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 One of the infrastructure applications that cloud computing offers as a service 

is parallel data processing. MapReduce is a type of parallel processing used 

more and more by data-intensive applications in cloud computing 

environments. MapReduce is based on a strategy called "divide and conquer," 

which uses regular computers, also called "nodes," to do processing in 

parallel. This paper looks at how open multiprocessing (OpenMP), the best 

shared-memory parallel programming model for high-performance 

computing, can be used with the proposed fractal network model in the 

MapReduce application. A well-known model, the cube, is used to compare 

the fractal network model and its work. Where experiments demonstrated that 

the fractal model is preferable to the cube model. The fractal model achieved 

an average speedup of 2.7 and an efficiency rate of 67.7%. In contrast, the 

cube model could only reach an average speedup of 2.5 and an efficiency rate 

of 60.4%. 

Keywords: 

Cloud computing 

Cube model 

Fractal 

MapReduce 

Open multiprocessing 

Shared-memory 
This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Muslim Mohsin Khudhair 

Department of Computer Information System, College of Computer Science and Information Technology 

University of Basrah 

Basrah, Iraq 

Email: muslim.khudhair@uobasrah.edu.iq 

 

 

1. INTRODUCTION  

Cloud computing is a new technology growing quickly in the information technology (IT) industry. 

It uses different ideas and technologies, such as virtualization, processing power, storage, sharing, distributed 

networks, and connectivity, to its advantage. Cloud-based services are now one of the best ways for users and 

businesses to get on-demand services and unlimited storage [1]. One of the most important things about a 

cloud-based platform is that it makes it easy to quickly process large data sets in cloud applications. To deploy 

big data applications on a cloud data centre network (DCN), the key challenges are volume, velocity, and 

variety. Volume is the amount of data, variety is the number of data types, and velocity is the speed at which 

data is processed [2], [3]. 

Big data is becoming an increasingly important way for a business to enhance its value proposition or 

the efficiency of its operations. Due to the sheer amount of data, big data relies heavily on parallel computing 

technology to finish processing data quickly. Many specialized programming models and runtime systems have 

been created to support big data [4]. The map/reduce approach is utilized by Hadoop and Spark [5]. GraphLab, 

Giraph, and GraphX use the Pregel model [6]. Storm can deal with flowing data [7]. Each system uses threads 

https://creativecommons.org/licenses/by-sa/4.0/
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and basic ways to establish a parallel and distributed computing environment. High-performance computing 

experts created programming models that make designing systems (like the ones above) easier and balance 

programming effort and performance. 

Parallel computer architecture uses shared memory, distributed memory, and hybrid systems. Shared 

memory systems, such as open multiprocessing (OpenMP), can give all processors access to the same memory 

so processors don't have to communicate with each other. A distributed memory system, like message passing 

interface (MPI), is distinguished by its high-speed connection, which moves data between the system's nodes. 

Hybrids connect nodes with high-speed connections and share memory [8]. So, the main goal of this research 

is to find a way to use the OpenMP program to simulate Mapreduce by using the fractal network models shown 

to meet the needs of processing big data. 

The rest of this work is put together in the following way. In section 2, the main concepts behind 

MapReduce are explained. In section 3, the basic ideas of fractals are clarified. These ideas will be the basis 

for the suggested architectural framework. In section 4, OpenMP demonstrates the basic concepts and 

knowledge of the parallel computing environment. Section 5, the central part of this paper, describes the given 

fractal model in detail. Section 6 provides the details of the experiments and an analysis of the results. The 

research results are discussed in the last part of the paper, section 7. 

 

 

2. MAPREDUCE FRAMEWORK 
MapReduce is a parallel and distributed programming model created by Google. It is a powerful 

software that supports data-intensive applications because it can handle errors, is easy to use, and can grow as 

needed [9]. On the other side, Apache/Hadoop is an open-source framework licensed by Apache and the most 

well-known way to use MapReduce. It comprises two parts: Hadoop distributed file system (HDFS), which 

stores files, and MapReduce, which processes them. The HDFS is a scalable file system, has a high throughput, 

and can handle errors. Figure 1 shows the main tasks of MapReduce, which can be summed up in the following 

way [1], [10]: 

- Mappers process the input data, which is read from the HDFS file system, and produce output pairs of 

“key/value.“ 

- During the shuffling step, the outputs of the mappers are redirected to reducer nodes by the values of their 

respective "keys." 

- The data that has been shuffled is processed by the reducers, providing the final outputs. 

 

 

 
 

Figure 1. Main steps of the MapReduce framework 

 

 

3. THE FUNDAMENTALS OF FRACTALS AND MEASUREMENTS 

Fractals are patterns and structures based on geometry that may repeat themselves of any size, from 

the smallest to the largest. It is commonly known that fractals may describe structures and surfaces that cannot 

be defined by traditional Euclidean geometry [11], [12]. Fractals weren't studied widely until computer 

simulations improved and made it possible to make artificial and mathematical fractals and automatically make 

fractal dimensions' estimations easy [13]. 

Fractal dimension is a (usually non-integer) number that can be assigned to any natural, random, or 

fabricated fractal to calculate or quantify the complexity of the fractal concerning the space it lives in [13]–

[15]. The following is the formula for computing the similarity dimension, often known as Ds, for self-similar 

fractals that consist of N copies, all of which are scaled by the same factor r: 
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𝐷𝑆 =
𝑙𝑜𝑔(𝑁)

𝑙𝑜𝑔(1/𝑟)
 (1) 

 

3.1.  Sierpinski triangle 

The Sierpinski triangle is one famous fractal shape which builds via an iterative methodology [16], 

[17]. Level 0 consists of a single triangle, as seen in Figure 2, and is the first available level. If the triangle in 

the middle is removed, three additional triangles will be the same as in level 1. This results in the formation of 

four triangles, three of which are filled with the black color and one of which is blank. Continuing to remove 

triangles from the filled triangle, it will advance to the second level. On level two, nine triangles are black, and 

four blank triangles. In the same way, it follows to get to the third level [17], [18]. 

 

 

 
 

Figure 2. Four levels of Sierpinski triangle 

 

 

4. OPEN MULTI-PROCESSING (OPENMP) 

OpenMP is often used on symmetric multiprocessor platforms (SMPs), which have a CPU with many 

processing cores. It works best for fine-grained parallel computing. OpenMP-based computing is fast and has 

low latency [19], [20]. The compiler directives make it possible for the C/C++ and Fortran programming 

languages to use loop-based parallelization, tasking, work sharing, and synchronization. From a programming 

point of view, the OpenMP model is better because it doesn't take too much work to make sequential programs 

run simultaneously [21]. 

OpenMP's primary parallelization technique is known as multithreading. In this technique, a single 

master thread splits out several slave threads, as seen in Figure 3. The instructions in the serial environment 

are carried out one after the other by the master thread. In contrast, the instructions in the parallel environment 

are carried out simultaneously and independently by the slave threads [22], [23].  

Because OpenMP uses a shared memory model, every thread can access the global memory by 

default. Slave threads can communicate by reading and writing to the global memory. When they update global 

or shared memory simultaneously, it can lead to a race condition that changes depending on how the threads 

are scheduled. When two or more threads access the same memory without the necessary synchronization, this 

is called a "data race condition." Additionally, OpenMP enables the parallelization of parallel areas, allowing 

parallel loops to be nested inside parallel loops. When this happens, the slave threads that were made spawn 

more threads to make the team [24], [25]. 

 

 

 
 

Figure 3. A fork-and-join approach of OpenMP parallelism 

 

 

4.1.  Scheduling methods 

Scheduling work becomes the most important part of parallelization. OpenMP gives you several ways 

to set up a schedule, which are [26], [27]: 

- The static schedule works best if all the iterations take the same time to compute. 
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- Through dynamic scheduling, a minimal amount of work is assigned to each thread, and after that work 

is completed, the thread receives more jobs. It, however, aids in a better load-balancing of work among 

the OpenMP threads when a loop's iterations do not have an evenly distributed demand. 

- The guided schedule determines the chunk size based on the number of unallocated iterations. So, the 

first chunks of the threads are bigger. As the number of allocated iterations increases, the chunk size 

decreases. 

- The auto schedule lets the compiler and the runtime decide how to schedule things. The behaviour of the 

automatic schedule will differ depending on the implementation-specific. 

- The runtime schedule lets a program wait until runtime to decide which OpenMP schedule to use. 

Schedule and chunk-size options can be chosen at runtime. 

 

4.2.  Speedup and efficiency in parallel computing 

Speedup and parallel efficiency measure how well a parallel algorithm works on a parallel 

architecture. The equations listed below are utilized in the process of determining them [25], [27]: 

 

𝑆𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑇𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 (2) 

 

𝐸𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑆𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑁𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 (3) 

 

where S (parallel) is the parallel speedup, T (sequential) is the time it took for the sequential program to run, 

T (parallel) is the time it took for the parallel program to run, and E (parallel) is the efficiency of parallel 

processing, and N (parallel) is the number of processors used for parallel processing. 

 

 

5. THE PROPOSED METHODOLOGIES 

This section will simulate the fractal architecture model based on the recursive fractal Sierpinski 

triangle (Gasket) formula described in sub-section 3.1. These models system places the processing elements at 

the vertices (nodes) of the graph. The word count will be used here as an example of how efficiently the model's 

network work. Word count is a typical use of MapReduce, which reads text files and counts how many times 

each word appears. The number of lines in the text input file is counted right at the beginning of the test model. 

The file is then split into chunks, each with a certain number of text lines. This MapReduce will be implemented 

using the fractal architecture model within the OpenMP environment. 

 

5.1.  The fractal architecture model 

The following is a comprehensive explanation of the methods involved in the design of the model by 

the following steps: 

- Input text. 

- Counting the number of lines of the entered text data file. 

- Splitting the lines of the text file into equal chunks for distribution to processing nodes, as in Table 1. 

- Distributing the chunks to the allocated first three nodes (1, 2, and 3) so that each node represents a 

processing unit that performs the mapping and shuffling process, as in Figure 4. 

- The OpenMP environment's parallel processing works by having each node in the preceding phase 

designate a free thread to perform the necessary processing (mapping and shuffling). 

- The outputs (value, keys) consider inputs to the rest nodes (4, 5, and 6) that perform the reducing process. 

- Under the OpenMP environment parallel processing, each node in the previous step assigns a free thread 

to perform the required processing (reducing). 

- Finally, the output completes the MapReduce operation to calculate the number of word repetitions for 

the input text file. 

 

 

Table 1. Distributing the input text file chunks to processing nodes 
Node 1 Node 2 Node 3 

chunk 1 chunk 2 chunk 3 

chunk 4 chunk 5 chunk 6 

chunk 7 chunk 8 chunk 9 

… … … 

.. .. chunk n 
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Figure 4. The fractal architecture model for implementing MapReduce 

 

 

5.2.  The comparison cube model 

For evaluation and investigation, it utilizes a well-known network model called the "cube model" to 

compare and contrast the performance of the recently presented fractal model, as shown in Figure 5. This model 

evaluates using the same process methodology used in the model proposed. But the difference is that the file 

lines are split on the first four nodes (1, 2, 3, and 4), which do the Mapping and Shuffling process, as shown in 

Table 2. At the same time, the outputs of the previous nodes are used as inputs by the remaining nodes (5, 6, 

7, and 8) to complete the Reducing process. 

 

 

 
 

Figure 5. The cube architecture model for implementing MapReduce 

 

 

Table 2. Distributing the input text file chunks to processing nodes for a cube model 
Node 1 Node 2 Node 3 Node 4 

chunk 1 chunk 2 chunk 3 chunk 4 

chunk 5 chunk 6 chunk 7 chunk 8 

chunk 9 chunk 10 chunk 11 chunk 12 

… … … … 

.. .. … chunk n 

 

 

5.3.  Algorithm of fractal architecture model 

The algorithm of the fractal architecture model takes an input data file and returns an output file for 

repeating words (IPs). During the parallel processing process, six threads allocate. The first three threads use 

to run the Mapping and Shuffling processes, while the last three serve to run the reducing process. It notes that 

the nowait clause uses in a work-sharing loop construct, which means turning off the barrier and preventing 

the thread from waiting. Algorithm 1 describes the main basic steps implemented within the OpenMP 

environment. 
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Algorithm 1. MapReduce (fin, fo) 

 
 

 

6. RESULTS AND ANALYSIS OF EXPERIMENTS 

This section analyzes and discusses the findings produced from serial and parallel implementations 

of the suggested fractal architectural model. In addition, compares these results with the cube architecture 

model. Experiments were performed on a quad-core HP Laptop (1.60 GHz CPU, 16 GB RAM). The C++ 

language is used to implement the experiment program. In a Windows environment, it compiled the programs 

using gcc 4.9.2 and OpenMP 5.0. The testing consisted of using text data sets (Data1, Data2, Data3, Data4, 

Data5, and Data6) that contained IPs addresses data of size lines (100000, 200000, 300000, 400000, 500000, 

and 600000) accordingly. 

 

6.1.  Speedup and parallel efficiency  

The input data is divided into chunks for testing, depicted in Table 3. These chunks process in parallel 

using four threads. The amount of time needed to process data sets changes depending on the size of the chunk 

being processed, as shown in Figure 6. Consequently, it is considered a factor affecting how well a network 

works. It conducts the same test on the cube model illustrated in Table 4 and Figure 7 to compare and evaluate 

the performance efficiency. 

From the Tables 3 and 4, it is clear that the fractal model is better than the cube model because it takes 

less time to implement for the same tested data. The other test between the fractal model and the cube model 

measures to assess a program's effectiveness by speedup and efficiency, as depicted in Table 5 and Table 6. It 

is important to remember that in (2) and (3) in sub-section 4.2 which used to calculate the findings in the Tables 

5 and 6. Based on the results, the fractal model is better than the cube model. The findings demonstrated that 

the speedup achieved an average in the fractal model of 2.7, with an average efficiency of 67.666%. While the 

cube model achieved a speedup of 2.5 with an efficiency rate of 60.406%. 

 

 

Table 3. The execution time of the fractal model for text datasets with varied chunk sizes in parallel 
Chunks 

No. 

6 10 20 30 40 50 60 70 80 90 100 110 120 

Data1 3.527 2.563 1.790 1.482 1.492 1.539 1.462 1.509 1.590 1.627 1.750 1.818 1.852 

Data2 14.032 8.304 4.844 3.713 3.525 3.088 3.031 2.962 3.055 3.048 3.139 3.233 3.456 

Data3 36.864 21.362 11.011 7.187 6.193 5.640 5.375 5.088 5.069 5.053 5.031 5.059 5.155 

Data4 65.320 39.512 17.447 11.969 9.675 9.086 8.107 7.459 7.500 7.176 7.001 6.977 7.050 

Data5 98.637 59.332 30.687 20.935 14.201 13.710 12.651 11.003 10.713 10.828 9.600 9.414 10.154 
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Figure 6. The execution time for several data sets with various chunk sizes running in parallel 

 

 

Table 4. The execution time of the cube model for text datasets with varied chunk sizes parallel 
Chunk

s No. 

6 10 20 30 40 50 60 70 80 90 100 110 120 

Data1 3.753 2.596 1.833 1.552 1.470 1.818 1.879 1.933 1.900 1.659 1.850 1.912 1.983 

Data2 14.246 9.046 5.040 3.953 3.340 3.138 3.696 2.987 3.663 3.458 3.304 3.289 3.497 

Data3 37.157 23.418 11.916 8.184 6.898 6.608 5.764 5.252 5.140 5.181 5.204 5.489 5.715 

Data4 67.819 41.225 18.999 13.758 10.201 10.623 8.467 8.009 7.624 7.295 7.680 7.835 7.353 

Data5 108.998 63.750 33.365 23.785 17.939 16.292 13.759 11.720 11.418 11.331 11.199 9.729 10.173 

 

 

 
 

Figure 7. The execution time of the cube model for various chunk sizes running in parallel 

 

 

Table 5. Efficiency and speedup of the fractal model for diverse data sets in parallel mode 
Data sets Serial (Sec.) Parallel (4 Thread) (Sec.) Speedup Efficiency % 

Data 1 12.934 3.415 3.787 94.675 

Data 2 46.284 11.989 3.861 96.525 

Data 3 101.531 30.307 3.350 83.750 

Data 4 177.794 59.750 2.975 74.375 

Data 5 277.537 97.414 2.849 71.225 

Data 6 341.785 151.017 2.263 56.575 

Average 159.644 58.982 2.707 67.666 
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Table 6. Efficiency and speedup of the cube model for diverse data sets in parallel mode 
Data sets Serial (Sec.) Parallel (4 Thread) (Sec.) Speedup Efficiency % 

Data 1 11.785 5.030 2.343 58.575 

Data 2 46.085 18.214 2.530 63.250 

Data 3 100.824 40.046 2.518 62.942 

Data 4 176.886 70.095 2.524 63.088 

Data 5 275.917 102.441 2.693 67.336 

Data 6 339.579 157.790 2.152 53.800 

Average 158.513 65.603 2.416 60.406 

 

 

7. CONCLUSION 

The OpenMP parallel computing model analyses the parallel performance of the given fractal model 

to determine the parallel speedup and efficiency. In the cases where this model utilized the MapReduce 

methodology to accomplish the word count computation, the findings demonstrated that the fractal model's 

average execution time in parallel is 10% faster than the time required by the cube model. Also, comparing the 

fractal model's average efficiency with the cube model reveals that the fractal model attained a higher success 

level by approximately 7%. Accordingly, considering the results obtained, the fractal model is preferable to 

the cubic model. Because the cubic model has more links than the fractal model, communication complexity 

and time are higher. 
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