
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol.12, No.2, February 2014, pp. 885 ~ 893
DOI: http://dx.doi.org/10.11591/telkomnika.v12i2.4009  885

Received June 25, 2013; Revised August 22, 2013; Accepted September 18, 2013

A Multi-objective QoS Mechanism for Web
Applications: Improved EFXCP

Hangxing Wu*1,2, Xiaolong Yang1, Min Zhang1
1School of Computer and Communication Engineering, University of Science and Technology Beijing,

Beijing, China, 100083, Ph.: +86-01062332929
2Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China, 100083,

*Corresponding author, e-mail: whx9711@163.com

Abstract
The research of QoS is concerned with multiple QoS requirements (multi-QR): queue delay, delay

jitter and guaranteed throughput etc. As different QoS requirements have different attributes, it is hard to
ensure multi-QR in one QoS mechanism. A common method to ensure multi-QR is normalizing multi-QR
into one value range by a utility function and then finding the optimal solution of the utility function.
However, although multi-QR are considered in such QoS mechanisms, in fact, no concrete QoS
requirement can been strictly ensured, which may be embarrassing because web application usually
requires one or more concrete QoS requirements to be satisfied strictly. Therefore, it is significant to
design a real multi-objective QoS mechanism to satisfy different QoS requirements of various web
applications. Our previous works proposed an efficient and fair explicit congestion control protocol
(EFXCP) which can achieve excellent performance in terms of high link utilization, low queue delay, low
delay jitter, etc. Because different web applications have different throughput requirements, to further
satisfy throughput requirements of web applications, we extend EFXCP in this paper to implement an
improved EFXCP (IEFXCP). Firstly, ToS field in IP header is utilized to classify different web applications,
and then the relative fair bandwidth allocation is proposed between different types of web applications to
preferentially ensure throughput requirements of high prior web applications. Therefore, IEFXCP can
simultaneously satisfy multi-QR: queue delay, delay jitter and guaranteed throughput. The performance of
IEFXCP is validated by extensive NS2 simulations over a wide range of network scenarios, the results
show that IEFXCP is a real multi-objective QoS mechanism.

Keywords: multi-object, QoS, relative fairness

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
With the dramatic increase in the amount of data and the rapid development of

extensive web applications, the research of QoS is always a hot spot. Because different web
applications have different QoS requirements, the research of QoS focuses on various QoS
requirements, such as queue delay, delay jitter, guaranteed throughput, etc. However, different
QoS requirements have different attribute, it is hard to design a QoS mechanism which can
satisfy multi-QR simultaneously. Hence many proposed QoS mechanisms aimed to ensure the
most important QoS requirement according to QoS requirements of concrete web application,
for example, the mechanisms in [1-4] aimed to satisfy low delay requirement, the mechanisms
in [5-8] aimed to satisfy throughput requirement.

In order to design a mechanism to satisfy multi-QR, a common method is normalizing
multi-QR into one value range by a utility function and then finding the optimal solution of the
utility function, for example, the work in [9] proposed a multi-objective QoS mechanism for
wireless sensor networks, which normalizing energy, delay and reliability into one value range
by a function. The works in [10, 11] also adopted the same method. However, although multi-
QR are considered in such QoS mechanisms, in fact, no concrete QoS requirement can been
strictly ensured, which may be embarrassing because web application usually requires one or
more concrete QoS requirements to be satisfied strictly. So, it is probable that such a QoS
mechanism does not adapt to any web applications.

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 2, February 2014: 885 – 893

886

This paper aim to address above challenge, our main goal is to propose a multi-
objective QoS mechanism for various web applications which can satisfy simultaneously
guaranteed throughput, low queue delay, low delay jitter, high link utilization.

In this paper, we implement a multi-objective QoS mechanism by extending EFXCP
[12]. In our previous work, we have proposed EFXCP which can achieve low queue delay, low
delay jitter, and high link utilization. But the fairness in EFXCP means absolute fair bandwidth
allocation, every data flows will obtain the same amount of bottleneck bandwidth, which does
not adapt to real web applications, because different web applications have different throughput
requirements, for example: the multimedia application may requires strictly high throughput to
ensure QoS, while the QoS of file transfer application is not sensitive to throughput and does
not need strictly to ensure throughput. Therefore, in order to efficiently utilize limited web
resources to provide better QoS to various web applications, relative fair bandwidth allocation is
a good choice.

By extending EFXCP, We design a multi-objective QoS mechanism: improved EFXCP
(IEFXCP). IEFXCP utilizes ToS field in IP header to classify different web applications, and then
provides relative fair bandwidth allocation between different types of web applications to
preferentially ensure the throughput requirement of web applications which need high transport
rate. Therefore, IEFXCP can simultaneously satisfy multi-QR: queue delay, delay jitter and
guaranteed throughput. The performance of IEFXCP is validated by extensive NS2 simulations
over a wide range of network scenarios, the results show that IEFXCP is a real Multi-Objective
QoS Mechanism.

The rest of the paper is organized as follows. We first give an overview of the EFXCP in
Section 2. Then we propose IEFXCP algorithms in section 3. Next, we present simulation
results in section 4. In the end, conclusion and next work are given.

2. An Overview of the EFXCP

EFXCP adds a congestion header to packet, as shown in Figure 1. Congestion header
is used to communicate a flow’s state to routers and feedback from the routers to the receivers.
The field cur_thr_ is the sender’s current throughput estimate and cur_rtt_ is the sender’s
current RTT estimate. These fields are filled by the sender and never modified in transit. The
remaining field, exp_fair_thr_ and avg_rtt_ are the expected fair throughput and average RTT of
the flows sharing the output link, which are calculated by router and initialized to zero by the
sender. Routers along the path modify these two fields

Figure 1. Congestion Header

EFXCP works as follows: before a packet is sent, Sender estimates its current

throughput and RTT, and then communicates these values to the routers via the congestion
header. Router monitors the degree of congestion in output link. If a link is overloaded, the
router fills the exp_fair_thr_ field of congestion headers with a large number Num_, e.g. 1015,
which is far more than normal flows’ throughput and means congestion occurs. Otherwise,
based on the degree of congestion and all flow’s state in congestion header, the router
estimates the expected fair throughput of the flows sharing an output link and then fills the
exp_fair_thr_ with the expected fair throughput. A more congested router along the path can
further reduce the value in exp_fair_thr_ field by overwriting it. Note that a congestion header
that exp_fair_thr_ field is filled with Num_ cannot be overwritten. Ultimately, when packet
reaches the receiver, the value in exp_fair_thr_ field will be taking as the feedback to return to

TELKOMNIKA ISSN: 2302-4046 

A Multi-objective QoS Mechanism for Web Applications: Improved EFXCP (Hangxing Wu)

887

the sender by an ACK packet. The sender updates its cwnd to make its throughput converge to
the feedback. Eventually, all flows will converge at the expected fair throughput.

The estimations of key parameters are given next, the more detailed descriptions can
be found in [12].

2.1. Key Parameters at the Router

1) Average throughput
Average throughput  is defined as the average throughput of the flows sharing an

output link.  is calculated only based on information in congestion header to avoid keeping per-
flow state.  is estimated as:

1

1


 


  



  
  

i
i i

ii i s

i i

i i s i

s
r r

sn r t
s s

n r t r

 (1)

Where ir is rate of flow i , which can be obtained from congestion header, in stands for the

number of packets from flow i in the sample interval st , is is packet size of flow i which can

be obtained from IP header.
2) The degree of congestion
The degree of congestion l of the output link in each sample interval is calculated as:




 




l q l
l

l s

k q

C t
 (2)

Where l is the amount of input traffic in the sample interval, lq is the persistent queue length in

st , qk controls how fast the persistent queue drains, we set 0.5qk  , lC is the capacity of link l .

3) The expected fair throughput
When all flows sharing the output link send data with the expected fair throughput o ,

the utilization of output link is 100% just right. Hence o is estimated as:

1
  


   

 
   

l s q l
o

l l s q l

C t k q

C t k q
 (3)

Then, o will be filled in the exp_fair_thr_ field of congestion header and provided to the

senders.

2.2. Key Algrithms at the Sender
 When a sender i receives feedback o , it will calculate target congestion window as:

arg _ _
 

 o i

i

rtt
t et Cwnd

s
 (4)

Where irtt is current RTT of sender i . Then, sender i will adjust its congestion window

Cwnd as:

(arg _) ; others.

; congestion occurs





     
 

s

rttCwnd t et Cwnd Cwnd tCwnd
Cwnd

 (5)

Where 0.875  .

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 2, February 2014: 885 – 893

888

3. Improved EFXCP
To satisfy different throughput requirements of web applications, in this section, we

extend EFXCP to implement relative fair bandwidth allocation to preferentially ensure
throughput of web applications which require high transport rate, such as Video on Demand,
video conference, etc.

To implement relative fair bandwidth allocation, we should firstly classify web
applications into different ranks. There are two ways which can be adopted to classify web
applications. One is directly utilizing the ToS field in IP header, the other is adding a field in
congestion header which is similar to the ToS field. The advantage of the former is simple to
implement, the advantage of the latter is not interfering with standard ToS fields in IP header. In
this paper, we adopted the former method to classify web applications, and then implemented
improved EFXCP (IEFXCP) to provide relative fair bandwidth allocation.

IEFXCP works as follow: before a packet is sent, sender not only fills the congestion
header, but also fills the ToS fields in IP header, which means sender should choose its rank of
throughput requirement, a large value in ToS field means high rank. Then, expected fair
throughput is estimated in Router and ToS field must be considered in the estimation.
Ultimately, expected fair throughput is returned to senders, then, senders adjust their
congestion window according to expected fair throughput and the value in their ToS field.

In IEFXCP, the value in ToS field is set to an integer, the value of the integer can be
taken as the number of virtual data flow, for example, for a data flow with ToS field in which the
value is 5, it can be taken as the aggregation of 5 virtual data flows. Relative fair bandwidth
allocation in IEFXCP means that the ratio of allocated bandwidth between two data flows of
which the value in ToS fields is 5, 1 respectively, will be 5 to 1.

To implement IEFXCP, we need to make some simple modifications to algorithms in
sender and router of EFXCP.

3.1. Modification in Router

Instead of calculating per flow expected fair throughput in EFXCP, it is per virtual flow
expected fair throughput that is calculating in IEFXCP. Considering the value in ToS field, we
modify Equation (1) as:

1

1

() () ()


 


  
  



  
  

i
i i

ii i s

i i
i i i

i i s i

s
r r

sn r t
s s

ToS ToS ToS
n r t r

 (6)

Where  in Equation (6) is per virtual flow average throughput. Then, the estimation of per

virtual flow expected fair throughput o is the same as the calculation in Equation (2).

Ultimately, o will be returned to senders.

3.2. Modifications in Sender

Firstly, before a packet is sent, sender not only fills the congestion header, but also fills
the ToS fields in IP header.

Secondly, when receiving the feedback o , sender will calculate its target congestion
window as:

arg _ _
 

 o i
i

i

rtt
t et Cwnd ToS

s
 (7)

In Equation (7),
 o i

i

rtt
S means per virtual data flow expected congestion window,

hence, the expected congestion window of a real data flow is iToS times of that of per virtual
data flow.

TELKOMNIKA ISSN: 2302-4046 

A Multi-objective QoS Mechanism for Web Applications: Improved EFXCP (Hangxing Wu)

889

4. Performance Evaluation
We make extensive ns2 simulations to evaluate the performance of IEFXCP. Our

simulations cover capacities in [25Mbps, 4Gbps], RTT in [12ms, 1200ms], and arrival rates of
short-lived, web-like flows in the range [1 s-1, 1000 s-1]. Simulations topology is shown in Figure
2, which is a typical single bottleneck link topology. We always use two-way traffic in all
simulations. The bottleneck buffer size is set to the bandwidth-delay product, or two packets
per-flow. The data packet size is 1000 bytes. All simulations are run long enough to ensure that
the system has reached its steady state. All statistic data are collected in steady state.

Figure 2. Single Bottleneck Link Topology

The basic setting is a 300Mbps link with 60ms RTT where the forward and reverse path
each has 50 FTP flows. These forward 50 FTP flows are divided into 5 groups, the value in ToS
field in data header is set to 1, 2, 4, 8, 10 respectively. We will choose randomly one flow in
each group respectively to trace its throughput.

In all simulations, we will observe throughputs of chosen flows to evaluate relative fair
bandwidth allocation, observe the average queue length of bottleneck link to evaluate queue
delay, observe real time queue length of bottleneck link to evaluate queue delay jitter.
Moreover, every QoS mechanism should ensure high utilization of bottleneck link while
maintaining QoS requirements, so bottleneck link utilization is also be observed.

4.1. Evaluations under Stable Environment

Firstly, we evaluate IEFXCP under stable environment. We study the effect of varying
the link capacity and the RTT on the performance of IEFXCP. we evaluate the impact of each
network parameter in isolation while retaining the others as the basic setting.

1) Impact of bottleneck capacity
In this group of simulations, we vary the bottleneck capacity between [25Mbps, 4Gbps].

To depict results in all simulations within a figure, the unit of vertical axis in Figure 3(a) is set as
the ratio of senders’ practical throughput to the ideal throughput of flow with 1iToS , which is
adopted in next simulations. Flow_i in legend means the flow with iToS i .

It can been seen from Figure 3(a) that relative fair bandwidth allocation is maintained
excellently between flows with different values of ToS , which means throughputs of high prior
web applications can be guaranteed. When capacities are 25Mbps and 50Mbps respectively,
because the target congestion window of the flow with 1iToS is a small real number, but
effective congestion window is an integer number of packets, the difference between the two
values results in decreases in the throughput of flow with 1iToS .

Figure 3(a). Throughput of Senders at Various
Capacities

Figure 3(b). Link Utilization at Various
Capacities

0 500 1000 1500 2000 2500 3000 3500 4000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Bottleneck Capacity(Mbps)

Bo
ttl

en
ec

k
Ut

ili
za

tio
n

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 2, February 2014: 885 – 893

890

Figure 3(c) showed that average queue lengths in all simulations are almost below 1%
buffer size, which means low queue delay. The real time queue lengths are shown in Figure
3(d), we can see that queue lengths are stable, the maximal variation range is from 1% to 3%
buffer size when link capacity is 100Mbps. Hence, low queue delay jitter can be satisfied.
Moreover, IEFXCP maintained high link utilizations in all simulations, as shown in Figure 3(b).

Figure 3(c). Average Queue Length at Various
Capacities

Figure 3(d). Real Time Queue Length at
Various Capacities

2) Impact of RTT
In this group of simulations, we vary the round-trip propagation delay between [12ms,

1200ms]. The results are shown from Figure 4(a) to Figure 4(e). We notice that the IEFXCP
scheme always maintained excellent relative fair bandwidth allocation, high link utilization and
low average queue lengths. When RTT is varied from 12ms to 800ms, the real time queue
lengths are stable after the initial stage, the low queue delay jitter can be satisfied. However,
because too large delay will make control system keep stable difficultly, it is hard for IEFXCP to
keep queue length stable when RTT is larger than 1000 ms, as shown in Figure 4(e), but it is
not a serious problem because the variation of the real time queue length is from 1% to 3%
buffer size at the stable state.

Figure 4(a). Throughput of Senders at Various
RTTs

Figure 4(b). Utilization of Link at Various RTTs

Figure 4(c). Average Queue Length at Various
RTTs

Figure 4(d). Real Time Queue Length at
Various RTTs

TELKOMNIKA ISSN: 2302-4046 

A Multi-objective QoS Mechanism for Web Applications: Improved EFXCP (Hangxing Wu)

891

Figure 4(e). Real Time Queue Length at Large RTTs

4.2. Evaluations under Dynamic environment
Then, we evaluate IEFXCP under dynamic environment.
1) Impact of web-like traffic
In this group of simulations, we investigate IEFXCP’s performance in the presence of

variability and burstiness caused by the short-lived, web-like flows arrivals, which arrive
according to a Poisson process and whose transfer size is derived from a Pareto distribution
with an average of 30 packets (ns implementation with shape = 1.35), which complies with real
web traffic. We can see from Figure 5(a) to Figure 5(d) that IEFXCP still maintains excellent
relative bandwidth allocation, high utilization and low average queue length.

Figure 5(a). Throughput of Senders at Various
Arrival Rates of of Web-Like Flow

Figure 5(b). Link Utilization at Various Arrival
Rates of Web-Like Flow

Figure 5(c). Average Queue Length at Various
Arrival Rates of Web-Like Flow

Figure 5(d). Real Time Queue Length at
Various Arrival Rates of Web-Like Flow

An interesting phenomena is that when arrival rate of web-like flows is more than 200s-

1, the higher the arrival rate of web-like flows, the more stable the real time queue length are.
The reason is that the aggregation data is more like a long-lived flow when the arrival rate is
very high. In contrast to higher arrival rate, lower arrival rate is more likely to induce vibration of
the queue length. But it is also not a serious problem because the maximal vibration of queue
length is between 1% to 5% buffer size when arrival rate is 200s-1. So, IEFXCP can maintain
low queue delay jitter under most of the situations.

0
200

400
600

800
1000

1000

1200

0

0.05

0.1

0.15

0.2

0.25

0.3

Time(sec)

RTT(ms)

Bo
ttle

ne
ck

 Qu
eu

e(%
Bu

f)

0 200 400 600 800 1000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

the Number of Web flow

Bo
ttl

en
ec

k U
til

iza
tio

n

0 200 400 600 800 1000

0%

0.5%

1%

1.5%

the Number of Web flow

Av
er

ag
e B

ot
tle

ne
ck

 Q
ue

ue
(%

Bu
f)

0

5

10

15

20

25

30

10

20

50

100

200

400

800

1000
0

0.01
0.02
0.03
0.04
0.05

Time(sec)the Number of Web flow

Bo
ttl

en
ec

k
Q

ue
ue

(%
Bu

f)

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 2, February 2014: 885 – 893

892

2) Impact of Sudden Change in Traffic Demand
Next, we illustrate how IEFXCP reacts to sudden changes in traffic demand. In the

experiment, we keep basic setting unchanged. Moreover at t = 20s, we start 50 new forward
FTP flows which are the same as the flows in basic setting, then stop them at t = 40s.

Figure 6(a). Throughput of Senders at Sudden
Change

Figure 6(b). Real Time Utilization at Sudden
Change

Figure 6(c). Real Time Queue Length at Sudden Change

The results are shown from Figure 6(a) to Figure 6(c). It can be seen that IEFXCP can
adapt quickly to a sudden fluctuation in the traffic demand, and still maintains excellent relative
bandwidth allocation, high utilization and a low and stable real time queue length. Although the
queue length increases suddenly at the t=20s, which will lead to larger queue delay jitter, it can
be drained quickly.

In summary, we can see from experiment results that IEFXCP can simultaneously
maintain excellent relative fair bandwidth allocation, high utilization, low queue delay and low
delay jitter. Therefore, IEFXCP can satisfy simultaneously multi-QR of various web applications,
it is a real multi-objective QoS mechanism.

5. Conclusion and Next Work
To satisfy multi-QR of various web application, we proposed IEFXCP by extending

EFXCP which can achieve high link utilization, low queue delay and low delay jitter. In IEFXCP,
ToS field of IP header is utilized to classify web applications according to their throughput
requirements, then IEFXCP provides relative fair bandwidth allocation to preferentially ensure
the throughput requirements of web applications which need high transport rate. Extensive
simulations in NS2 have shown that IEFXCP can simultaneously satisfy multi-QR: guaranteed
throughput, low queue delay, low delay jitter and maintain high link utilization, it is a real multi-
objective QoS mechanism.

However, IEFXCP in this paper assumes that all senders are honest, if a malicious
sender fills a very large value in ToS fields to obtain oversubscribe throughput, the performance
of IEFXCP will be damaged. Hence how to discriminate and restrict the malicious senders is our
next work.

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

Time(s)

Th
ro

ug
hp

ut
(M

bp
s)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(s)

Bo
ttle

ne
ck

 U
tili

za
tio

n

0 10 20 30 40 50 60 70 80

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time(s)

Bo
ttle

ne
ck

Qu
eu

e(%
Bu

f)

TELKOMNIKA ISSN: 2302-4046 

A Multi-objective QoS Mechanism for Web Applications: Improved EFXCP (Hangxing Wu)

893

Acknowledgement
This work is supported in part by the Scientific Research Foundation of Central-affiliated

University under Grant No. FRF-TP-12-090A, and the 2012 Ladder Plan Project of Beijing Key
Laboratory of Knowledge Engineering for Materials Science, No. Z121101002812005.

References
[1] Jae-Han Jeon, Hee-Jung Byun, and Jong-Tae Lim. End-to-end delay guar-anteed proportional fair

scheduling for wireless networks. Communications Letters. IEEE. 2011; 15(4): 401–403.
[2] K Karenos, V Kalogeraki. in RTSS. Real-time traffic management in sensor networks. Real-Time

Systems Symposium. 2006: 422-434.
[3] Xiaodong Wang, Xiaorui Wang, Guoliang Xing, Yanjun Yao. Dynamic duty cycle control for end-to-end

delay guarantees in wireless sensor networks. Quality of Service (IWQoS). 18th International
Workshop. 2010.

[4] Xu Xiaole, Huang Wei, Chen Shengyong, Gao Lixin. Consensus of multi-agent systems with time
delays and measurement noises. Telkomnika Indonesia Journal of Electrical Engineering. 2012; 10(6):
1370-1380.

[5] N Buchbinder, J Naor. Fair online load balancing. In SPAA Proceedings of the eighteenth annual ACM
symposium on Parallelism in algorithms and architectures. 2006; 291–298.

[6] J Chou, B Lin. Optimal multi-path routing and bandwidth allocation under utility max-min fairness.
Quality of Service. IWQoS. 17thInternational Workshop on. 2009; 1–9.

[7] Kong Yiquan. One method of cloud computing bandwidth allocation based on fairness. Telkomnika
Indonesia Journal of Electrical Engineering. 2013: 954-959.

[8] JJ Jaramillo, R Srikant. Optimal scheduling for fair resource allocation in ad hoc networks with elastic
and inelastic traffic. Networking. IEEE/ACM Transactions on. 2011; (99):1.

[9] E Jin, W Wang, M Palaniswami. Utility max-min fair flow control for multipath communication
networks. In ICSPCS. 2007.

[10] Alwan H, Agarwal, A. multi-objective qos routing for wireless sensor networks. Computing, Networking
and Communications (ICNC). 2013.

[11] D Yiltas, H Perros. Quality of service-based multi-domain routing under multiple quality of service
metrics. Communications. IET. 2011; 5(3): 327–336.

[12] Chen, Wei-Neng; Zhang, Jun. An ant colony optimization approach to a grid workflow scheduling
problem with various QoS requirements. IEEE Transactions on Systems, Man and Cybernetics Part
C: Applications and Reviews. 2009; 39(12): 9-43.

[13] Hangxing Wu, Fengyuan Ren, Dejun Mu, Xianwu Gong, An efficient and fair explicit congestion
control protocol for high bandwidth-delay product networks. Computer Communications. 2009; 32:
1138-1147.

