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ABSTRACT

Air quality is a matter of concern these days due to its adverse effect on human
health. Multiple new air pollution monitoring and prediction stations are be-
ing developed in smart cities to tackle the issue. Recent advanced deep learning
techniques show excellent performance for air quality predictions but need suffi-
cient training data for model performance. The data insufficiency issue at a new
station can be resolved using the proposed novel transfer learning-based frame-
work to predict pollution concentration at the new station. The prediction ability
at a new station can be significantly enhanced by this effective technology. The
performance of the model is assessed on various stations in Delhi, India.
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1. INTRODUCTION
Increased number of diesel vehicles in urban areas [1]-[3] creating serious harm to the quality of the

air and human health. Bad air quality is responsible for many cardiovascular, respiratory diseases [4] in rural
areas and millions of premature deaths worldwide, according to the World Health Organization (WHO) [5].
Due to exposure to small particles of particulate matter (PM2.5), 91% of these premature deaths occur in low
income countries. Better policies and monitoring strategies can control this air pollution by having efficient
smart homes [6] and prioritizing pollution control by policymakers [7]. It is observed that even in the most
polluted cities, there are insufficient air quality monitoring stations to fully cover the city [8] and hence it is
highly recommended to increase this number.

This study focuses on the precise forecasting of PM2.5 pollutant concentration for the next hour
because it is crucial to monitor this pollutant. Due to its small size, PM2.5 can easily enter the bloodstream,
causing harmful effects on human health such as the development of cardiovascular and respiratory disorders
[9]. Nitric oxide (NO), nitrogen oxides (NOx), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3),
PM2.5, particulate matter (PM10), and other pollutants are all found in the air. The air pollutant concentration
prediction problem has time-series data.

The number of training samples needed to create the model and make predictions is typically lower
at new air quality monitoring stations in smart city environments [10]. There are certain publications already
published that can transmit knowledge from many sources. This type of strategy decreased the prediction
error in industrial manufacturing for time-series data [11]. In another study, autoencoders are applied to many
sources simultaneously, and predictions are made using target data and consensus regularization based on
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entropy [12]. Estimates of hospital admissions for respiratory disorders in the Brazilian cities of Campinas and
Sao Paulo are made using artificial neural network (ANN) with ensemble technique [13] and particulate matter
and weather variables. Predicting weekly pharmaceutical costs in the healthcare industry uses an ensemble
approach using numerous sources [14]. For the new station for monitoring air quality, the ensemble approach
[15] produced cumulative predictions utilising data from numerous sources in order to address the issue of
data scarcity. Deep learning proved to work well for time series classification (TSC) problems [16], [17]. A
hybrid deep learning model was proposed [18] for air quality prediction, but there is still a lot to be explored in
this domain. Additionally, there is a dearth of research on the development of air pollution prediction models
employing data from many source stations.

Studies have explored popular machine learning methods in this domain. Methods like ANN [19],
multi-layer perceptron (MLP) [20], support vector machines (SVM) [21], genetic algorithms (GA) [22], mani-
fold learning [23], and support vector regression (SVR) [24]. Although these models have achieved acceptable
performance, they lack the ability to capture long term dependencies accurately in time-series data for air
quality prediction. Deep learning models for time-series patterns can be well captured by advanced types of
networks, such as the long short-term memory (LSTM) network [25], recurrent neural network (RNN), the
encoder-decoder model [26], the bidirectional GRU model [27], gated recurrent unit (GRU) [28], stacked au-
toencoder (SAE) [29]. Also, LSTM and bidirectional long short-term memory (BDLSTM) architectures with
combined layers have produced good results [30].

This paper proposes a chaining model using a transfer learning-based approach to solve the training
data insufficiency issue at a new station. The novel approach builds pre-trained models on nearby multiple
source stations for air quality prediction. These models are chained together in an additive manner to perform
prediction at the target station with performance improvement. The contributions of this work are summarized
as follows:

- Proposed novel transfer learning-based approach to tackle the issue of insufficient training samples at new
station.

- The proposed approach is evaluated on the datasets of multiple stations in Delhi, India, and the effectiveness
of this model is determined using performance metrics.

- Proposed approach that gradually improves the model’s capacity for forecasting the future.

2. BASE MODEL GENERATION
2.1. Multi-headed CNN-GRU model

The base model is used to build the best-performing model architecture, which can be used for knowl-
edge transfer. The deep learning base model that is proposed is a multi-headed CNN-GRU architecture, which
shows that a separate convolutional layer can be built for every attribute, then the output can be merged to-
gether, which is processed further by GRU layers. Model architecture selection for the base model is very
important as it captures the trends and patterns in the data. This type of architecture is used in the natural
language processing domain [31], signal processing [32], and performs well. Patil et al. [33] produce good
results for multivariate time-series data. This model is a reliable choice for pre-trained model builders. The
model architecture consists of the following layers.

2.1.1. Convolutional layer
For feature extraction, the convolutional neural network performs well [34]. They may produce ex-

cellent results for time-series data and are widely used for picture data. CNN training is easier than multi-layer
perceptron (MLP) training since fewer weights are used. As the weights are distributed among several heads,
it increases the computational efficiency and learning capacity of the model while reducing the number of fea-
tures for multivariate data. The prediction of air quality is a multivariate problem. For this particular model,
each input series variable from the multivariate data is given its own distinct CNN. It is possible to define dis-
tinct input models and combine the results of each model into a lengthy vector. As a result of the multi-headed
model’s ability to learn from individual features across previous time steps [32], we can anticipate improved
performance. These days, time series designs are gaining a lot of interest, and the majority of them use single
headed structures.
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2.1.2. GRU for time-series forecasting

Simple recurrent neural networks (RNNs) in deep learning approaches struggle with gradient van-
ishing, also known as exploding gradients and gradients that are excessively large. They are unable to recall
previous values. Other models, such as LSTM and GRU, are used to resolve this issue. The Forget gate, Update
gate, and Output gate are the three gates that the LSTM network uses to learn long sequences. However, train-
ing takes a lot of time. The GRU model has two gates, the update gate and the reset gate, with a less complex
architecture than LSTM but comparable performance. Update gate (z) maintains the information for the next
level, and reset gate (r) maintains the previous state and new information combination [35]. The mathematical
model of the GRU architecture is shown in (1) to (4).

zt = σ(wz · [x(t), h(t− 1)]) (1)

rt = σ(wr · [x(t), h(t− 1)]) (2)

h̃(t) = σ(wh · [x(t), (rt · h(t− 1))]) (3)

h(t) = (1− zt) · h(t− 1) + zt · h̃(t) (4)

Where the activation function here is σ, input is x(t), previous output is h(t-1), weights of the reset gate, update
gate, and candidate output are wr, wz and wh respectively.

The multi-headed CNN-GRU model architecture is shown in Figure 1. Pre-processing and transfor-
mations are carried out on raw pollutant concentration data to account for missing values. Min-max scaling is
used to scale multiple feature data before they are transformed into supervised learning series. This information
predicts the current step (t) and lagged observations (t-1). The features take into account the order from left to
right and predict at the last right. You can apply convolution 1D to this reframed data in time steps, applying it
to each attribute separately. Filters = 64, kernel = 2, strides = 1, and rectified linear unit (ReLu) is the activation
function for each convolution. In this case, the filters are not predefined but rather learned over time. When it
moves one cell forward across a 1D sample, a kernel of size 2 is equivalent to a window of size 2. Concatena-
tion is done with all of CNN’s 2D outputs. This output is sent to the 50-neuron GRU layer before being sent to
the 20-neuron dense layer, which has an activation function for a single output. As it is more effective than the
sigmoid and tanh functions, the ReLu activation function is utilized in this instance. Additionally, utilizing this
function prevents simultaneous activation of all neurons, which is why deep learning algorithms favor it.

Figure 1. Multi-headed CNN-GRU model architecture
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2.2. Model evaluation
Root mean square error (RMSE) [36], which measures the difference between actual and predicted

values, is the metric employed in the study to assess the performance of the models. The more accurate the
forecast, the lower the error value. Mean absolute error (MAE) [21], a loss function that captures prediction
error during training, is another metric that is employed. The performance improves as the value decreases.
The mean squared error (MSE) metric determines how closely the fitted line corresponds to the real data points.
The dataset is better fitted with a smaller value. Another R-square metric is employed to determine model fit
for data with values between 0 and 1. A larger value, close to 1, is better for the ability of the model to predict
the trend. The mathematical expressions for these metrics are shown in (5) to (8).

RMSE(y′,y) =

√√√√ 1

n

n∑
i=1

(y′i − yi)2 (5)

MAE(y′,y) =
1

n

n∑
i=1

|(y′i − yi)| (6)

MSE(y′,y) =
1

n

n∑
i=1

(y′i − yi)2 (7)

R− Square = r2 (8)

Where n is the number of samples, yi are observed values, y′i are modeled values, and r is the cor-
relation coefficient. The proposed multi-headed CNN-GRU model is evaluated with the other deep learning
architectures to prove its performance [15], [33]. It performs best when compared with the other models:
CNN, GRU, LSTM, bidirectional LSTM, multi-headed GRU, multi-headed CNN-LSTM, and multi-headed
CNN-GRU. From the study [15], it is observed that the multi-headed CNN-GRU model is performing best and
is hence used as a base model architecture for transfer learning.

2.3. Transfer learning
The model is trained using a transfer learning (TL) approach, and the model’s weights are stored.

Weights from the source dataset can be used to adjust the destination dataset. Different freezing techniques
might be used during the process. Layers at the source station can be frozen, which prevents weight changes
for those layers when training is completed at the target station. The various freezing procedures are employed
to assess the performance of the model. The following steps are followed during experimentation:

i) A target dataset with hourly granularity is identified as Thourly. The experiment would employ the remain-
ing N datasets ((Shourly

i , i ∈ (1, N + 1), Shourly
i 6= Thourly) as source datasets.

ii) The base model architecture is trained on the first source dataset with the selected train and test parameter
sizes, and the model loaded with the best weights is saved as .h5 file.

iii) Different freezing strategies are employed for transferring the patterns learned by the base model once the
pre-trained model has been loaded from the .h5 file.

iv) The model’s best weights are preserved by model checkpoint, loaded during testing, and the RMSE metric
and goodness of fit are assessed for each freezing approach. For each test sample, the best weights generate
a list of predictions, and the results are averaged to produce the final model RMSE score. The model is
pre-trained using a single source, and the model that performs the best is saved.

2.4. Transfer learning using chaining approach
Transfer learning using the chaining approach can be used to transfer knowledge from multiple nearby

source stations to a target station, in order to determine whether an additive effect in terms of RMSE improve-
ment can be obtained. The idea can be described as chaining together the models trained on different source
stations and then fine-tuning the consolidated model on the target dataset. The models chosen are in increasing
order of their RMSE results on the target dataset. The best chained model with the lowest RMSE value is
considered for model building at the new station. Multiple sources of data can be merged together and used
for learning, but this novel approach considers only those stations in a chained additive manner, which can
lead to a model with better learning capability at the newer station. The chaining algorithm is as shown in
Algorithm 1.
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Algorithm 1 Chaining algorithm

Input: N models i pre-trained on source dataset Shourly
i , a parameter η

Output: Weights wi for each model i
1: Sort the source stations for a given target station from best to worst. Thourly
2: for each source station Shourly do
3: The best weights gained during training are preserved.
4: Another Shourly

i+1 source dataset is loaded and the model object is initialized with Shourly
i saved weights.

The best weights gained during training are preserved to .sav file.
5: The consolidated model pre-trained on multiple source stations is finetuned on the target dataset Thourly

using a freezing strategy.
6: end for
7: return wi for each i

2.5. Data collection and pre-processing
Dataset [37] considered for evaluation to test for its performance is collected from the central pollution

control board (CPCB), India’s official online portal. The attributes are meteorological attributes: ambient
temperature, relative humidity, solar radiation level, wind direction, wind speed, and air pollutant attributes:
PM10, PM2.5, ozone, benzene, toluene, CO, NO, NO2, NOX, SO2, and NH3. The raw dataset obtained for
Delhi, India, from the CPCB website has a number of null values. Linear interpolation is used to fill in the
missing values. Scaling is performed, and training and test sets are created. Data is converted to a supervised
learning series [27].

3. RESULT AND DISCUSSION
Deep learning models used in experimentation use TensorFlow on the backend and the Keras frame-

work. Models are using the Adam optimizer and mean squared error (MSE) as a loss function. The study was
performed on five source stations in New Delhi, India. Here, 16 months of data are used for source stations,
while the target has only 2 months of data. The RMSE value for the target station, Najafgarh, with 2 months of
data without transfer learning is 11.48 using the base model (multi-headed CNN-GRU model). The poor fit of
the model can be seen in Figure 2.

Chaining is performed on 5 stations, considering their prediction ability on Najafgarh station as in the
single source TL of section 4. The results obtained after chaining model application are shown in Table 1 and
Table 2. It is observed that stations Okhala and DCStadium chained together can improve the performance
of the model using freezing strategy 2 as shown in Table 2 and reduce the RMSE tremendously from a 11.48
value to 3.82 using the chaining approach with 66.72% improvement in performance accuracy. The best fit of
the model can be seen in Figure 3.

The best model obtained is obtained by using freezing strategy 2 and chaining together stations Okhala
and DCStadium, as shown in Table 2. The best model is saved and finetuned on the 2 months of data at
Najafgarh station, and the results obtained are as shown in Table 3. In the study, lower values of RMSE, MAE,
and MSE show better performance of the model on the target station dataset using freezing strategy 2. Also,
the higher R-square value of the model using freezing strategy 2 shows a better fit of the model to the data. The
comparison of the performances before and after applying the chaining model approach is shown in Figure 4.

Figure 2. Base model poor fit on 2 months of Najafgarh monitoring station, Delhi, India
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Figure 3. Chaining model fit on 2 months a of Najafgarh monitoring station, India

Table 1. Performance of TL using chaining approach on target station as Najafgarh, Delhi, India using
freezing strategy 1

Chained stations Freezing strategy 1
Okhala 11.42

Okhala+AshokVihar 9.33
Okhala+AshokVihar+DCStadium 8.96

Okhala+AshokVihar+DCStadium +Dwarka 10.38
Okhala+AshokVihar+DCStadium +Dwarka+NehruNagar 12.07

Table 2. Performance of TL using chaining approach on target station as Najafgarh, Delhi, India using
freezing strategy 2

Chained stations Freezing strategy 2
Okhala 10.30

Okhala+DCStadium 7.86
Okhala+DCStadium+AshokVihar 10.86

Okhala+DCStadium+AshokVihar +NehruNagar 15.35

Okhala+DCStadium+AshokVihar +NehruNagar+Dwarka 10.48

Table 3. Performance of multiple sources TL using chaining approach on target station as Najafgarh, Delhi,
India

Error measures Freezing strategy 1 Freezing strategy 2
RMSE 4.47 3.82
MAE 3.65 3.33

MSE 0.94 0.92
R-square 0.90 0.94

Figure 4. Comparison of performance of approaches

The incremental learning process involves upgrading a model’s knowledge over time. With fewer data
points in this process, learning might be quicker and more precise. Our proposed model, constructed at a new
station, has to learn more quickly with the new air pollution data available without forgetting any previously
learned information. This study suggests an incremental modeling strategy for future model learning. This can
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be done by first employing a chaining strategy to train the model on various source datasets of adjacent stations
to the new station. At the target station, the model is saved and used for forecasting. The model is reloaded
so that it can continue to learn from new data. To do this, the model can be trained using the previously saved
base model architecture after being fed data in batches. The best model can be saved using a model checkpoint.
The model with the best weights is saved after each iteration and used for future learning, allowing the model
to develop its own patterns over time and produce improved predictions.

4. CONCLUSION
In a smart city, multiple air quality monitoring stations capturing similar pollution patterns and trends

can be identified and chained together for forecasting pollution levels at newer stations with training data insuf-
ficiency problems. A transfer learning-based chaining model approach is proposed for this purpose. Transfer
learning is executed using two freezing strategies to evaluate its effect on knowledge transfer at the new station.
The chaining model showed 66.72% improvement in its performance. The results obtained from this work
are encouraging and will hopefully fuel future research in the domain of pre-trained models for air pollution
forecasting. Transfer learning also helps in incremental model learning and pattern capturing at the new station,
making it ready to be self-sufficient over time. The model can be tested on a huge and increasing number of
datasets.
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