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Abstract 
The research of QoS is concerned with multiple QoS requirements (multi-QR): queue delay, delay 

jitter and guaranteed throughput etc. As different QoS requirements have different attributes, it is hard to 
ensure multi-QR in one QoS mechanism. A common method to ensure multi-QR is normalizing multi-QR 
into one value range by a utility function and then finding the optimal solution of the utility function. 
However, although multi-QR are considered in such QoS mechanisms, in fact, no concrete QoS 
requirement can been strictly ensured, which may be embarrassing because web application usually 
requires one or more concrete QoS requirements to be satisfied strictly. Therefore, it is significant to 
design a real multi-objective QoS mechanism to satisfy different QoS requirements of various web 
applications. Our previous works proposed an efficient and fair explicit congestion control protocol 
(EFXCP) which can achieve excellent performance in terms of high link utilization, low queue delay, low 
delay jitter, etc. Because different web applications have different throughput requirements, to further 
satisfy throughput requirements of web applications, we extend EFXCP in this paper to implement an 
improved EFXCP (IEFXCP). Firstly, ToS field in IP header is utilized to classify different web applications, 
and then the relative fair bandwidth allocation is proposed between different types of web applications to 
preferentially ensure throughput requirements of high prior web applications. Therefore, IEFXCP can 
simultaneously satisfy multi-QR: queue delay, delay jitter and guaranteed throughput. The performance of 
IEFXCP is validated by extensive NS2 simulations over a wide range of network scenarios, the results 
show that IEFXCP is a real multi-objective QoS mechanism. 
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1. Introduction 
With the dramatic increase in the amount of data and the rapid development of 

extensive web applications, the research of QoS is always a hot spot. Because different web 
applications have different QoS requirements, the research of QoS focuses on various QoS 
requirements, such as queue delay, delay jitter, guaranteed throughput, etc. However, different 
QoS requirements have different attribute, it is hard to design a QoS mechanism which can 
satisfy multi-QR simultaneously. Hence many proposed QoS mechanisms aimed to ensure the 
most important QoS requirement according to QoS requirements of concrete web application, 
for example, the mechanisms in [1-4] aimed to satisfy low delay requirement, the mechanisms 
in [5-8] aimed to satisfy throughput requirement.  

In order to design a mechanism to satisfy multi-QR, a common method is normalizing 
multi-QR into one value range by a utility function and then finding the optimal solution of the 
utility function, for example, the work in [9] proposed a multi-objective QoS mechanism for 
wireless sensor networks, which normalizing energy, delay and reliability into one value range 
by a function. The works in [10, 11] also adopted the same method. However, although multi-
QR are considered in such QoS mechanisms, in fact, no concrete QoS requirement can been 
strictly ensured, which may be embarrassing because web application usually requires one or 
more concrete QoS requirements to be satisfied strictly. So, it is probable that such a QoS 
mechanism does not adapt to any web applications.  
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This paper aim to address above challenge, our main goal is to propose a multi-
objective QoS mechanism  for various web applications which can satisfy simultaneously 
guaranteed throughput, low queue delay, low delay jitter, high link utilization. 

In this paper, we implement a multi-objective QoS mechanism by extending EFXCP 
[12]. In our previous work, we have proposed EFXCP which can achieve low queue delay, low 
delay jitter, and high link utilization. But the fairness in EFXCP means absolute fair bandwidth 
allocation, every data flows will obtain the same amount of bottleneck bandwidth, which does 
not adapt to real web applications, because different web applications have different throughput 
requirements, for example: the multimedia application may requires strictly high throughput to 
ensure QoS, while the QoS of file transfer application is not sensitive to throughput and does 
not need strictly to ensure throughput. Therefore, in order to efficiently utilize limited web 
resources to provide better QoS to various web applications, relative fair bandwidth allocation is 
a good choice.  

By extending EFXCP, We design a multi-objective QoS mechanism: improved EFXCP 
(IEFXCP). IEFXCP utilizes ToS field in IP header to classify different web applications, and then 
provides relative fair bandwidth allocation between different types of web applications to 
preferentially ensure the throughput requirement of web applications which need high transport 
rate. Therefore, IEFXCP can simultaneously satisfy multi-QR: queue delay, delay jitter and 
guaranteed throughput. The performance of IEFXCP is validated by extensive NS2 simulations 
over a wide range of network scenarios, the results show that IEFXCP is a real Multi-Objective 
QoS Mechanism. 

The rest of the paper is organized as follows. We first give an overview of the EFXCP in 
Section 2. Then we propose IEFXCP algorithms in section 3. Next, we present simulation 
results in section 4. In the end, conclusion and next work are given.  
 
 
2.  An Overview of the EFXCP 

EFXCP adds a congestion header to packet, as shown in Figure 1. Congestion header 
is used to communicate a flow’s state to routers and feedback from the routers to the receivers. 
The field cur_thr_ is the sender’s current throughput estimate and cur_rtt_ is the sender’s 
current RTT estimate. These fields are filled by the sender and never modified in transit. The 
remaining field, exp_fair_thr_ and avg_rtt_ are the expected fair throughput and average RTT of 
the flows sharing the output link, which are calculated by router and initialized to zero by the 
sender. Routers along the path modify these two fields 

 
 

 
 

Figure 1. Congestion Header 
 

 
EFXCP works as follows: before a packet is sent, Sender estimates its current 

throughput and RTT, and then communicates these values to the routers via the congestion 
header. Router monitors the degree of congestion in output link. If a link is overloaded, the 
router fills the exp_fair_thr_ field of congestion headers with a large number Num_, e.g. 1015, 
which is far more than normal flows’ throughput and means congestion occurs. Otherwise, 
based on the degree of congestion and all flow’s state in congestion header, the router 
estimates the expected fair throughput of the flows sharing an output link and then fills the 
exp_fair_thr_ with the expected fair throughput. A more congested router along the path can 
further reduce the value in exp_fair_thr_ field by overwriting it. Note that a congestion header 
that exp_fair_thr_ field is filled with Num_ cannot be overwritten. Ultimately, when packet 
reaches the receiver, the value in exp_fair_thr_ field will be taking as the feedback to return to 
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the sender by an ACK packet. The sender updates its cwnd to make its throughput converge to 
the feedback. Eventually, all flows will converge at the expected fair throughput. 

The estimations of key parameters are given next, the more detailed descriptions can 
be found in [12]. 

 
2.1. Key Parameters at the Router 

1)  Average throughput  
Average throughput    is defined as the average throughput of the flows sharing an 

output link.   is calculated only based on information in congestion header to avoid keeping per-
flow state.   is estimated as: 
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Where ir  is rate of flow i ,  which can be obtained from congestion header, in  stands for the 

number of packets from  flow i  in  the  sample interval  st , is is packet size of flow i  which can 

be obtained from IP header. 
2)  The degree of congestion  
The degree of congestion l  of the output link in each sample interval is calculated as: 
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Where l  is the amount of input traffic in the sample interval, lq  is the persistent queue length in 

st , qk  controls how fast the persistent queue drains, we set 0.5qk  , lC  is the capacity of link l .  

3)  The expected fair throughput  
When all flows sharing the output link send data with the expected fair throughput o , 

the utilization of output link is 100% just right. Hence  o  is estimated as: 
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Then, o  will be filled in the exp_fair_thr_ field of congestion header and provided to the 

senders. 
 

2.2. Key Algrithms at the Sender 
     When a sender i  receives feedback o , it will calculate target congestion window as: 
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Where irtt  is current RTT of sender i . Then, sender i  will adjust its congestion window 

Cwnd as: 
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Where 0.875  . 
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3. Improved EFXCP 
To satisfy different throughput requirements of web applications, in this section, we 

extend EFXCP to implement relative fair bandwidth allocation to preferentially ensure 
throughput of web applications which require high transport rate, such as Video on Demand, 
video conference, etc.  

To implement relative fair bandwidth allocation, we should firstly classify web 
applications into different ranks. There are two ways which can be adopted to classify web 
applications. One is directly utilizing the ToS field in IP header, the other is adding a field in 
congestion header which is similar to the ToS field. The advantage of the former is simple to 
implement, the advantage of the latter is not interfering with standard ToS fields in IP header. In 
this paper, we adopted the former method to classify web applications, and then implemented 
improved EFXCP (IEFXCP) to provide relative fair bandwidth allocation. 

IEFXCP works as follow: before a packet is sent, sender not only fills the congestion 
header, but also fills the ToS fields in IP header, which means sender should choose its rank of 
throughput requirement, a large value in ToS field means high rank.  Then, expected fair 
throughput is estimated in Router and ToS field must be considered in the estimation. 
Ultimately, expected fair throughput is returned to senders, then, senders adjust their 
congestion window according to expected fair throughput and the value in their ToS field. 

In IEFXCP, the value in ToS field is set to an integer, the value of the integer can be 
taken as the number of virtual data flow, for example, for a data flow with ToS field in which the 
value is 5, it can be taken as the aggregation of 5 virtual data flows. Relative fair bandwidth 
allocation in IEFXCP means that the ratio of allocated bandwidth between two data flows of 
which the value in ToS fields is 5, 1 respectively, will be 5 to 1. 

To implement IEFXCP, we need to make some simple modifications to algorithms in 
sender and router of EFXCP. 

 
3.1. Modification in Router 

Instead of calculating per flow expected fair throughput in EFXCP, it is per virtual flow 
expected fair throughput that is calculating in IEFXCP.  Considering the value in ToS field, we 
modify Equation (1) as: 
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Where   in Equation (6) is per virtual flow average throughput. Then, the estimation of per 

virtual flow expected fair throughput o  is the same as the calculation in Equation (2). 

Ultimately, o  will be returned to senders. 
 
3.2. Modifications in Sender 

Firstly, before a packet is sent, sender not only fills the congestion header, but also fills 
the ToS fields in IP header. 

Secondly, when receiving the feedback o , sender will calculate its target congestion 
window as: 
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In Equation (7), 
 o i

i

rtt
S  means per virtual data flow expected congestion window, 

hence, the expected congestion window of a real data flow is iToS  times of that of per virtual 
data flow. 
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4. Performance Evaluation 
We make extensive ns2 simulations to evaluate the performance of IEFXCP. Our 

simulations cover capacities in [25Mbps, 4Gbps], RTT in [12ms, 1200ms], and arrival rates of 
short-lived, web-like flows in the range [1 s-1, 1000 s-1]. Simulations topology is shown in Figure 
2, which is a typical single bottleneck link topology. We always use two-way traffic in all 
simulations. The bottleneck buffer size is set to the bandwidth-delay product, or two packets 
per-flow. The data packet size is 1000 bytes. All simulations are run long enough to ensure that 
the system has reached its steady state. All statistic data are collected in steady state.  

 
 

 

 
Figure 2. Single Bottleneck Link Topology 

 
 

The basic setting is a 300Mbps link with 60ms RTT where the forward and reverse path 
each has 50 FTP flows. These forward 50 FTP flows are divided into 5 groups, the value in ToS 
field in data header is set to 1, 2, 4, 8, 10 respectively. We will choose randomly one flow in 
each group respectively to trace its throughput. 

In all simulations, we will observe throughputs of chosen flows to evaluate relative fair 
bandwidth allocation, observe the average queue length of bottleneck link to evaluate queue 
delay, observe real time queue length of bottleneck link to evaluate queue delay jitter. 
Moreover, every QoS mechanism should ensure high utilization of bottleneck link while 
maintaining QoS requirements, so bottleneck link utilization is also be observed. 

 
4.1. Evaluations under Stable Environment 

Firstly, we evaluate IEFXCP under stable environment. We study the effect of varying 
the link capacity and the RTT on the performance of IEFXCP. we evaluate the impact of each 
network parameter in isolation while retaining the others as the basic setting. 

1)  Impact of bottleneck capacity 
In this group of simulations, we vary the bottleneck capacity between [25Mbps, 4Gbps]. 

To depict results in all simulations within a figure, the unit of vertical axis in Figure 3(a) is set as 
the ratio of senders’ practical throughput to the ideal throughput of flow with 1iToS , which is 
adopted in next simulations.  Flow_i in legend means the flow with iToS i .  

It can been seen from Figure 3(a) that relative fair bandwidth allocation is maintained 
excellently between flows with different values of ToS , which means throughputs of high prior 
web applications can be guaranteed.  When capacities are 25Mbps and 50Mbps respectively, 
because the target congestion window of the flow with 1iToS  is a small real number, but 
effective congestion window is an integer number of packets, the difference between the two 
values results in decreases in the throughput of flow with 1iToS . 

 
 

 

 

 

Figure 3(a). Throughput of Senders at Various 
Capacities 

Figure 3(b). Link Utilization at Various 
Capacities 
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Figure 3(c) showed that average queue lengths in all simulations are almost below 1% 
buffer size, which means low queue delay. The real time queue lengths are shown in Figure 
3(d), we can see that queue lengths are stable, the maximal variation range is from 1% to 3% 
buffer size when link capacity is 100Mbps. Hence, low queue delay jitter can be satisfied. 
Moreover, IEFXCP maintained high link utilizations in all simulations, as shown in Figure 3(b). 
 
                    

 
 

 

Figure 3(c). Average Queue Length at Various 
Capacities 

Figure 3(d). Real Time Queue Length at 
Various Capacities 

                   
                      

2) Impact of RTT 
In this group of simulations, we vary the round-trip propagation delay between [12ms, 

1200ms]. The results are shown from Figure 4(a) to Figure 4(e). We notice that the IEFXCP 
scheme always maintained excellent relative fair bandwidth allocation, high link utilization and 
low average queue lengths. When RTT is varied from 12ms to 800ms, the real time queue 
lengths are stable after the initial stage, the low queue delay jitter can be satisfied. However, 
because too large delay will make control system keep stable difficultly, it is hard for IEFXCP to 
keep queue length stable when RTT is larger than 1000 ms, as shown in Figure 4(e), but it is 
not a serious problem because the variation of the real time queue length is from 1% to 3% 
buffer size at the stable state.      

 
 

 
 

 

Figure 4(a). Throughput of Senders at Various 
RTTs 

Figure 4(b). Utilization of Link at Various RTTs 

           
 

 
 

 

Figure 4(c). Average Queue Length at Various 
RTTs 

Figure 4(d). Real Time Queue Length at 
Various RTTs 
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Figure 4(e). Real Time Queue Length at Large RTTs 
 
 

4.2. Evaluations under Dynamic environment 
Then, we evaluate IEFXCP under dynamic environment. 
1) Impact of web-like traffic 
In this group of simulations, we investigate IEFXCP’s performance in the presence of 

variability and burstiness caused by the short-lived, web-like flows arrivals, which arrive 
according to a Poisson process and whose transfer size is derived from a Pareto distribution 
with an average of 30 packets (ns implementation with shape = 1.35), which complies with real 
web traffic. We can see from Figure 5(a) to Figure 5(d) that IEFXCP still maintains excellent 
relative bandwidth allocation, high utilization and low average queue length.  

 
 

 
 

 

Figure 5(a). Throughput of Senders at Various 
Arrival Rates of of Web-Like Flow 

Figure 5(b). Link Utilization at Various Arrival 
Rates of Web-Like Flow 

 
 

    
 

 

Figure 5(c). Average Queue Length at Various 
Arrival Rates of Web-Like Flow 

Figure 5(d). Real Time Queue Length at 
Various Arrival Rates of Web-Like Flow 

 
                                                            

An interesting phenomena is that when arrival rate of web-like flows is more than 200s-

1, the higher the arrival rate of web-like flows, the more stable the real time queue length are. 
The reason is that the aggregation data is more like a long-lived flow when the arrival rate is 
very high. In contrast to higher arrival rate, lower arrival rate is more likely to induce vibration of 
the queue length. But it is also not a serious problem because the maximal vibration of queue 
length is between 1% to 5% buffer size when arrival rate is 200s-1. So, IEFXCP can maintain 
low queue delay jitter under most of the situations. 
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2) Impact of Sudden Change in Traffic Demand 
Next, we illustrate how IEFXCP reacts to sudden changes in traffic demand. In the 

experiment, we keep basic setting unchanged.  Moreover at t = 20s, we start 50 new forward 
FTP flows which are the same as the flows in basic setting, then stop them at t = 40s. 

 
 

 
 

 

Figure 6(a). Throughput of Senders at Sudden 
Change 

Figure 6(b). Real Time Utilization at Sudden 
Change 

 
 

 
 

Figure 6(c). Real Time Queue Length at Sudden Change 
 
 

The results are shown from Figure 6(a) to Figure 6(c). It can be seen that IEFXCP can 
adapt quickly to a sudden fluctuation in the traffic demand, and still maintains excellent relative 
bandwidth allocation, high utilization and a low and stable real time queue length. Although the 
queue length increases suddenly at the t=20s, which will lead to larger queue delay jitter, it can 
be drained quickly. 

In summary, we can see from experiment results that IEFXCP can simultaneously 
maintain excellent relative fair bandwidth allocation, high utilization, low queue delay and low 
delay jitter. Therefore, IEFXCP can satisfy simultaneously multi-QR of various web applications, 
it is a real multi-objective QoS mechanism. 

 
 

5. Conclusion and Next Work 
To satisfy multi-QR of various web application, we proposed IEFXCP by extending 

EFXCP which can achieve high link utilization, low queue delay and low delay jitter. In IEFXCP, 
ToS field of IP header is utilized to classify web applications according to their throughput 
requirements, then IEFXCP provides relative fair bandwidth allocation to preferentially ensure 
the throughput requirements of web applications which need high transport rate. Extensive 
simulations in NS2 have shown that IEFXCP can simultaneously satisfy multi-QR: guaranteed 
throughput, low queue delay, low delay jitter and maintain high link utilization, it is a real multi-
objective QoS mechanism. 

However, IEFXCP in this paper assumes that all senders are honest, if a malicious 
sender fills a very large value in ToS fields to obtain oversubscribe throughput, the performance 
of IEFXCP will be damaged. Hence how to discriminate and restrict the malicious senders is our 
next work. 
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