
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 33, No. 1, January 2024, pp. 425~432 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v33.i1.pp425-432      425 

 

Journal homepage: http://ijeecs.iaescore.com 

A modified type of Fletcher-Reeves conjugate gradient method 

with its global convergence 
 

 

Amna Weis Mohammed Ahmad Idress1, Osman Omer Osman Yousif1, Abdulgader Zaid Almaymuni2, 

Awad Abdelrahman Abdalla Mohammed1, Mohammed A. Saleh2, Nafisa A. Ali1 
1Department of Mathematics, Faculty of Mathematical and Computer Sciences, University of Gezira, Wad Medani, Sudan 

2Department of Computer, College of Scinece and Arts in Ar Rass, Qassim University, Ar Rass, Saudi Arabia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Nov 8, 2022 

Revised Nov 7, 2023 

Accepted Nov 13, 2023 

 

 The conjugate gradient methods are one of the most important techniques used 

to address problems involving minimization or maximization, especially 

nonlinear optimization problems with no constraints at all. That is because of 

their simplicity and low memory needed. They can be applied in many areas, 

such as economics, engineering, neural networks, image restoration, machine 

learning, and deep learning. The convergence of Fletcher-Reeves (FR) 

conjugate gradient method has been established under both exact and strong 

Wolfe line searches. However, it is performance in practice is poor. In this 

paper, to get good numerical performance from the FR method, a little 

modification is done. The global convergence of the modified version has 

been established for general nonlinear functions. Preliminary numerical 

results show that the modified method is very efficient in terms of number of 

iterations and CPU time. 
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1. INTRODUCTION 

To determine a function's minimum, one nonlinear optimization technique is the Fletcher-Reeves 

conjugate gradient (FRCG) method. The FRCG technique builds a series of search directions that are conjugate 

to each other by using the function's gradients, which is based on the concept of conjugate gradients. The fast 

convergence of the FRCG approach to the function's minimum is made possible by this characteristic of 

conjugate gradients. Considering the following problem of unconstrained optimization; 
 

 min f(x) , x ∈ Rn,  (1) 
 

where f: Rn → R is a smooth function with gradient 𝗀. Conjugate gradient methods are well qualified for solving 

(1) even if it is of large scale. They are use; 
 

 xk+1 = xk + αkdk, k = 0,1,2, …, (2) 
 

where αk is the step-length taken in the direction of search dk. The search direction is given by; 
 

 dk = {

−gk , if k = 0 

−gk + βkdk−1, if k ≥ 1,
 (3) 

https://creativecommons.org/licenses/by-sa/4.0/
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where  𝗀k, = ∇f(xk) and βk is a real number, called conjugate gradient coefficient. Different formulas for βk 

determine different conjugate gradient methods such as of Fletcher-Reeves (FR), Dai-Yuan (DY), Conjugate 

Descent (CD), Polak-Rebiere and Polyak (PRP), Hestenes-Stiefel (HS), Liu-Storey (LS). Fletcher [1],  

Dai and Yuan [2], Fletcher [3], Polyak [4] and Polak and Rebiere [5], Hestenes and Stiefel [6] and Liu and 

Storey [7] whose coefficients are respectively given by; 

 

βk
FR =

‖gk‖2

‖gk−1‖2  

 

βk
DY =

‖gk‖2

dk−1
T (gk−gk−1)

  

 

βk
CD = −

‖gk‖2

dk−1
T gk−1

  

 

βk
PRP =

gk
T(gk−gk−1)

‖gk−1‖2   

 

βk
HS =

gk
T(gk−gk−1)

dk−1
T (gk−gk−1)

  

 

βk
LS = −

gk
T(gk−gk−1)

dk−1
T gk−1

  

 

the step-length αk can be evaluated using the exact search, in which; 

 

f(xk + αkdk) = min f(xk + αdk), α ≥ 0. (4) 

 

Since the computation of αk using (4) is so hard in practice, other methods for computing the step 

length αk are defind. These methods are called inexact line searches. An example of the inexact method which 

is used widely in practice is the Wolfe, in which the step length satisfies the conditions; 

 

f(xk + αkdk) − f(xk) ≤ δαk 𝗀k
Tdk (5) 

 

 𝗀k(xk + αkdk)T ≥ σ 𝗀k
Tdk (6) 

 

where 0 < δ < σ < 1. 

Another strong version is of wolfe is the strong wolfe, given by (5) and (7); 

 

|g(xk + αkdk)Tdk| ≤ δ|gk
Tdk| (7) 

 

to ensure that the search for the solution of the problem in (1) is in the correct direction, the direction is imposed 

to be descent. So, the descent of dk (downhill condition) has a great role in the conjugate gradient methods. 

The (8) of the descent of dk occurs from the inequality; 

 

gk
Tdk < 0, (8) 

 

which can be extended to the so-called the sufficient descent criterion; 

 

− 𝗀k
Tdk ≥ 𝚌‖𝗀k‖2, c > 0. (9) 

 

Conjugate gradient methods are still the best choice for solving (1). Over the years, for better 

performance, many efforts have been devoted to define new methods and to modify others such as the studies 

in [8]–[17]. The FR conjugate gradient method has rich convergence properties. However, it is numerical 

performance is much slower than that of many others. Zoutendijk [18] reported that, the FR method via exact 

line search converges globally on general functions. Later, Al-Baali [19] has proven this result via strong wolfe. 

Recently, to establish the convergence properties and to obtain good numerical performance in 

practice, remarkable efforts have been dedicated to upgrade new versions and to modify well-known methods. 

For example, the modification of the PRP and the HS methods via exact and strong wolfe line searches [20]–[22] 
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and the proof of the global convergence of Rivaie-Mamat-Ismail-Leong modified method (RMIL+) via the 

strong wolfe [23]. In this article, for better numerical results of FR method in practice, we present a modified 

FR method which is again globally convergent and of better performance in practice than the FR. 

 

 

2. THE PROPOSED METHOD AND ALGORITHM 

Motivated by the global convergence of the FR, we made a little change to its formula to obtain a 

modified version with global convergence and better numerical results. The modified formula is given by; 
 

β𝑘
𝑊𝐹𝑅 =

‖gk‖2

‖gk−1‖‖dk−1‖
  (10) 

 

where the letter W stands for Weis, the family name of the first author. 

Having a new formula in (10), we get a new conjugate gradient method called WFR and can be 

described in the following algorithm 1; 

 

Algorithm 1. WFR algorithm 

Step 1. Initialization, choose x0 ∈ Rn, ε ≥ 0, let d0 = −g0, and k = 0. 

Step 2. If ‖gk‖ ≤ ε , then terminate. 

Step 3. Compute 𝛼𝑘 using (4). 

Step 4. Set xk+1 = xk + αkdk, and gk+1 = g(xk+1). If ‖gk+1‖ ≤ ε, terminate. 
Step 5. Evaluate βk using (10) and dk using (3). 

Step 6. Put k = k + 1 and go to Step 3. 

 

 

3. GLOBAL CONVERGENCE OF THE PROPOSED ALGORITHM 

The convergence analysis plays an important role when studing conjugate gradient method. In this 

section, we establish the convergence of Algorithm 1. Firstly, we assume the following assumptin on f. 

 

3.1.  Assumption 

 f is bounded below on the set {x ∈ Rn: f(x) ≤ f(x0)}. 

 In some neighborhing 𝒩 of the set in (i), f(x) is differentiable and its g is Lipschitz continuous, namely, 

there exists a constant μ > 0 such that; 

 

‖g(x) − g(y)‖ ≤ μ‖x − y‖ ∀x, y ∈ 𝒩 

 

By considering assumption 3.1, the following Zoutendijk [18] condition refer to Zoutendijk [18] 

holds; 

 

 ∑ cos2
k= 0 θk‖gk‖2 < ∞  

 

where θk is the angle between dk and the steepest descent direction −gk.  

Observe that the Zoutendijk [18] condition implies; 

 

 lim
k→∞

cos2 θk‖gk‖2 = 0  

 

to establish the global convergence, we prove; 

 

lim
k→∞

‖gk‖ = 0 (11) 

 

hence, if cos2θk ≥ δ > 0, then (11) is hold true. 

In exact line search, the orthogonality condition; 

 

gk
Tdk−1= 0 (12) 

 

holds for all k. from (12) and (3), we get; 

 

 gk
Tdk = −‖gk‖2 + βkgk

Tdk−1 = −‖gk‖2  (13) 
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hence, since  gk
Tdk = ‖gk−1‖ ‖dk−1‖ cos θk−1, we get; 

 

cos θk−1 =
‖gk−1‖2

‖gk−1‖ ‖dk−1‖
 (14) 

 

substituting (14) into the formula (10), we get; 

 

 βk
WFR =

‖gk‖2

‖gk−1‖2 cos θk−1 = βk
FR cos θk−1  

 

since −1 ≤ cos θk−1 ≤ 1, we deduce that; 

 

−βk
FR ≤ βk

WFR ≤ βk
FR  

 

also, substituting (14) into Zoutendijk’s condition, we get; 

 

∑
‖gk‖4

‖dk‖2
∞
k=1 < ∞ (15) 

 

next, we set the convergence of Algorithm 2.1. 

 

3.2.  Theorem 

Suppose that Assumption 3.1 is satisfied. Let {xk} be produced by Algorithm 1. Then Algorithm 1 is 

globally convergent, that is, holds true (11). 

 

3.2.1. Proof 

To prove, we use contradiction, that is, by supposing (11) is not true. Thus, there exists ε > 0 that; 

 

‖gk‖ ≥ ε, for all k (16) 

 

from (3), indeed, dk+1 can be displayed as; 

 

 dk+1 + gk+1 = βk+1
WFR

 dk 

 

squaring the both sides, we come to; 

 

 ‖dk+1‖2 = (βk+1
WFR)

2
‖dk‖2 − 2gk+1

T dk+1 − ‖gk+1‖2 (17) 

 

due to (10) and (17), we have; 
 

 ‖dk+1‖2 = (
‖gk+1‖2

‖gk‖‖dk‖
)

2

‖dk‖2 − 2gk+1
T dk+1 − ‖gk+1‖2 (18) 

 

using (12), we obtain; 
 

 ‖dk+1‖2 =
‖gk+1‖4

‖gk‖2‖dk‖2  ‖dk‖2 + 2‖gk+1‖2 − ‖gk+1‖2  

 

which implies; 
 

 ‖dk+1‖2 =
‖gk+1‖4

‖gk‖2 +
‖gk+1‖4

‖gk+1‖2  

 

so that; 

 ‖dk+1‖2 = ‖gk+1‖4 (
1

‖gk‖2 +
1

‖gk+1‖2)  

 

consequently; 
 

 
‖dk+1‖2

‖gk+1‖4  =  (
1

‖gk‖2 +
1

‖gk+1‖2) (19) 
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from (16) which means that 
1

‖gk‖2 ≤
1

ε2 together with (19), we come to; 

 

 ∑
‖dk+1‖2

‖gk+1‖4 ≤∞
k=1  ∑

2

ε2
∞
k=1   

 

that is, 

 

∑
‖gk+1‖4

‖dk+1‖2 ≥∞
k=1  ∑

ε2

2
 ∞

k=1  (20) 

 

inequality (20), leads to; 

 

 ∑
‖gk+1‖4

‖dk+1‖2 ≥∞
k=1 ∞,  

 

which contradicts (15). Therefore, the proof is completed. After proving the global convergence, it remains to 

show the performance in practical computations. 

 

 

4. RESULTS AND DISCUSSION 

In this part, we compare FR and WFR via exact line search and show the results Table 1 in 

Appendix. Table 1 in Appendix, most of the test problems are taken from Andrei [24]. Also, problem is the 

test problem, Dim is the dimension taken of the problem, X0 is the initial points from the literature, NI is the 

number of iterations, FR is the FR method by exact line search, WFR is the modified FR method shown in 

Algorithm 2.1, and CT(s) is the CPU time. Now to show the improvement in WFR when it is compared with FR, 

we take FR as 100% with respect to number of iterations (NOI) and CPU time to obtain the following table. 

 

 

Table 2. Performance of Table 1 based on NOI and CPU time 
TOOLS FR WFR 

NOI 100% 39% 

CPU 100% 21% 

 

 

From Table 2, we see that there is an improvement of about 61% in NOI and about 79% in CPU time. 

Therefore, in practical computation, WFR is much better than FR method. Also, based on Table 1, we can 

show the performance by considering tp,s is the result when a solver s is applied to solve problem p (here our 

solvers are FR and WFR method) and Ps(t) is the ratio 
tp,s

min{tp,s∶s∈S}
 as in Dolan and More [25] profile, we show 

the efficiency of Algorithm 2.1 in Figures 1 and 2. Dolan and More [25] performance profile a method of high 

curve is the best, so it is clear from Figures 1 and 2 that, the WFR method which is described in Algorithm 1 

is much better than the FR method. 

 

 

  
 

Figure 1. Performance results in case of NI 

 

Figure 2. Performance results in case of CPU time 
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APPENDIX 
 

Table 1. Numerical results 
Problem Dim X0 FR WFR 

NI CT(s) NI CT(s) 

Extended white and holst 10 

1,000 

-2 882 

632 

5.0080 

30.8033 

41 

41 

0.2632 

2.1916 
10 6 598 3.8213 772 4.9758 

Extended freudenstein and roth 100 

1,000 

2 16 

18 

0.1422 

0.5242 

13 

13 

0.3207 

0.3835 
100 4 8 0.2460 6 0.1642 

Extended beale 10 

100 

6 277 

277 

3.2659 

3.2565 

13 

13 

0.1753 

0.2748 
Raydan 1 10 

100 

2 408 

327 

3.6955 

2.9331 

137 

120 

1.2304 

1.1057 

100 -3 197 1.7995 130 1.1991 
Extended tridiagonal 1 10 

100 

1,000 

3 324 

511 

843 

2.3845 

6.2461 

50.7911 

83 

99 

107 

0.6257 

1.2157 

6.4142 
10 

100 

1,000 

9 45 

33 

46 

0.5610 

0.4116 

2.7753 

57 

77 

81 

0.7072 

0.9463 

4.8669 
Diagonal 4 function 10 2 5 0.0598 5 0.0637 

Extended himmelblau 10 
1,000 

2 9 
10 

0.0748 
0.2371 

8 
9 

0.0737 
0.1996 

10 

100 

-2 19 

19 

0.4247 

0.4171 

20 

19 

0.4534 

0.4286 
10 

500 

1,000 

6 15 

15 

15 

0.3315 

0.3355 

0.3378 

15 

15 

15 

0.3291 

0.3263 

0.3280 
FLETCHCR function  100 4 27 0.2303 26 0.2273 

Extended DENSCHNB  100 -2 14 0.1519 13 0.1502 

Extended quadratic penalty QP1 10 
100 

3 18 
314 

0.1515 
2.6221 

14 
19 

0.1281 
0.1913 

100 -2 1,466 12.4513 17 0.1587 

Extended penalty 10 

100 

3 19 

33 

0.1937 

0.3281 

15 

16 

0.1683 

0.1745 

100 -2 46 0.4181 12 0.1257 

Hager function 10 
100 

-2 24 
45 

0.2270 
0.5284 

18 
31 

0.1680 
0.3776 

10 

100 

-3 89 

59 

1.0508 

0.7012 

32 

33 

0.3829 

0.3964 
Extended maratos 100 2 39 0.4379 38 0.3335 

100 -2 272 4.6560 53 0.5677 

Shallow function 100 
1,000 

-2 41 
45 

0.3843 
0.9068 

28 
28 

0.2703 
0.5784 

1,000 2 30 0.7150 12 0.2538 

Generalized quartic function 100 
500 

1,000 

5 10 
10 

10 

0.2524 
0.2526 

0.2602 

10 
10 

10 

0.2222 
0.2512 

0.2587 

Quadratic QF2 function 100 2 400 3.7661 147 1.4687 
1,000 -3 24 0.5763 16 0.3916 

Generlized tridiagonal 1 100 3 43 0.5983 27 0.4777 

10 -2 36 0.4908 29 0.3859 

Generlized tridiagonal 10 2 22 0.2232 30 0.2862 

POWER function 10 3 22 0.1971 158 1.2606 

Quadratic QF1 10 2 10 0.1063 27 0.2598 
Extended QP2 10 5 24 0.2363 29 0.2817 

Extended quadratic penalty QP1 100 -2 283 4.3781 61 1.1500 

100 3 1,086 54.3123 49 0.6430 
500 9 1,268 62.4915 82 2.1236 

Dixon and price function 10 -2 73 0.7407 71 0.6997 

Sphere function 100 -2 1 0.1828 1,202 12.3998 
Sum square’s function 10 

100 

-2 

 

59 

59 

0.5832 

0.5789 

135 

135 

1.3047 

1.3204 

Strait function  10 5 81 0.8645 37 0.4187 
ARWHEAD function 10 3 10 0.1039 10 0.2854 

 

 

5. CONCLUSION 

In this article, a modified version of FR is proposed. Based on the proposed formula, a new modified 

method is presented. The global convergence is established, provided the line search is exact. To show the 
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efficiency of the modified method in practice, it has been compared with the FR method. It has been reported 

that the new modified one is much better than FR method. 
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