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 We introduce a novel efficient and effective conjugate gradient approach for 

large-scale unconstrained optimization problems. The primary goal is to 

improve the conjugate gradient method's search direction in order to propose 

a new, more active method based on the modified vector 𝑣𝑘
∗ , which is 

dependent on the step size of Barzilai and Borwein. The suggested algorithm 

features the following traits: (i) The ability to achieve global convergence; (ii) 

numerical results for large-scale functions show that the proposed algorithm 

is superior to other comparable optimization methods according to the number 

of iterations (NI) and the number of functions evaluated (NF); and (iii) 

training neural networks is done to improve their performance. 
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1. INTRODUCTION 

In this section, we will offer a concise yet comprehensive overview of unconstrained optimization and 

its intersection with neural networks. Unconstrained optimization refers to the mathematical techniques and 

algorithms used to find the optimal solution of a problem without any constraints on the decision variables.  

It plays a pivotal role in various machine learning and deep learning applications, especially when training 

neural networks. Neural networks, on the other hand, are a class of machine learning models inspired by the 

human brain, consisting of interconnected nodes and layers that learn patterns from data. 

− Unconstrained optimization 

Take into account the following unconstrained optimization problem; 

 

𝑀𝑖𝑛{𝑓(𝑥): 𝑥 ∈ 𝑅𝑛}  (1) 

 

where a function 𝑓: 𝑅𝑛 → 𝑅 be continuously differentiable 𝑅𝑛 denotes an n-dimensional euclidean space. 

Numerous real-world application areas exist for the aforementioned issue, including economics, biology, and 

engineering. The nonlinear conjugate gradient (CG) method is one of the most well-known and successful 

methods for (1). Starting with an initial guess of 𝑥0 ∈ 𝑅𝑛, we should create a sequence of {𝑥𝑘} such; 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (2) 

 

where 𝛼𝑘 > 0 is achieved by line search and the direction 𝑑𝑘 are generated as; 

https://creativecommons.org/licenses/by-sa/4.0/
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𝑑𝑘+1 = {
−𝑔𝑘+1,                       𝑘 = 0

−𝑔𝑘+1 + 𝛽𝑘𝑑𝑘 , 𝑘 > 0
 (3) 

 

where 𝑔𝑘 = ∇ 𝑓(𝑥𝑘) and 𝛽𝑘 is a scalar parameter [1], [2]. In addition, for many years, researchers focused 

researchers to proposed variety expression of 𝛽𝑘 as well as 𝑑𝑘+1 (see, e.g., [2]–[10]) to increasing more efficient 

and successful conjugate gradient algorithms. Perry [11] suggested a parameter of conjugate gradient  

defined as; 
 

𝛽𝑘
𝑃𝑒𝑟𝑟𝑦

=
𝑔𝑘+1

𝑇 (𝑦𝑘−𝑣𝑘)

𝑑𝑘
𝑇𝑦𝑘

 (4) 

 

where 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘 and 𝑣𝑘 = 𝑥𝑘+1 − 𝑥𝑘. When calculating the step-size, it is argued that 𝛼𝑘 satisfies any 

of the conditions for a line search [12]–[14]. In this study, we employ a strong wolfe line search. 
 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤  𝑓(𝑥) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘, 0 ≤ 𝛿 ≤

1

2
 (5) 

 

|𝑑𝑘
𝑇𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)| ≤ −𝜎𝑔𝑘

𝑇𝑑𝑘 , 𝛿 ≤ 𝜎 ≤ 1 (6) 
 

− Summary of artificial neural network history 

In order to execute network pattern decision making, ANN is inspired by the biological human brain, 

which is made up of up to 60 trillion interconnected groups of neurons. Based on this fundamental concept, an 

artificial neural network’s construction starts with a collection of basic, interconnected neurons that function 

as a single processor. Based on the neuron model developed by McCulloch and Pits, the perceptron notion has 

been introduced [15]. A single layer of input, process, and output elements forms the basis of an ANN. In order 

to generate the best outcome for any datasets or issue segments, ANN acts as a complicated mathematical 

formulation starting from a very fundamental understanding of the information processing cycle. Neurons 

should be checked using feed-forward and backward algorithms in order to complete a network cycle.  Back 

propagation or backward algorithms are the topics that have received the most attention from researchers in 

the past and now. The machine learning component of ANN that has gained the most attention in current 

research and development. Machine learning refers to the capability of a computer to comprehend data structure 

utilizing mathematical or statistical models. Artificial neural networks, on the other hand, require additional 

processes in order to deal with complex patterns in vast volumes of data. Deep methodological learning and 

structured algorithms are needed for this. In its execution process, ANN uses a variety of methodologies, 

including supervised learning, unsupervised learning, and reinforcement learning. Neural network learning 

techniques are still being studied and recognized by communities as of this writing. It quickly became well-

liked in machine learning [16]–[18] and is frequently considered to be more effective because to its exceptional 

capacity for self-adaptation and self-learning; 𝑛𝑒𝑡𝑗
𝑙 = ∑ 𝑤𝑖𝑗

𝑙−1,𝑙𝑦𝑖
𝑙−1 + 𝑏𝑗

𝑙 ,
𝑁𝑙−1
𝑖=1 𝑦𝑖

𝑙 = 𝑓(𝑛𝑒𝑡𝑗
𝑙) The determines 

how a FNN works. 

Where the sum of its weighted inputs is 𝑛𝑒𝑡𝑗
𝑙 , for the 𝑗𝑡ℎ node in the 𝑙𝑡ℎ layer (𝑗 = 1, . . . , 𝑁𝑙), 𝑤𝑖𝑗

𝑙−1,𝑙
are 

the weights from the 𝑖𝑡ℎ neuron at the layer to the 𝑗𝑡ℎ neuron at the 𝑙𝑡ℎ layer, 𝑏𝑗
𝑙is the bias of the 𝑗𝑡ℎ neuron at 

the 𝑙𝑡ℎ layer, 𝑦𝑖
𝑙  is the outputof the 𝑗𝑡ℎ neuron that belongs to the 𝑙𝑡ℎ layer, and 𝑓(𝑛𝑒𝑡𝑗

𝑙), is the 𝑗𝑡ℎ neuron 

activation function. 

The core concept of neural network training can be expressed as a nonlinear unconstrained 

optimization problem. In order to globally reduce the difference between the network’s actual output and the 

planned output for all examples in the training set, a neural network is trained by incrementally changing its 

weights [19]. The training procedure may therefore be described mathematically as the minimization of the 

error function 𝐸(𝑤), which is defined by the sum of square differences between the actual output of the  

FNN, i.e., 
 

𝐸(𝑤) = ∑ ∑ (𝑦𝑖
𝑙−1 − 𝑡𝑗,𝑝)2𝑁𝑙

𝑗=1
𝑝
𝑝=1  (7) 

 

where 𝑤 ∈ 𝑅𝑛 is the vector network weights and the number of patterns used in the training set represented by 

𝑃. [3]-[20]. 

The remainder of the paper is formatted as follows: we present our strategy for acquiring the new 

propose CG algorithm acquiring in section 2. The descent and sufficient descent property of our approach and 

the global convergence property were tested in section 3. In section 4, some numerical experiments to new CG 

algorithm and the HS algorithm are reported. In section 5, presents the application of the CG algorithm for 

training neural networks; the paper’s conclusion and algorithm’s characters were listed in section 5. 
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2. NEW CONJUGATE GRADIENT ALGORITHM FOR SMOOTH PROBLEMS 
The nonlinear conjugate gradient algorithm is a well-known example of an efficient technique for 

optimization problems due to its low storage requirements and easy structure. It encourages us to conduct 

additional research and develop a modified conjugate gradient formula for the unrestricted optimization model. 

In this section, we well submit a new coefficient conjugate gradient algorithm for unconstrained minimization 

problems depend on the modified vector which is defined as: 𝑣𝑘
∗ =

1

𝛼𝑘
𝐵𝐵 𝑣𝑘 −

𝜃

𝛼𝑘
𝐵𝐵 𝑣𝑘, where 𝜃 ∈

(0,1) and 𝛼𝑘
𝐵𝐵 =

𝑣𝑘
𝑇𝑣𝑘

𝑦𝑘
𝑇𝑣𝑘

, see [21]. 

 

So, we have 𝑣𝑘
∗ = (1 − 𝜃)

𝑦𝑘
𝑇𝑣𝑘

𝑣𝑘
𝑇𝑣𝑘

𝑣𝑘 (8) 

 

More precisely, the conjugate gradient algorithms are iterative methods of the form given by (1) and 

(2). The major idea of our new algorithm is to improve the performance of CG algorithm Perry by replacing 

𝑣𝑘 by 𝑣𝑘
∗  in (4). Then, 

 

𝛽𝑘
𝑁𝑒𝑤 =

𝑔𝑘+1
𝑇 (𝑦𝑘−𝑣𝑘

∗)

𝑑𝑘
𝑇𝑦𝑘

=
𝑔𝑘+1

𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

− (1 − 𝜃)
𝑦𝑘

𝑇𝑣𝑘  𝑔𝑘+1
𝑇 𝑣𝑘

𝑣𝑘
𝑇𝑣𝑘  𝑑𝑘

𝑇𝑦𝑘
 (9) 

 

Algorithm steps: iterative gradient method for unconstrained optimization: 

1) Given an initial point 𝑥0 ∈ 𝑅𝑛  

2) Set 𝑑0 = −𝑔0, 𝑘 = 0. If ‖𝑔𝑘‖ = 0 then stop, otherwise go to step 3. 

3) Compute the step size 𝛼𝑘 by using minimize 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘). 

4) Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. 

5) Determine 𝑔𝑘+1, if ‖𝑔𝑘+1‖ ≤ 10−5 stop, else go to step 6. 

6) Compute 𝑑𝑘+1 by (2) and 𝛽𝑘
𝑁𝑒𝑤 from (9). 

7) If ‖𝑔𝑘+1‖2 ≤  
|𝑔𝑘

𝑇𝑔𝑘+1|

0.2
 is satisfied go to step 3, else 𝑘 = 𝑘 + 1 and go to step 3. 

 

 

3. CHARACTERISTICS OF ALGORITHMS 

The properties of the descent and sufficient descent, as well as global convergence of the new 

algorithm, are stated in this section:  

Theorem 3.1: if the search direction 𝑑𝑘+1 is generated by (2) and 𝛽𝑘
𝑁𝑒𝑤 from (9), then, 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ 0 

 

Proof: multiply both sides of (2) by 𝑔𝑘+1 where 𝛽𝑘
𝑁𝑒𝑤 denied in (9), to obtain, 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −𝑔𝑘+1

𝑇 𝑔𝑘+1 +
𝑔𝑘+1

𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

𝑔𝑘+1
𝑇  𝑑𝑘  − (1 − 𝜃)

𝑦𝑘
𝑇𝑣𝑘  𝑔𝑘+1

𝑇 𝑣𝑘

𝑣𝑘
𝑇𝑣𝑘  𝑑𝑘

𝑇𝑦𝑘
𝑔𝑘+1

𝑇  𝑑𝑘 (10) 

 

if the above search direction is exact, then it is satisfying the descent condition i.e., 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖2 ≤ 0 

 

however, if the search direction (10) is inexact (i.e.) 𝑔𝑘+1
𝑇  𝑑𝑘 ≠ 0. We get to the conclusion that the first two 

terms in (10) satisfy the requirement for descent, i.e., 
 

−𝑔𝑘+1
𝑇 𝑔𝑘+1 +

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

𝑔𝑘+1
𝑇  𝑑𝑘 ≤ 0 (11) 

 

because 𝑔𝑘+1
𝑇  𝑑𝑘 ≤ 𝑑𝑘

𝑇𝑦𝑘  and 𝑔𝑘+1
𝑇 𝑦𝑘 = 𝑔𝑘+1

𝑇 𝑔𝑘+1 − 𝑔𝑘+1
𝑇 𝑔𝑘 and 0.2‖𝑔𝑘+1‖2 ≤  |𝑔𝑘

𝑇𝑔𝑘+1| we have since, 

𝑔𝑘+1
𝑇 𝑣𝑘 = 𝛼𝑘𝑔𝑘+1

𝑇 𝑑𝑘. Therefore, we can present the (10) as, 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤  −(1 − 𝜃)𝛼𝑘

𝑦𝑘
𝑇𝑣𝑘  

𝑣𝑘
𝑇𝑣𝑘  𝑑𝑘

𝑇𝑦𝑘
(𝑔𝑘+1

𝑇 𝑑𝑘)2 (12) 

 

clearly, 𝛼𝑘 , (1 − 𝜃), 𝑦𝑘
𝑇𝑣𝑘 , 𝑣𝑘

𝑇𝑣𝑘  , 𝑑𝑘
𝑇𝑦𝑘 and (𝑔𝑘+1

𝑇 𝑑𝑘)2 are non-negative. So, we have 𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ 0. 
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Theorem 3.2: the direction 𝑑𝑘+1 defined by (2) and 𝛽𝑘
𝑁𝑒𝑤 from (9); then there exists a positive 𝜇 >  0 

satisfying. 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤  −𝜇  ‖𝑔𝑘+1‖2 

 

Proof: it is clear from Theorem (3.1) that the first two components of (10) are less than or equal to zero after 

multiplying the new search direction (2) and (9) by 𝑔𝑘+1, and from (12), we obtain, 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤  −(1 − 𝜃)𝛼𝑘

𝑦𝑘
𝑇𝑣𝑘  ‖𝑑𝑘‖2

𝑣𝑘
𝑇𝑣𝑘  𝑑𝑘

𝑇𝑦𝑘
 ‖𝑔𝑘+1‖2 (13) 

 

Let 𝜇 = −(1 − 𝜃)𝛼𝑘
𝑦𝑘

𝑇𝑣𝑘  ‖𝑑𝑘‖2

𝑣𝑘
𝑇𝑣𝑘  𝑑𝑘

𝑇𝑦𝑘
 which is positive, then, 𝑔𝑘+1

𝑇 𝑑𝑘+1 ≤  −𝜇 ‖𝑔𝑘+1‖2, the proof is completed.  

we propose the following mild assumptions to get aiming at achieving global convergence. 

Assumption: [22], [23] 

I. The level set 𝛿 =  {𝑥 |𝑓(𝑥)  ≤  𝑓(𝑥0)}  is bounded. 

II. In some neighborhood 𝑁 of 𝛿, 𝑓 is continuously differentiable, and its gradient is lipschitz continuous 

with Lipschitz constant 𝛿 >  0, i.e., 

 
‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝛿‖𝑥 − 𝑦‖  ∀ 𝑥, 𝑦 ∈ 𝛿 

 

from the above assumptions, that there exists a positive constant 𝑏 such that. 

 
‖𝑔(𝑥)‖ ≤ 𝑏 ∀𝑥 ∈ 𝛿. (14) 

 

following is established for the global convergence of the new algorithm based on the discussion above. 

Lemma 3.1: [24] Let assumptions (I)–(II) hold. Consider the methods (1) and (2), where 𝑑𝑘+1 is a descent 

direction and 𝛼𝑘 satisfies the standard wolfe line search. If, 

 

∑
1

‖𝑑𝑘+1‖2
 
𝑘≥1 = ∞. Then, 𝑙𝑖𝑚

𝑘→∞
𝑖𝑛𝑓 ‖𝑔𝑘+1‖ = 0 

 

based on the above discussion the global convergence of new algorithm is established as follows. 

Theorem 2.3: if assumptions (I) and (II) are valid and Algorithm 2.1 generates the corresponding sequences 

of {𝑥𝑘}, {𝑑𝑘}, {𝑔𝑘}, {𝛼𝑘}, then we get to the conclusion that, 
 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓 ‖𝑔𝑘+1‖ = 0 

 

Proof: from (2) and (9), we have, 
 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + |
𝑔𝑘+1

𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

 − (1 − 𝜃)
𝑦𝑘

𝑇𝑣𝑘  𝑔𝑘+1
𝑇 𝑣𝑘

𝑣𝑘
𝑇𝑣𝑘  𝑑𝑘

𝑇𝑦𝑘
| ‖ 𝑑𝑘‖ (15) 

 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + (|
𝑔𝑘+1

𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

 | + (1 − 𝜃) |
𝑦𝑘

𝑇𝑣𝑘  𝑔𝑘+1
𝑇 𝑣𝑘

𝑣𝑘
𝑇𝑣𝑘  𝑑𝑘

𝑇𝑦𝑘
|) ‖ 𝑑𝑘‖ (16) 

 

since 𝑔𝑘+1
𝑇 𝑣𝑘 ≤ 𝛼𝑘𝑑𝑘

𝑇𝑦𝑘 and by using (14), also from lipschitz condition ‖𝑦𝑘‖ ≤ 𝐿‖𝑣𝑘‖ and  𝑔𝑘+1
𝑇 𝑦𝑘 ≤

𝐿𝑔𝑘+1
𝑇 𝑑𝑘 where 𝐿 > 0, we have, 

 

‖𝑑𝑘+1‖ ≤ 𝑀 + (𝐿 + (1 − 𝜃)𝛼𝑘  𝐿)‖ 𝑑𝑘‖ (17) 
 

since, ‖𝑣𝑘‖ = ‖𝑥 − 𝑥𝑘‖, 𝐷 = 𝑚𝑎𝑥{‖𝑥 − 𝑥𝑘‖} , ∀ 𝑥, 𝑥𝑘 ∈ 𝑅}. Hence (17) becomes ‖𝑑𝑘+1‖ ≤ 𝑀 + (+(1 −
𝜃)𝛼𝑘 )𝐷𝐿 = 𝛽 

 

⇒ ∑
1

‖𝑑𝑘+1‖2
 
𝑘≥1 ≥ ∑

1

𝛽2
 
𝑘≥1 = ∞ 

 

⇒ ∑
1

‖𝑑𝑘+1‖2
 
𝑘≥1 = ∞ 
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by using lemma (3.1), we get 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0. Which completes the proof. 

 

 

4. NUMERICAL RESULTS FOR UNCONSTRAINED OPTIMIZATION 

This part focuses on evaluating how well our approach for resolving optimization issues works in 

practice. We contrast HS method with our novel algorithm. Well-known test functions [25] with varying 

dimensionality were used in the comparison testing. Fortran 95 is used to write all program lines. The cubic 

interpolation method utilized in the line search routine utilised function and gradient values. The outcomes 

shown in Table 1 depend on the number of iterations (NI) and functions (NF). Table 2 experimental findings 

support the claim that the new method outperforms the HS algorithm in terms of number of iterations, and or 

number of functions. 
 

 

Table 1. The results for the HS and New CG methods on the tested problems 

Test function 𝑛 
HS New CG (Continued) 

Test function 𝑛 
HS New CG 

NI NF NI NF NI NF NI NF 

G-Cantrel 

4 
10 

100 

500 
1,000 

5,000 

22 
22 

22 

23 
23 

28 

159 
159 

159 

171 
171 

248 

21 
21 

22 

22 
22 

23 

150 
150 

163 

163 
163 

176 

 

Miele 

4 
10 

100 

500 
1,000 

5,000 

28 
31 

33 

40 
46 

54 

85 
102 

114 

146 
176 

211 

28 
28 

31 

39 
39 

39 

85 
85 

102 

139 
139 

139 

G-Wolfe 

4 
10 

100 

500 
1,000 

5,000 

11 
32 

49 

52 
70 

165 

24 
65 

99 

105 
141 

348 

11 
32 

49 

52 
60 

165 

24 
65 

99 

105 
121 

345 

G-Wood 

4 
10 

100 

500 
1,000 

5,000 

30 
30 

30 

30 
30 

30 

68 
68 

68 

68 
68 

68 

26 
26 

26 

26 
28 

28 

61 
61 

61 

61 
65 

65 

Powell 

4 
10 

100 

500 

1,000 

5,000 

37 
37 

40 

44 

44 

44 

102 
102 

117 

136 

136 

136 

33 
33 

36 

36 

36 

36 

91 
91 

106 

106 

106 

106 

Non-Diagonal 

4 
10 

100 

500 

1,000 

5,000 

24 
26 

29 

F 

29 

30 

64 
72 

79 

F 

79 

81 

24 
26 

29 

29 

29 

30 

64 
72 

79 

82 

79 

81 

Rosen 

4 
10 

100 

500 
1,000 

5,000 

30 
30 

30 

30 
30 

30 

83 
83 

83 

83 
83 

83 

30 
30 

30 

30 
30 

30 

83 
83 

83 

83 
83 

83 

OSP 

4 
10 

100 

500 
1,000 

5,000 

8 
13 

49 

112 
156 

256 

45 
58 

185 

353 
475 

774 

8 
13 

49 

107 
150 

256 

44 
60 

173 

341 
450 

765 

      Total 2,147 6,747 2,004 6,181 

 

 

Notes: 

I. The letter F in the previous table denotes that a technique to determine the minimum was unsuccessful. 

II. We assumed that the HS failure result was worth twice as much as the new CG findings. 

 

 

Table 2. The percentage of improvement between the HS and New CG methods 
Tools HS New CG 

NI 100% 93.3395% 

NF 100% 91.6111% 

 

 

Algorithm 2.1 applications for training neural networks 

This section presents the experimental numerical findings used to analyze and compare the 

effectiveness of the traditional and novel CG methods for training neural networks. We specifically look into 

how the HS method performed in comparison to the new CG method throughout the course of the program’s 

five times implementation. The conjugate gradient MATLAB neural network toolbox version 8.1 and 

MATLAB (2013a) are used to implement the methods. To reduce the value of the error’s function, the network 

is trained until the mean squares of the errors are below the error goal. We evaluate all methods using the 

identical initial weights, which were generated at random from the range (0, 1) where the problems: 

− Input P = [-1, -1, 2, 2 0, 5, 0, 5] and the target T = [-1, -1, 1, 1], the target error has been set to 1𝑥10−20 and 

the maximum epochs to 1,000 as used. 
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− Input continuous trigonometric function 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠(2𝑥) where 𝑥 ∈ [0, 𝜋] and the target error 

has been set to 1𝑥10−20 and the maximum epochs to 1,000 as used. 

The results of the training methods are present in the Table 3 and Figures 1 to 4. 

 

 

Table 3. Performance evaluation of new and conventional methods for training neural networks 
Methods No. Running Epochs CPU time (s)/Epoch Gradient 

Problem 1 

Standard 

1 

2 

3 
4 

5 

1,000 

34 

41 
21 

38 

0:00:04 

0:00:00 

0:00:00 
0:00:00 

0:00:00 

0.000376 

0.000239 

0.000173 
0.000209 

0.000157 

New CG 

1 
2 

3 

4 
5 

8 
3 

5 

2 
8 

0:00:01 
0:00:00 

0:00:00 

0:00:00 
0:00:00 

0.0581 
0.109 

0.0700 

0.971 
0.00142 

Problem 2 

Standard 

1 
2 

3 

4 
5 

296 
1,000 

69 

1,000 
1,000 

0:00:02 
0:00:04 

0:00:00 

0:00:0 
0:00:05 

0.000244 
0.00334 

0.000183 

0.00219 
0.000374 

New CG 

1 

2 
3 

4 

5 

20 

319 
36 

4 

5 

0:00:00 

0:00:00 
0:00:00 

0:00:00 

0:00:05 

0.0861 

0.00291 
0.00174 

0.356 

0.0937 

 

 

  
 

Figure 1. Performance of HS method for training neural networks using problem 1 

 

 

  
 

Figure 2. Performance of new method for training neural networks using problem 1 
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Figure 3. Performance of HS for training neural networks using problem 2 

 

 

  
 

Figure 4. Performance of new method for training neural networks using problem 2 

 

 

5. CONCLUSION 
ANN has employed modified conjugate gradients since the 1980s with a variety of CG algorithms, 

including single modified and combinations of numerous CG techniques, according to preliminary study.  

The majority of the research was on increasing the effectiveness of learning algorithms during training.  

By using appropriate formulations and methods to improve the performance of all test data, this major objective 

will be accomplished. In addition, the review uses CG as a key component for fixing mistakes in the back-

propagation process. In this paper, we presented a new CG method parameter based on the Perry parameter 

and a modified vector 𝑣𝑘
∗  based on the Barzilai and Borwein step size. The descent and sufficient descent 

requirements of the new method are established. Additionally, we investigate the global convergent property 

under accepted premises. The new method is more effective than the HS algorithm, as demonstrated by the 

numerical results on problems with low and high dimensionality. Finally, the new method’s practical relevance 

for training neural networks is also investigated. When compared to some well-known algorithms, the strategy 

is utilized to increase the efficiency of neural networks. 
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