
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 31, No. 1, July 2023, pp. 491~500

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v31.i1.pp491-500  491

Journal homepage: http://ijeecs.iaescore.com

Efficient algorithm for replanning web service composition

Kavita D. Hanabaratti, Rudragoud Patil
Department of Computer Science and Engineering, K. L. S Gogte Institute of Technology, Belagavi, India

Article Info ABSTRACT

Article history:

Received Oct 31, 2022

Revised Mar 23, 2023

Accepted Mar 24, 2023

 Web-service-composition (WSC) workload execution inside a hybrid cloud

environment is challenging. A dynamic approach for allocating resources to

various tasks, as well as associated sub-tasks having a satisfactory quality-of-

service (QoS) requirement, is necessary for the present real-time demand. As

a result of focusing primarily on decreasing processing time as well as cost,

current approaches improve latency as well as energy while executing a given

workload. This study introduces an efficient re-planning (ERP) algorithm for

running many scientific workloads inside a heterogeneous cloud environment,

which is designed to address some of the shortcomings of previous

approaches. With a changing workload, this study details a technique to

improve the WSC's availability as well as robustness. The workload's

processing energy requirements are reduced as a result. The montage-

workflow has been used to validate the research findings. Comparison with

the current heterogeneous earliest finish time (QL-HEFT) algorithm

demonstrates that its ERP-WSC approach is much more efficient and reliable.

Keywords:

Efficient re-planning

Montage-workflow

Reliable

Web-service-composition

Workload execution

This is an open access article under the CC BY-SA license.

Corresponding Author:

Kavita D. Hanabaratti

Department of Computer Science and Engineering, K.L.S Gogte Institute of Technology

Belagavi, India

Email: kdhanabaratti@git.edu

1. INTRODUCTION

Processes based on directed-acyclic-graphs (DAGs) have been widely utilized for handling massive

datasets that include complex scientific workflows comprising multiple interdependent tasks. The cloud

supplies its customers with several virtual computational nodes, which they use to execute the workflow.

Workflow computation can be distributed among a configurable set of cloud nodes such that the customer can

take advantage of this functionality [1]. Customers often receive nodes following the terms of their service-

level-agreements (SLAs). Service-level-agreements explain the requirements stipulated amongst the service

operator as well as the customers to achieve the expected level of quality-of-service (QoS). Customers must

pay a membership fee that is determined by the level of service level agreement and quality of service they

demand. Not only that, but in DAG applications, neither [2] nor [3] have they addressed any strategy for

decreasing energy consumption during a specific operation. Clouds are considered heterogeneous if platforms

offer sufficient storage space for effective computation of workloads and support distributed computing, such

is the case with cloud-computing [4], [5].

Heterogeneous cloud environments necessitate the adoption of much more expensive as well as

power-intensive approaches [6]. The DAG processes as well as associated task dependencies are taken into

account when deciding where in the cloud to run the tasks [7]-[10]. Several strategies have already been

presented to simultaneously lower energy consumption as well as meet the SLA requirement for a specific

work [11]-[13]. Moreover, when a workload requires a certain QoS, the cloud platform's scheduling is notified

to look for a web-service as well as its parameters that meet those requirements. The scheduling algorithm has

the option of making either a static or a dynamic static resource allocation to the workload. Yet, the workload's

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 1, July 2023: 491-500

492

execution needs to be finished within a certain time while using less energy than usual and according to green

computing standards. Minimizing power usage was a primary goal of the conventional WCS approach.

However, there is no guarantee that these techniques will work reliably. Hence, an efficient re-planning (ERP)

method for enhancing dependability underneath a dynamic-workload was therefore developed in a

heterogeneous cloud setting in this work, to resolve the issue of reliability within the context of web-based

workload composition. The following is an outline of the various contributions made by the proposed work:

- The proposed approach is used for carrying out the web-service-composition tasks automatically.

- The presented approach solves the limitations of a particular service to fulfill complicated customer

demands.

- The proposed approach provides a searching technique for planning the workload of web services to

continuously update their availability.

- The proposed approach enhances the quality-of-service metric concerning its reliability and availability.

The following paper comprises the following section. In section 2, a literature survey on the existing

works has been discussed. Further, in section 3, an ERP algorithm has been proposed for web-service-

composition. Based on the algorithm, the results have been evaluated and compared with existing work in

section 4. To summarize the complete work, in section 5, the conclusion and future work for the proposed ERP

algorithm have been given.

2. LITERATURE SURVEY

In this section, we have examined a variety of recent strategies for the composition of workloads using

resources that utilize the cloud as well as heterogeneous computing environments. The difficulties of using

several cloud providers are addressed in [14], which proposes a solution. This approach begins by constructing

a fault-tolerant-workflow scheduler system, that, among other benefits, contributes to a cost reduction as well

as an improvement within execution dependability. Then, they establish the cost-effectiveness of a DAG task

and present an FCWS method that reduces both the time and money spent on assuring reliability without

compromising performance. The ideas, protocols, as well as approaches for cloud computing to minimize

energy use, are laid forth in [15]. This paper discusses the demands and requirements of cloud customers. The

paper additionally provides a comprehensive analysis of the energy efficiency, dependability, cost, as well as

efficiency of the virtual machines (VM) placed in cloud data centers.

Xie et al. [16], they find a time-scheduling method that takes into account only the workflow's

deadlines as well as the total scheduling duration. The goal of the total scheduling method is to maximize

performance while minimizing the planning duration. The method selects the best virtual machine for each

workflow based on its urgency and the time remaining until the workflow's completion. Khorramnejad

et al. [17], a methodology for multimedia cloud computing task scheduling, as well as cache management, is

presented with the goals of lowering operational expenses and increasing productivity and responsiveness. This

approach combines a variety of characteristics, including VM processing speed, pre-fetcher utilization, as well

as the frequency at which user requests arrive, to improve efficiency in terms of both expense and response

duration. The findings demonstrate that somehow the expenses associated with data transfer rise in lockstep

with the amount of data being sent.

A strategy for scheduling tasks in privatized clouds has indeed been presented in [18], to ensure that

the workload makes efficient use of the available resources. Using a neural-network, this method guarantees

that the workload's activities are completed by the user-specified deadline. They concluded that by taking this

method, the price, as well as response duration inside the specific cluster, may be decreased, leading to

improved QoS for the customer inside the privatized cloud. Xie et al. [19], an EPM method is described for

choosing the best CPU for a given cloud computing function, then powering it down afterward to conserve

energy. To reduce the time and effort required to calculate the EPM method, a new algorithm called QEPM

has already been developed. The findings indicate that as contrasted to current methods, both methods aid in

significantly reducing energy consumption.

Common European Asylum System (CEAS), developed in [20], is an efficient scheduler method for

cutting down on cloud computing's overhead and power usage. There are 5 stages to the method. The efficiency

of every procedure was evaluated by measuring its computation time. Current web service deployment

struggles the most when faced with dynamically changing resource needs, delivering poor outcomes [21] and

failing to provide effective trade-offs among lowering energy usage as well as meeting performance

prerequisites [22], [23]. To execute workload applications with constantly fluctuating QoS inside the cloud,

high quality of service with service level agreement assurance is required, and this can only be achieved through

an efficient replanning technique.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Efficient algorithm for replanning web service composition (Kavita D. Hanabaratti)

493

3. EFFICIENT-REPLANNING ALGORITHM FOR WEB SERVICE COMPOSITION TO

SCHEDULE THE WORKLOADS IN A HETEROGENOUS CLOUD ENVIRONMENT

In this section, first, the energy consumption methodology for the execution of the workload has been

discussed. Further, the scheduling of the tasks in the web service composition (WSC) has been explained.

Finally, an efficient-replanning algorithm has been proposed for providing better reliability.

3.1. Energy consumption methodology during the execution of the workload

A significant number of variable physical devices 𝐼 compose the sophisticated heterogeneous-cloud

infrastructure, which is shown mathematically as shown in (1).

𝐼 = {𝐼1 , 𝐼2, 𝐼3, … , 𝐼𝑜}, (1)

In (1) the 𝑜 is used for representing the physical machine present in the heterogenous-cloud infrastructure. For

every physical machine 𝐼𝑙 ∈ 𝐼, which can be represented utilizing the given in (2).

𝐼𝑙 = {𝑠𝑡𝑙 , 𝑛𝑙 , 𝑞𝑙
↑, 𝑜𝑙 , (𝑔𝑙 , 𝑤𝑙), 𝑉𝑙}, (2)

In (2), 𝑠𝑡𝑙 is used for representing the storage-size, 𝑛𝑙 is used for representing how much space the memory

can hold, 𝑞𝑙
↑ is used for representing a very high state of energy, 𝑜𝑙 is used for representing the maximum

amount of bandwidth available, (𝑔𝑙 , 𝑤𝑙) is used for representing the range for frequency as well as voltage.

Further, the 𝑉𝑙 is used for representing the virtual machines present inside the 𝐼. The (𝑔𝑙 , 𝑤𝑙) can be denoted

using the given (3).

(𝑔𝑙 , 𝑤𝑙) = {(𝑔𝑙
1, 𝑤𝑙

1), (𝑔𝑙
2, 𝑤𝑙

2), … , (𝑔𝑙
↑, 𝑤𝑙

↑)} (3)

Further, the 𝑉𝑙 can be represented by the given in (4).

𝑉𝑙 = {𝑣𝑙,1, 𝑣𝑙,2, … , 𝑣𝑙,|𝑉𝑘|} (4)

Furthermore, the virtual machine inside the 𝐼 is represented by the given (5).

𝑣𝑙,𝑚 = {𝑔𝑙,𝑚, 𝑛𝑙,𝑚, 𝑠𝑡𝑙,𝑚} (5)

In (5) 𝑔𝑙,𝑚 is used for portraying the range of frequency of each virtual machine, 𝑛𝑙,𝑚 is used for portraying

the space of memory it can hold inside the virtual machine and 𝑠𝑡𝑙,𝑚 is used for portraying storage-size inside

the virtual machine. Furthermore, the hardware can be partitioned into virtual computers and ported across

different hosts. The VMs could share hardware resources and move freely among many physical servers.

Assume that the highest amount of energy that a specific physical-machine 𝑖𝑙 can handle is 𝑞𝑙
↑, as well as set

the static consumption of energy at 𝑡𝑙. In (6) represents the energy used to run the workload just on the physical

machine 𝑖𝑙.

𝐼𝑙 = 𝑡𝑙 ∗ 𝑞𝑙
↑ ∗ 𝑧𝑙

𝑢 +
(1−𝑡𝑙)∗𝑞𝑙

↑

(𝑔𝑙
↑)

3 ∗ (𝑔𝑙)3, (6)

In (6), 𝑧𝑙
𝑢 ∈ {1,0} is used for representing whether or not the 𝑖𝑙 is non-active or active for the time 𝑢.

At a given instant 𝑢, 𝑔𝑙 represents the CPU speed. Highest CPU speed at time 𝑢 is denoted by the symbol 𝑔𝑙
↑.

In (7) could be used to determine the energy consumed by a specific physical-machine 𝑜 across a range of

times based upon these characteristics.

ℰ = ∑ ∫ (𝑡𝑙 ∗ 𝑞𝑙
↑ ∗ 𝑧𝑙

𝑢 +
(1−𝑡𝑙)∗𝑞𝑙

↑

(𝑔𝑙
↑)

3 ∗ (𝑔𝑙)
3) 𝑑𝑡

yt

xt
𝑜
𝑗=1 , (7)

Further, in (7), all the parameters are static except 𝑧𝑙
𝑢 as well as the 𝑔𝑙 which fluctuates with time, due to which

it is known as a time-dependent parameter.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 1, July 2023: 491-500

494

3.2. Scheduling the tasks of the workload in WSC

Consider the mapping relationship that exists among the 𝑣𝑙,𝑚 virtual machine and various 𝑢𝑘
𝑗
 tasks

that run on the 𝑖𝑙 physical machine be defined by 𝑦𝑘,𝑙𝑚
𝑗

. Whenever the tasks 𝑢𝑘
𝑗
 is mapped to the 𝑣𝑙,𝑚 the virtual

machine, then the 𝑦𝑘,𝑙𝑚
𝑗

 tends to 0. Further, when the tasks 𝑢𝑘
𝑗
 is not mapped to the 𝑣𝑙,𝑚 the virtual machine,

then the 𝑦𝑘,𝑙𝑚
𝑗

 tends to 1. This can be represented using (8).

𝑦𝑘,𝑙𝑚
𝑗

= {
0, 𝑖𝑓 𝑢𝑘

𝑗
 is not mapped to 𝑣𝑙,𝑚

1, otherwise.
, (8)

To solve the issue of resource allocation restrictions, data dependencies across tasks with varying processes

and workloads must be resolved. This restriction can be solved using (9).

𝑔𝑢𝑞,𝑙𝑚
𝑗

+ 𝑢𝑢𝑞𝑘
𝑗

≤ 𝑠𝑡𝑘,𝑙𝑚
𝑗

, ∀𝑓𝑞𝑘
𝑗

∈ 𝐹𝑗 (9)

In (9), 𝑔𝑢𝑞,𝑙𝑚
𝑗

 is used for representing the total time consumed for the execution of the workload, 𝑢𝑢𝑞𝑘
𝑗

 is used

for representing the transmission time between the tasks 𝑢𝑞 as well as 𝑢𝑗. Once the task has been executed and

the virtual machine's time 𝑥𝑗 has completed, the necessary execution time can be calculated utilizing the given

in (10).

𝑔𝑢𝑗 = max
𝑢𝑘

𝑗
∈𝑈𝑗

{𝑔𝑢𝑘,𝑙𝑚
𝑗

}. (10)

The tasks should complete the execution successfully under the deadline constraint after the necessary

resources have been made available. The provided equation is utilized here for this purpose.

𝑔𝑢𝑗 ≤ 𝑒𝑗, ∀𝑥𝑗 ∈ 𝑋. (11)

As the actual machine has fewer resources available, the use of virtual machines is constrained. Because of this

issue, providing the necessary resources is a challenging process. Hence, the constraints have to be defined. By

using the given (12) and (13), we can define the constraints.

𝑔𝑙
↑ − ∑ 𝑔𝑙,𝑚 ≥ 0,

|𝑉𝑙|
𝑚=1 ∀𝑖𝑙 ∈ 𝐼; (12)

𝑛𝑙 − ∑ 𝑛𝑙,𝑚 ≥ 0,
|𝑉𝑙|
𝑚=1 ∀𝑖𝑙 ∈ 𝐼. (13)

To reduce the completion time for the execution of the scientific workload, this approach meets well all criteria

indicated by (9), (11), (12), as well as (13), which require a decrease in energy usage during resource

scheduling. The following mathematical expression can be used to represent this (14).

Min ∑ ∫ (𝑡𝑙 ∗ 𝑞𝑙
↑ ∗ 𝑧𝑙

𝑢 +
(1−𝑡𝑙)∗𝑞𝑙

↑

(𝑔𝑙
↑)

3 ∗ (𝑔𝑙
𝑒)3)

yt

xt
𝑜
𝑙=1 𝑑𝑡. (14)

In (14), 𝑜 is used for representing the capacity of the physical machine, 𝑥𝑡 represents the beginning of the task

being performed and 𝑦𝑡 represents the completion of the task. Furthermore, from (15) allows for an effective

distribution of the available resources under this scenario.

Max (∑ ∑ 𝑐𝑝𝑢𝑘
𝑗

∗ 𝒯𝑘
𝑗|𝑈𝑗|

𝑘=1
𝑛
𝑗=1) (∑ 𝑔𝑙

↑ ∗ 𝒜𝑙
𝑜
𝑙=1)⁄ , (15)

As shown in (15), 𝑛 is used for representing the workload size, |𝑈𝑗| is used for representing the task-size 𝑥𝑗 .

The required frequency for the CPU is defined by 𝑐𝑝𝑢𝑘
𝑗
. 𝒯𝑘

𝑗
 is used for representing the total amount of time

it takes to complete the workload's tasks, 𝑜 is used for representing the physical machine, 𝒜𝑙 is used for

representing the time that the physical machine has been active.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Efficient algorithm for replanning web service composition (Kavita D. Hanabaratti)

495

3.3. Efficient-replanning algorithm for WSC in the dynamic real-time environment

In this work, the task is scheduled using the min-max function defined in (14) and (15), respectively.

However, finding resources using the above metrics induces certain constraints such as task dependency, the

deadline prerequisite (i.e., application reliability prerequisite), and resource availability. Thus, scheduling tasks

using the min-max trade-offs function is an NP-hard problem. In this work, a heuristic mechanism is designed

to solve the trade-offs problem and obtain the optimal solution for the execution of a dynamic workload with

reliability (i.e., deadline) prerequisite with time complexity. In the existing model, the resource provisioner

takes input i.e., workload task, and schedules only a few tasks to the virtual machines, and the remaining task

will be in waiting since the task have dependencies. Then with the arrival of a new workload, the ready-to-be-

executed task fails to obtain the resource. As a result, task reliability is affected and resources are wasted. Thus,

an efficient replanning algorithm is needed to optimize the flow of workload execution with the arrival of a

new workload. So, in this process, before arranging the execution of the workflow, it is vital to plan the

sequence of how the tasks are to be carried out. In this work, we describe an efficient re-planning technique by

first defining tasks based on the most recent beginning period, 𝑟𝑢𝑘
𝑗
, of each workload. These beginning

durations are then utilized to order the execution of workload tasks. Every task 𝑢𝑘
𝑗
 has a start duration

represented as 𝑟𝑢𝑘
𝑗
 during which it has to be initiated; if this fails, the workload 𝑥𝑗 completing time 𝑔𝑢𝑘

𝑗
, may

be affected, causing it to fail its deadline, thus, impacting its reliability. The start duration of the task can be

represented by (16).

𝑟(𝑢𝑘
𝑗

) = {

𝑒𝑗 − 𝑑𝑢𝑘
𝑗
, 𝑖𝑓𝑠𝑢𝑐𝑐(𝑢𝑘

𝑗
) = ∅

min
𝑢𝑠

𝑟∈(𝑢𝑘
𝑗

)
{(𝑟𝑢𝑠

𝑗
) − 𝑢𝑢𝑘𝑠

𝑗
− 𝑑𝑢𝑘

𝑗
}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (16)

In (16), 𝑠𝑢𝑐𝑐(𝑢𝑘
𝑗
) is used to represent the complete task of the workload which also includes the 𝑢𝑘

𝑗
 tasks that

are in the queue. Hence, the recent duration 𝑟𝑔𝑢𝑘
𝑗
 for the given task 𝑢𝑘

𝑗
 can be evaluated from the given in (17).

𝑟𝑔𝑢𝑘
𝑗

= 𝑟𝑢𝑘
𝑗

+ 𝑑𝑢𝑘
𝑗

. (17)

Since each workload task establishes its own unique preferred bounds, many VMs may sit idle while their

workload tasks run. Moreover, no data dependencies exist across various workloads. So, efficient planning of

tasks across various workloads simultaneously would considerably contribute to lowering the amount of time

spent in idleness by individual VMs, which in turn will improve the efficiency with which the system utilizes

its resources. We assume that two tasks, 𝑢𝑘
𝑗
 as well as 𝑢

𝑘′
𝑗

, run within the identical VM 𝑉𝑙𝑚, which means the

duration required to complete 𝑢𝑘
𝑗
 is shorter than the overall time it takes to initialize 𝑢

𝑘′
𝑗

, which can be

represented as 𝑔𝑢𝑘,𝑙𝑚
𝑗

< 𝑔𝑢
𝑘′,𝑙𝑚

𝑗
. Let's assume that somehow the VM 𝑉𝑙𝑚 has a startup duration of 𝑖𝑢𝑞,𝑙𝑚

𝑗′

 for

each workload 𝑥𝑗′ , where 𝑖𝑢𝑞,𝑙𝑚
𝑗′

 is smaller than 𝑖𝑢
𝑘′,𝑙𝑚

𝑗
 for each of those workloads, then the 𝑢𝑞

𝑗′

 hold for the

given (18).

𝑚𝑎𝑥 {𝑔𝑢𝑘,𝑙𝑚
𝑗

, 𝑖𝑢𝑞,𝑙𝑚
𝑗′

} + 𝑓𝑢𝑞,𝑙𝑚
𝑗′

≤ 𝑖𝑢
𝑘′,𝑙𝑚

𝑗
, (18)

Further, to minimize 𝑉𝑙𝑚 idle time, we divide 𝑢𝑞
𝑗′

 amongst 𝑢𝑘
𝑗
 as well as 𝑢

𝑘′
𝑗

. This presumption can be

demonstrated by using Lemma 1. Consider 𝑢𝑘
𝑗
 as well as 𝑢

𝑘′
𝑗

 represent the active as well as idle time slots,

respectively, for a specific VM 𝑉𝑙𝑚. In (19) can be used to determine 𝜔1, which represents the idle period.

𝜔1 = 𝑖𝑢
𝑘′,𝑙𝑚

𝑗
, −𝑔𝑢𝑘,𝑙𝑚

𝑗
 (19)

The new value for the shared idle time slot 𝜔2 between 𝑢𝑘
𝑗
 and 𝑢

𝑘′
𝑗

 is calculated as follows if the task 𝑢𝑞
𝑗′

 is

distributed between them.

𝜔2 = 𝑖𝑢
𝑘′,𝑙𝑚

𝑗
, −𝑔𝑢𝑘,𝑙𝑚

𝑗
− 𝑓𝑢𝑞,𝑙𝑚

𝑗′

 (20)

The preceding equation ensures that the corresponding VM 𝑉𝑙𝑚 will have less time spent waiting. According

to Lemma 1, if many workload tasks are submitted to a single VM and run in parallel, the VMs idle time is cut

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 1, July 2023: 491-500

496

down, enabling better use of its resources. To satisfy application-deadlines as well as cut the amount of energy

waste, the ERP-WSC approach scales up or down resources as needed to comply with Lemma 2. Consider a

group of physical machines that are active represented as 𝐼𝑏 and expressed as the given (21).

𝐼𝑏 = {𝑖1, 𝑖2, … , 𝑖|𝐼𝑏|} (21)

Where, the total computational capacity of a physical-machine is a constant, represented as (22).

𝐺 = ∑ 𝑔𝑙
|𝐼𝑏|

𝑙=1 (22)

In (22), the 𝑔𝑙 is used for defining the frequency of the physical-machine represented as 𝑖𝑙 ∈ 𝐼𝑏. In (23) is used

to determine the total amount of energy that is consumed by physical-machines defined as 𝐼𝑏 .

𝐸 = ∑ 𝑞𝑙
|𝐼𝑏|

𝑙 , (23)

If the following condition holds, then the preceding equation is minimal.

𝑐1𝑔1
2 = 𝑐2𝑔2

2 = ⋯ = 𝑑|𝐼𝑏|𝑔|𝐼𝑏|
2 , (24)

In (24), 𝑑𝑙 is used for representing the physical-machine 𝑖𝑙 which is static such that 1 ≤ 𝑙 ≤ |𝐼𝑏|. Further, the

𝑑𝑙 is evaluated by using the given (25).

𝑑𝑙 =
(1−𝑡𝑙).𝑞𝑙

↑

(𝑔𝑙
↑)

3 (25)

From (10), the consumption of energy 𝑞𝑙 for the physical machine 𝑖𝑙 which are active and can be calculated

using the given (26).

𝑞𝑙 = 𝑡𝑙 ∗ 𝑞𝑙
↑ ∗ 𝑧𝑙

𝑢 +
(1−𝑡𝑙)∗𝑞𝑙

↑

(𝑔𝑙
↑)

3 ∗ (𝑔𝑙)
3 (26)

Further, the given (26) can be simplified into the given (27).

𝑞𝑙 = 𝑡𝑙 ∗ 𝑞𝑙
↑ + 𝑑𝑘 ∗ (𝑔𝑙

𝑒)3 (27)

Here, the 𝑑𝑘 ∗ 𝑔𝑙
2 is stabilized over a wide variety of operational physical-machines in a heterogeneous cloud

setting to guarantee minimum energy use. In this study, we present a dynamic re-planning method for workload

execution that takes into account the criticality of meeting real-time deadlines. The ERP-WSC paradigm

maximizes efficiency by balancing the use of both physical and virtual machines to ensure that application

deadlines are met while reducing power usage. Meanwhile, with the current web service design for workload

implementation, tasks are scheduled instantly to the corresponding virtual or physical machines. In contrast,

the ERP-WSC only allocates tasks that can be run on the appropriate VMs. In addition, the unfinished tasks

are saved in a queue, as well as the scheduling decisions for them are optimized, or re-planned, to make better

use of time and resources.

The efficient-replanning algorithm for the web-service-composition has been given in Algorithm 1. The

algorithm is dynamic and starts whenever a task arrives. The tasks are then kept on hold inside the 𝑄𝑢𝑒𝑢𝑒. Further,

all the scheduling decisions are kept on hold and the current status of the virtual machines is attained. After this,

the 𝑟𝑢𝑘
𝑗
 for each task is evaluated utilizing (20). After the evaluation, the tasks are further added to the 𝑄𝑢𝑒𝑢𝑒.

Further, the tasks are allocated with optimized resources and the energy is reduced from Step 8 to Step 20.

Moreover, the tasks having higher priority are first sent into the 𝑄𝑢𝑒𝑢𝑒. For reducing energy, the algorithm

ensures that appropriate resources are given to the required tasks. If a greater number of virtual machines are

required for the execution of the tasks, then the resources are scaled up. If the resources are not utilized by the

tasks, then the resources are scaled down for reducing energy consumption. The process of scaling down and up

the resources according to the requirement of the workload tasks helps us to attain good performance. The

performance of the proposed ERP algorithm has been evaluated in the next section.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Efficient algorithm for replanning web service composition (Kavita D. Hanabaratti)

497

Algorithm 1. ERP algorithm for WSC
Step 1. Start

Step 2. 𝑄𝑢𝑒𝑢𝑒 ← ∅;

Step 3. ∀ workload 𝑥𝑗 arrival do

Step 4. Stop the non-executed scheduling decisions;

Step 5. Collect the status and inform available virtual machines;

Step 6. Compute 𝑟𝑢𝑘
𝑗
 for every task of workload using Eq. (20);

Step 7. Add the complete task of the workload 𝑥𝑗 into 𝑄𝑢𝑒𝑢𝑒;

Step 8. While 𝑄𝑢𝑒𝑢𝑒 composed of unscheduled tasks do
Step 9. ℛ ← obtain tasks from 𝑄𝑢𝑒𝑢𝑒 that are ready;

Step 10. Arrange ℛ in ascending order (i.e., increasing) concerning 𝑟𝑢𝑘
𝑗
;

Step 11. ∀ 𝑢𝑘
𝑗

∈ ℛ do
Step 12. 𝐶ℎ𝑜𝑠𝑒𝑉𝑀 ← ∅; 𝑚𝑖𝑛𝒲 ← ∞;

Step 13. 𝒞𝑉𝑀𝑠 ← all virtual machines satisfying 𝑔𝑙,𝑚 > 𝑐𝑝𝑢𝑘
𝑗
;

Step 14. ∀ 𝑣𝑙,𝑚 ∈ 𝒞𝑉𝑀𝑠 do

Step 15. Compute resource wastage 𝒲𝑘,𝑙,𝑚
𝑗

 of 𝑢𝑘
𝑗
 and completion time 𝑔𝑢𝑘,𝑙,𝑚

𝑗
 on 𝑣𝑙,𝑚;

Step 16. If 𝑔𝑢𝑘,𝑙,𝑚
𝑗

≤ 𝑟𝑢𝑘
𝑗

< 𝑚𝑖𝑛𝒲 then

Step 17. 𝐶ℎ𝑜𝑠𝑒𝑉𝑀 ← 𝑣𝑙,𝑚; 𝑚𝑖𝑛𝒲 ← 𝒲𝑘,𝑙,𝑚
𝑗

;

Step 18. If 𝐶ℎ𝑜𝑠𝑒𝑉𝑀 == ∅ then

Step 19. 𝐶ℎ𝑜𝑠𝑒𝑛𝑉𝑀 ← 𝑅𝑒𝑠↑;

Step 20. Schedule task 𝑢𝑘
𝑗
 to 𝐶ℎ𝑜𝑠𝑒𝑉𝑀;

Step 21. Stop.

4. RESULTS AND DISCUSSION

The results have been discussed in this section. For evaluating the proposed ERP, Montage workflow

has been used and then compared with the current QL-HEFT method [24]. More description of the Montage

workflow can be attained from [25]. The results have been evaluated in terms of time required for the execution

of each Montage task, total power sum consumed during the execution of the Montage tasks, total power

average consumed during the execution of the Montage tasks, and total energy consumed for the execution of

the Montage tasks. All these have been explained in below subsections. For the execution of the 100 Montage

tasks, 40 and 60 physical machines have been considered. The virtual machines have been varied from 10, 15,

20, and 25 during the execution of the 100 Montage tasks.

4.1. Overall time required for the execution of the Montage tasks

The overall time required for the execution of the Montage tasks has been discussed in this section. In

Figures 1 and 2, it can be seen that the heterogeneous earliest finish time (QL-HEFT) method takes more time

for the execution of the 100 Montage tasks using 40 as well as 60 physical machines, respectively. Moreover,

when the virtual machines are increased, the QL-HEFT method still fails to reduce the execution time for the

execution of 100 Montage tasks. Further, the proposed ERP method executes the 100 Montage tasks in less

time and when the virtual machines are increased, the ERP method decreases the execution time. From both

results, it can be said that the proposed ERP is more efficient for the execution of scientific workloads.

Figure 1. Overall time required for the execution of

100 Montage tasks using 40 physical machines

Figure 2. Overall time required for the execution of

100 Montage tasks using 60 physical machines

4.2. Total power sum consumed for the execution of the Montage tasks

The total power sum consumed for the execution of the Montage tasks has been discussed in this

section. In Figures 3 and 4, it can be seen that the QL-HEFT method consumes more power sum for the

0 200 400 600 800 1000

10

15

20

25

Time (seconds)

V
ir

tu
a

l
M

a
c
h

in
e
s

Overall Time Required for the Execution of

100 Montage Tasks using 40 Physical Machines

ERP QL-HEFT

0 200 400 600 800 1000

10

15

20

25

Time(seconds)

V
ir

tu
a

l
M

a
c
h

in
e
s

Overall Time Required for the Execution of 100

Montage Tasks using 60 Physical Machines

ERP QL-HEFT

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 1, July 2023: 491-500

498

execution of the 100 Montage tasks using 40 as well as 60 physical machines, respectively. Moreover, when

the virtual machines are increased, the QL-HEFT method still fails to reduce the power sum for the execution

of 100 Montage tasks. Further, the proposed ERP method executes the 100 Montage tasks in less power sum

and when the virtual machines are increased, the ERP method decreases more power sum. From both results,

it can be said that the proposed ERP is more efficient and reliable for the execution of scientific workloads.

Figure 3. Total power sum consumed for the

execution of 100 Montage tasks using 40 physical

machines

Figure 4. Total power sum consumed for the

execution of 100 Montage tasks using 60 physical

machines

4.3. Total power average consumed for the execution of the Montage tasks

The total power average consumed for the execution of the Montage tasks has been discussed in this

section. In Figures 5 and 6, it can be seen that the QL-HEFT method consumes more power on average for the

execution of the 100 Montage tasks using 40 as well as 60 physical machines, respectively. Moreover, when

the virtual machines are increased, the QL-HEFT method still fails to reduce the power average for the

execution of 100 Montage tasks. Further, the proposed ERP method executes the 100 Montage tasks with less

power average and when the virtual machines are increased, the ERP method decreases more power average.

From both results, it can be said that the proposed ERP is more efficient and reliable for the execution of

scientific workloads.

Figure 5. Total power average consumed for the

execution of 100 montage tasks using 40 physical

machines

Figure 6. Total power average consumed for

execution of 100 Montage tasks using 60 physical

machines

4.4. Total energy consumption consumed for the execution of the Montage tasks

The total energy consumption consumed for the execution of the Montage tasks has been discussed in

this section. In Figures 7 and 8, it can be seen that the QL-HEFT method consumes more energy for the

execution of the 100 Montage tasks using 40 as well as 60 physical machines, respectively. Moreover, when

the virtual machines are increased, the QL-HEFT method still fails to reduce the energy for the execution of

100 Montage tasks. Further, the proposed ERP method executes the 100 Montage tasks with less energy and

when the virtual machines are increased, the ERP method increases the energy slightly due to the increase in

the virtual machines. From both results, it can be said that the proposed ERP is more efficient and reliable for

the execution of scientific workloads.

0 1000000 2000000 3000000 4000000

10

15

20

25

Watts

V
ir

tu
a

l
M

a
c
h

in
e
s

Total Power Sum Consumed for the Execution

of 100 Montage Tasks using 40 Physical

Machines
ERP QL-HEFT

0 1000000 2000000 3000000 4000000 5000000

10

15

20

25

Watts

V
ir

tu
a

l
M

a
c
h

in
e
s

Total Power Sum Consumed for the Execution

of 100 Montage Tasks using 60 Physical

Machines
ERP QL-HEFT

0 10 20 30 40

10

15

20

25

Watts

V
ir

tu
a

l
M

a
c
h

in
e
s

Total Power Average Consumed for the

Execution of 100 Montage Tasks using 40

Physical Machines

ERP QL-HEFT

0 10 20 30 40 50 60

10

15

20

25

Watts

V
ir

tu
a

l
M

a
c
h

in
e
s

Total Power Average Consumed for Execution

of 100 Montage Tasks using 60 Physical

Machines

ERP QL-HEFT

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Efficient algorithm for replanning web service composition (Kavita D. Hanabaratti)

499

Figure 7. Total energy consumption consumed for

the execution of 100 Montage tasks using 40

physical machines

Figure 8. Total energy consumption consumed for

the execution of 100 Montage tasks using 60

physical machines

5. CONCLUSION

The efficient replanning web service composition algorithm for workload scheduling under a cloud

environment proposed in the research presents a promising approach to optimize the execution of complex

workflows in cloud environments. The algorithm provides an efficient method to tackle the challenge of

workload scheduling in cloud environments, which is critical for achieving efficient and reliable cloud services.

The proposed algorithm considers various factors to generate an optimal schedule for the given workflow. The

simulation results demonstrate that the proposed ERP algorithm outperforms the existing QL-HEFT algorithm

in terms of total execution time, total energy consumption, total power average, and total power sum. The

approach's effectiveness is further validated through a case study that involves the execution of a complex

workflow. Overall, the proposed algorithm can significantly improve the efficiency and reliability of cloud

services, making it a valuable contribution to the field of cloud computing. For future work, this work can be

extended by executing other scientific workloads.

REFERENCES
[1] R. Tasnim, A. A. Mim, S. H. Mim, and P. D. M. I. Jabiullah, “A comparative study on three selective cloud providers,” SSRN

Electronic Journal, 2022, doi: 10.2139/ssrn.4205141.
[2] L. Yang, C. Zhong, Q. Yang, W. Zou, and A. Fathalla, “Task offloading for directed acyclic graph applications based on edge

computing in Industrial Internet,” Information Sciences, vol. 540, pp. 51–68, Nov. 2020, doi: 10.1016/j.ins.2020.06.001.

[3] X. Feng, C. Shushan, H. Xingxing, H. Shujuan, and Z. Wenjuan, “A new direct acyclic graph task scheduling method for
heterogeneous Multi-Core processors,” Computers and Electrical Engineering, vol. 104, Dec. 2022, doi:

10.1016/j.compeleceng.2022.108464.

[4] S. K. Mishra, B. Sahoo, and P. P. Parida, “Load balancing in cloud computing: A big picture,” Journal of King Saud University -
Computer and Information Sciences, vol. 32, no. 2, pp. 149–158, Feb. 2020, doi: 10.1016/j.jksuci.2018.01.003.

[5] P. Loncar and P. Loncar, “Scalable management of heterogeneous cloud resources based on evolution strategies algorithm,” IEEE

Access, vol. 10, pp. 68778–68791, 2022, doi: 10.1109/ACCESS.2022.3185987.
[6] A. A. Khan, M. Zakarya, I. U. Rahman, R. Khan, and R. Buyya, “HeporCloud: An energy and performance efficient resource

orchestrator for hybrid heterogeneous cloud computing environments,” Journal of Network and Computer Applications, vol. 173,

Jan. 2021, doi: 10.1016/j.jnca.2020.102869.
[7] H. Lee, S. Cho, Y. Jang, J. Lee, and H. Woo, “A global DAG task scheduler using deep reinforcement learning and graph

convolution network,” IEEE Access, vol. 9, pp. 158548–158561, 2021, doi: 10.1109/ACCESS.2021.3130407.

[8] H. Mahmoud, M. Thabet, M. H. Khafagy, and F. A. Omara, “Multiobjective task scheduling in cloud environment using decision
tree algorithm,” IEEE Access, vol. 10, pp. 36140–36151, 2022, doi: 10.1109/ACCESS.2022.3163273.

[9] S. Kapoor and S. N. Panda, “Scheduling of parallel tasks in cloud environment using DAG MODEL,” in Advances in Intelligent

Systems and Computing, vol. 1172, 2021, pp. 267–276, doi: 10.1007/978-981-15-5566-4_23.
[10] S. P. M. Ziyath and S. Senthilkumar, “MHO: meta heuristic optimization applied task scheduling with load balancing technique for

cloud infrastructure services,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 6, pp. 6629–6638, Jun. 2021,

doi: 10.1007/s12652-020-02282-7.
[11] P. Singh, V. Prakash, G. Bathla, and R. K. Singh, “QoS aware task consolidation approach for maintaining SLA violations in cloud

computing,” Computers and Electrical Engineering, vol. 99, p. 107789, Apr. 2022, doi: 10.1016/j.compeleceng.2022.107789.

[12] C. Zhang, Y. Wang, Y. Lv, H. Wu, and H. Guo, “An energy and sla-aware resource management strategy in cloud data centers,”
Scientific Programming, vol. 2019, pp. 1–16, Nov. 2019, doi: 10.1155/2019/3204346.

[13] C. Zhang, Y. Wang, H. Wu, and H. Guo, “An energy-aware host resource management framework for two-tier virtualized cloud

data centers,” IEEE Access, vol. 9, pp. 3526–3544, 2021, doi: 10.1109/ACCESS.2020.3047803.
[14] X. Tang, “Reliability-aware cost-efficient scientific workflows scheduling strategy on multi-cloud systems,” IEEE Transactions on

Cloud Computing, vol. 10, no. 4, pp. 2909–2919, Oct. 2022, doi: 10.1109/TCC.2021.3057422.

[15] A. Vafamehr and M. E. Khodayar, “Energy-aware cloud computing,” Electricity Journal, vol. 31, no. 2, pp. 40–49, Mar. 2018, doi:
10.1016/j.tej.2018.01.009.

[16] G. Xie, L. Liu, L. Yang, and R. Li, “Scheduling trade-off of dynamic multiple parallel workflows on heterogeneous distributed

computing systems,” Concurrency and Computation: Practice and Experience, vol. 29, no. 2, Jan. 2017, doi: 10.1002/cpe.3782.

[17] K. Khorramnejad, L. Ferdouse, L. Guan, and A. Anpalagan, “Performance of integrated workload scheduling and pre-fetching in

multimedia mobile cloud computing,” Journal of Cloud Computing, vol. 7, no. 1, Dec. 2018, doi: 10.1186/s13677-018-0115-6.

0 500 1000 1500

10

15

20

25

Watt-Hour

V
ir

tu
a

l
M

a
c
h

in
e
s

Total Energy Consumption Consumed for the

Execution of 100 Montage tasks using 40

Physical Machines

ERP QL-HEFT

0 10 20 30 40 50 60

10

15

20

25

Watt-Hour

V
ir

tu
a

l
M

a
c
h

in
e
s

Total Energy Consumption Consumed for the

Execution of 100 Montage tasks using 60

Physical Machines

ERP QL-HEFT

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 1, July 2023: 491-500

500

[18] L. Chunlin, T. Jianhang, and L. Youlong, “Hybrid cloud adaptive scheduling strategy for heterogeneous workloads,” Journal of

Grid Computing, vol. 17, no. 3, pp. 419–446, Sep. 2019, doi: 10.1007/s10723-019-09481-3.
[19] G. Xie, G. Zeng, R. Li, and K. Li, “Energy-aware processor merging algorithms for deadline constrained parallel applications in

heterogeneous cloud computing,” IEEE Transactions on Sustainable Computing, vol. 2, no. 2, pp. 62–75, Apr. 2017, doi:

10.1109/TSUSC.2017.2705183.
[20] Z. Li, J. Ge, H. Hu, W. Song, H. Hu, and B. Luo, “Cost and energy aware scheduling algorithm for scientific workflows with

deadline constraint in clouds,” IEEE Transactions on Services Computing, vol. 11, no. 4, pp. 713–726, Jul. 2018, doi:

10.1109/TSC.2015.2466545.
[21] M. U. Sana and Z. Li, “Efficiency aware scheduling techniques in cloud computing: A descriptive literature review,” PeerJ

Computer Science, vol. 7, pp. 1–37, May 2021, doi: 10.7717/PEERJ-CS.509.

[22] R. Medara, R. S. Singh, and Amit, “Energy-aware workflow task scheduling in clouds with virtual machine consolidation using
discrete water wave optimization,” Simulation Modelling Practice and Theory, vol. 110, Jul. 2021, doi:

10.1016/j.simpat.2021.102323.

[23] P. Neelima and A. R. M. Reddy, “An efficient load balancing system using adaptive dragonfly algorithm in cloud computing,”
Cluster Computing, vol. 23, no. 4, pp. 2891–2899, Dec. 2020, doi: 10.1007/s10586-020-03054-w.

[24] Z. Tong, X. Deng, H. Chen, J. Mei, and H. Liu, “QL-HEFT: a novel machine learning scheduling scheme base on cloud computing

environment,” Neural Computing and Applications, vol. 32, no. 10, pp. 5553–5570, May 2020, doi: 10.1007/s00521-019-04118-8.
[25] IRSA, “Parallelization and performance. Montage user documentation,” NASA Space Act Award Winner 2006, 2006, accessed

Dec. 27, 2022. [Online]. Available: http://montage.ipac.caltech.edu/docs/grid.html.

BIOGRAPHIES OF AUTHORS

Kavita D. Hanabaratti was born in Karnataka, India, in 1979. She received a

B.E. degree in Computer Science and Engineering from the University of KUD, in the year

2001 and an M. Tech in Computer Science and Engineering from the Gogte Institute of

Technology (GIT) Belagavi India, in 2011. From 2002 to 2004 she served as a lecturer at

SDM Engineering College Dharwad. She is currently working as an Assistant Professor in

the Department of Computer Science and Engineering at Gogte Institute of Technology

Belagavi since 2007. Her current research interests include autonomic computing, machine

learning, and artificial intelligence. She is a Life Member of the Indian Society for Technical

Education (ISTE). She can be contacted at email: kdhanabaratti@git.edu.

Dr. Rudragoud Patil currently working as an Associate Professor, at

Department of CSE, KLS Gogte Institute of Technology, Belagavi. He has 12 years of

Teaching Experience at professional institutes across Karnataka. He published over 13 papers

in International Journals, Book Chapters, and Conferences of High Repute. His subjects of

interest include cloud computing, distributed computing, machine learning, and network

security. He can be contacted at email: rspatil@git.edu.

https://orcid.org/0000-0001-9465-3114
https://scholar.google.com.pk/citations?user=b51joXYAAAAJ&hl=en
https://orcid.org/0000-0001-6374-5200
https://scholar.google.com/citations?user=tKoOHJEAAAAJ&hl=en

