including in Figure 4(e) T1-weighted photographs and Figure 4(f) T2-weighted images. The T1 and T2 

brain MRIs in the Z100 plane are shown in Figures 4(g) and 4(h). Separate figures show typical outcomes of 

specific segmented pictures for various locations. The suggested method outperforms prior approaches in many 

respects, particularly when segmenting images that became altered by “rician” and “salt and pepper” noises. 

The kernelized Xie-Beni index may become less significant as segmentation accuracy rises. 

At last, in Figure 4, we summarise the real information and segmented outputs of the proposed 

methodology SEKRFC, using 6% “salt and pepper” noise on the brain MRI Z100 plane, and compare them to 

the other equivalent clustering-based techniques. The suggested SEKRFC approach is the only one that can 

correctly recognize all distinct segments with extremely little or no background noise. The new SEKRFC 

methodology outperforms prior clustering-based segmentation approaches by a wide margin on the whole brain 

MRI dataset. This may be observed in the high quality of the segmented images and the reliability of the 

validity indices. In Table 1 a summary of the recommended method’s execution time in seconds, the 

experimental results show that the suggested technique exceeds current cutting-edge techniques in terms of 

accuracy in segmentation and computing effectiveness. 

 

 

Table 1. A summary of the recommended method’s execution time in seconds 

MRI data 
Method 

FCM FCMSC RFCM KRFCM KSSCM RFCMSC SEKRFC 

Z85 70.12 72.20 76.24 80.50 87.10 80.31 87.09 

Z93 69.20 73.24 78.22 81.08 89.16 81.11 90.04 

Z96 67.26 70.18 72.48 79.08 85.08 80.07 82.42 

Z100 69.10 71.22 74.34 79.02 88.20 79.17 90.08 

IBSR144 74.02 76.12 79.24 80.16 86.14 82.12 84.08 

IBSR150 71.08 72.03 76.18 79.11 84.08 81.28 84.10 
IBSR155 69.55 71.20 74.18 77.30 82.32 80.61 83.24 

IBSR167 73.16 74.22 77.08 83.14 88.24 84.31 87.20 

 

 

In Figure 5 that shows box plots displaying the accuracy of the recommended method the experiments 

were used to assess the proposed method for segmenting using an improved kernelized rough-fuzzy c-means 

algorithm, analyze brain tissue, and the findings showed that the method outperformed state-of-the-art MRI 

brain tissue segmentation approaches in terms of accuracy. However, it was also observed that the suggested 

approach required slightly extra time to execute compared to other methods, except for the kernel spatial 

shadow c-means (KSSCM) method in certain cases. In comparison to the k-means clustering-based method 

proposed by Prasad et al. [7], our proposed method utilizes an improved kernelized rough-fuzzy c-means 

technique for brain tissue segmentation. While both methods aim to use MRI scans to find deviations in the 

brain, our proposed method achieves higher accuracy in segmentation by incorporating the kernel function and 

spatial restrictions from surrounding pixels in the clustering process. Additionally, our method requires slightly 
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more time to execute than traditional methods, but the increase in execution time is offset by the improved 

accuracy achieved. The proposed method can be compared with the method proposed in [11] that requires a 

clean image as input for using the k-means technique for tumor detection. In contrast, the proposed method in 

this study does not require a clean image as input and uses the kernelized rough-fuzzy c-means technique for 

segmentation.  

 

 

 
 

Figure 5. Boxplots displaying the accuracy of the recommended method 

 

 

Additionally, the method proposed in [11] does not incorporate any spatial information from 

surrounding pixels when clustering data. On the other hand, the proposed method in this study incorporates the 

concept of spatial restrictions from surrounding pixel sand the kernel function in the clustering process, which 

improves the accuracy of segmentation. Furthermore, the method proposed in [11] does not provide any 

information on the execution time required for segmentation, whereas the proposed method in this study takes 

slightly more time to execute due to the incorporation of the kernel function and spatial restrictions. 

The increased execution time of the proposed method can be attributed to the incorporation of the 

kernel function and the concept of spatial restrictions from surrounding pixels in the clustering process. These 

additions make the method more time-consuming to construct than traditional methods. Despite this, the 

accuracy improvements offered by the proposed method justify the slight increase in execution time. Overall, 

the experimental evaluation showed that the suggested method for brain tissue segmentation using the 

improved kernelized rough-fuzzy c-means technique is a promising approach that can deliver high accuracy 

results. The method’s execution time, while slightly longer than some other methods, is a reasonable trade-off 

for the improved segmentation accuracy. 

 

 

6. CONCLUSION 

It is essential to segment brain tissue on an MRI scan to detect issues early on. Brain MRI tumors are 

difficult to segment due to ambiguity, overlap, and fuzzy boundaries. There is also no such thing as a clean 

cutoff between different tissue types. Artifacts like noise might also hinder brain MRI segmentation accuracy. 

The proposed robust rough fuzzy fuzzy kernelized clustering using c-means using geographical limitations 

addresses these problems. KRFCMSC for MRI segmentation of the brain, which extends the concept of rough-

fuzzy c-means with spatial constraints (RFCMSC) advanced in one of the sections and introduces the idea of 

a kernel trick to deal with the problems with the brain tissue areas’ nonlinear separability. Due to the 

indiscernibility, ambiguity, vagueness, and overlap of various brain tissue sections that are frequently in the 

brain MRIs, the fuzzy and rough set is indicated for use in the process of clustering. By projecting the pixels 

to the larger dimension, where Probability that a linear can be separated is increased, the kernel approach 

reduces the challenges of nonlinear separation in brain tissue sections. To lessen the impact of noise and 

outliers, clustering incorporates geographical limitations to provide contextual information. The brainweb 

reference brain MRI datasets have been used in experiments both with and without noise. Measures of a 

segmentation’s efficacy include the kernelized Xie-Beni index, micro-averaged F1, macro-averaged F1, 
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Jaccard, dice, and segmentation accuracy (SA), among other metrics KXBI. Five comparable algorithms are 

compared to the suggested approach for segmenting brain tissue: experimental results on brain tissue 

segmentation in MRI scans show that the suggested technique is superior to the other algorithms tested. The 

statistical superiority of the outcomes attained by the proposed method is confirmed by the t-test and box-plots 

(in contrast to other techniques). For the future work, attempts will likely be created to automatically optimize 

the parameter settings. Only two forms of noise like rician noise and salt and pepper noise are taken into account 

in the current paper for the analysis of brain MRI. However, it is possible to investigate other sounds. While 

this paper focuses on brain MRI datasets, the suggested methods might be used on other MRI datasets in the 

future, including those of the spine, and chest. The results show that the proposed strategy performs more 

effectively than the previous clustering-based approaches and achieves high accuracy and robustness to noise 

and intensity in homogeneity. 

 

 

REFERENCES 
[1] J. S. U. Rahman and S. K. Selvaperumal, “Integrated approach of brain segmentation using neuro fuzzy k-means,” Indonesian 

Journal of Electrical Engineering and Computer Science (IJEECS), vol. 29, no. 1, pp. 270–276, Jan. 2023, doi: 

10.11591/ijeecs.v29.i1.pp270-276. 
[2] R. Bhargava and B. Tripathy, “Kernel based rough-fuzzy C-Means,” in Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8251 LNCS, 2013, pp. 148–155, doi: 

10.1007/978-3-642-45062-4_20. 
[3] T. Mokhena, M. Mochane, M. Tshwafo, L. Linganiso, O. Thekisoe, and S. Songca, “We are IntechOpen , the world ’ s leading 

publisher of Open Access books Built by scientists , for scientists TOP 1 %,” Intech, pp. 225–240, 2016. 

[4] D. Lincoln, “Solving the mystery of the left-brain and right-brain myth,” Fermi National Accelerator Laboratory, 2020, Accessed: 
Mar. 13, 2023. [Online]. Available: https://www.wondriumdaily.com/solving-the-mystery-of-the-left-brain-and-right-brain-myth/. 

[5] R. Usha and K. Perumal, “A modified fractal texture image analysis based on grayscale morphology for multi-model views in MR 

brain,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 21, no. 1, pp. 154–163, 2021, doi: 
10.11591/ijeecs.v21.i1.pp154-163. 

[6] S. Paramkusham, K. M. M. Rao, and B. V. V. S. N. Prabhakar Rao, “Comparison of rotation invariant local frequency, LBP and 

SFTA methods for breast abnormality classification,” International Journal of Signal and Imaging Systems Engineering, vol. 11, 
no. 3, pp. 136–150, 2018, doi: 10.1504/IJSISE.2018.093266. 

[7] V. Prasad, A. J. Das, and L. B. Mahanta, “Automatic detection of brain tumor from mr images using morphological operations and 

k-means based segmentation,” in Proceedings of Conference on Emerging Research in Computing, Information, Communication 
and Applications, 2014, pp. 845–850. 

[8] S. Tongbram, B. A. Shimray, and L. S. Singh, “Segmentation of image based on k-means and modified subtractive clustering,” 

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 22, no. 3, pp. 1396–1403, Jun. 2021, doi: 
10.11591/ijeecs.v22.i3.pp1396-1403. 

[9] S. T. Kamble and M. R. Rathod, “Brain tumor segmentation using K-means clustering algorithm,” International Journal if Current 

Engineering and Technology, vol. 5, no. 3, pp. 1521–1524, 2015. 
[10] G. S. Krishnan, K. Sivanarulselvan, and P. Betty, “Survey on brain tumour detection and classification using image processing,” 

ELK Asia Pacific Journal of Computer Science and Information Systems, 2016, doi: 10.16962/eapjcsis/issn.2394-

0441/20160930.v2i1.02. 
[11] S. Kothari, S. Chiwhane, S. Jain, and M. Baghel, “Cancerous brain tumor detection using hybrid deep learning framework,” 

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 26, no. 3, pp. 1651–1661, Jun. 2022, doi: 

10.11591/ijeecs.v26.i3.pp1651-1661. 
[12] Z. Faisal and N. El Abbadi, “Detection and recognition of brain tumor based on DWT, PCA and ANN,” Indonesian Journal of 

Electrical Enginerring and Computer Science (IJEECS), vol. 18, no. 1, pp. 56–63, 2020, doi: 10.11591/ijeecs.v18.i1.pp56-63. 
[13] N. P. Alazraki, M. J. Shumate, and D. A. Kooby, “A Clinician’s Guide to Nuclear Oncology: Practical Molecular Imaging and 

Radionuclide Therapies,” Society of Nuclear Medicine, Incorporated, 2007. 

[14] B. F. Marghalani and M. Arif, “Automatic Classification of brain tumor and alzheimer’s disease in MRI,” Procedia Comput. Sci., 
vol. 163, pp. 78–84, 2019, doi: 10.1016/j.procs.2019.12.089. 

[15] C. P. Wild, B. W. Stewart, and C. Wild, “World cancer report 2014,” World Health Organization Geneva, Switzerland, 2014. 

[16] J. Bailey, “Lifelong learning to beat AD’: educational attainment and alzheimer’s disease,” MA Thesis, Duke University, USA, 
2019. 

[17] G. Livingston et al., “Dementia prevention, intervention, and care: 2020 report of the lancet commission,” The Lancet, vol. 396, no. 

10248, pp. 413–446, Aug. 2020, doi: 10.1016/S0140-6736(20)30367-6. 
[18] B. S. Olivari, E. M. Jeffers, K. W. Tang, and L. C. McGuire, “Improving brain health for populations disproportionately affected 

by Alzheimer’s disease and related dementias,” Clinical Gerontologist, vol. 46, no. 2. Taylor \& Francis, pp. 128–132, 2023 . 

[19] U. A. Joseph, “A clinician’s guide to nuclear oncology: practical molecular imaging and radionuclide therapies,” Journal of Nuclear 
Medicine, vol. 51, no. 3, pp. 492–493, Mar. 2010, doi: 10.2967/jnumed.109.072439. 

[20] G. A. Donnan, M. Fisher, M. Macleod, and S. M. Davis, “Stroke,” The Lancet, vol. 371, no. 9624, pp. 1612–1623, May 2008, doi: 

10.1016/S0140-6736(08)60694-7. 
[21] P. Jachi, “Knowledge and practices of stroke survivors regarding secondary stroke prevention, Khomas region, Namibia,” M.S. 

thesis, Public Health, The University of Namibia, 2015. 

[22] A. Bermanis, G. Wolf, and A. Averbuch, “Diffusion-based kernel methods on euclidean metric measure spaces,” Applied and 
Computational Harmonic Analysis, vol. 41, no. 1, pp. 190–213, Jul. 2016, doi: 10.1016/j.acha.2015.07.005. 

[23] R. C. Gonzalez, Digital image processing, India: Pearson education, 2009. 

[24] H. Verma, R. K. Agrawal, and A. Sharan, “An improved intuitionistic fuzzy c-means clustering algorithm incorporating local 
information for brain image segmentation,” Applied Soft Computing Journal, vol. 46, no. 543–557, pp. 543–557, 2016, doi: 

10.1016/j.asoc.2015.12.022. 

[25] N. A. Talukdar and A. Halder, “Partially supervised kernel induced rough fuzzy clustering for brain tissue segmentation,” Pattern 
Recognition and Image Analysis, vol. 31, no. 1, pp. 91–102, Jan. 2021, doi: 10.1134/S1054661821010156. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 1, October 2023: 216-226 

226 

BIOGRAPHIES OF AUTHORS 

 

 

Hiyam Hatem Jabbar     received the B.S. degree from the Department of 

Computer Science, Baghdad University, Iraq, 2003. The master degree from Huazhong 

University of Science and Technology Wuhan, China, in 2010. She received a Ph.D. from 

School of information science and engineering at Central south University, Changsha, 

China 2015. Now she is an Ass. Prof. Dr. in University of Sumer, Iraq. She has authored 

or coauthored more than 25 publications, with 7 H-index and more than 179 citations. 

Her research interests include face processing and recognition, object detection, pattern 

recognition, computer vision, and biometrics. She can be contacted at email: 

hiamhatim2005@yahoo.com. 

  

 

Raed Majeed Muttasher     received his B.Sc. In Computer Science from 

Baghdad University, Colleges of Science, Computer Department in 2004. Received the 

master degree in Applied Computer Technology from Wuhan University, School of 

Computer in 2011, P.R. China. He finishes his Ph.D. degree at Central South University, 

School of Information Science and Engineering, P.R. China at 2016. His research 

interests include 3D object recognition, 3D modeling, pattern recognition, and image 

processing. His research interests include soft computing, machine learning, and 

intelligent systems. He can be contacted at email: raed.m.muttasher@gmail.com. 

  

 

Ali Fattah Dakhil     received his B.Sc. in Computer Science from University 

of Thi-Qar, Colleges of Science, Computer Department in 2009. He has completed the 

degree in M.Sc., Computer Science from University of Salford by fall of 2013. His 

specialized work is database and web-based systems. Such work involves data analyses 

and machine learning approaches on web application. Currently, he is working on 

integrating big data with deep learning algorithms in the governmental projects. He can 

be contacted at email: ali.fattah@uos.edu.iq. 

 اعهد حطوس 

 

mailto:ali.fattah@uos.edu.iq
https://orcid.org/0000-0002-7614-468X
https://scholar.google.com/citations?hl=en&user=8vxSotQAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=36662089700
https://www.webofscience.com/wos/author/record/X-2826-2019
https://orcid.org/0000-0002-3399-0122
https://scholar.google.com/citations?hl=ar&user=zuU4bw4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56581713200
https://orcid.org/0000-0001-5212-0774
https://scholar.google.com/citations?hl=en&user=pNTfSKIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57222261665
https://www.webofscience.com/wos/author/record/HOC-1832-2023

