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Abstract 
A new certificateless blind ring signature scheme was proposed in this paper. The scheme could 

not only avoid the problem of certificate management of public key certificate cryptography, but also 
overcome the inherent key-escrow problem of identity-based public key cryptography. In the last, by using 
bilinear pairing technique, it was proved that this scheme satisfied the security of existential unforgeability, 
blindness and unconditional anonymity. 
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1. Introduction 
In 1984, ID-based public key cryptography (ID-PKC) was proposed by Shamir [1], which 

was utilized to solve the certificate management problems in traditional PKC. In 2003, Al-Riyami 
et al. [2] introduced the concept of certificateless PKC that was used to resolve the inherent key-
escrow problem in ID-based cryptography. In 2005, the security model of certificateless 
signature was firstly formally defined by Huang et al. [3]. In 2009, a certificateless signature 
scheme was proposed by Wan et al. [4] in the standard model, while it was proved to be not 
precise. In 2010, another certificateless signature without bilinear pairings was given by He et 
al. [5], and Zhang et al. [6] analyzed two certificateless signature schemes and pointed out their 
security weakness. 

Blind signature was firstly put forward by Chaum [7], which could achieve the anonymity 
of users and was widely used in e-cash or e-voting systems. In 1996, the concept of partial blind 
signature was put forth by Abe et al. [8], such signatures contain the pre-agreed information of 
signers and users. In 2009, a certificateless partial blind signature scheme was proposed by Su 
et al. [9], which was inefficient. In 2012, a certificateless partial blind signature scheme and the 
corresponding security model were put forth by Liu et al. [10], but the scheme could not resist 
the forgery attack to pre-agreed information. 

Ring signature was firstly described by Rivest et al. [11], which makes it possible to 
specify a set of possible signers without revealing which member actually produced the 
signature. In 2007, Chow et al. [12] gave the first certificateless ring signature, and Zhang et al. 
[13] proposed another certificateless ring signature scheme based on different assumptions, 
while the length of signature is longer. In 2008, two kinds of certificateless distributed ring 
signature schemes, based on identity-based distributed ring signature, were put forward by 
Sang et al. [14]. 

Blind ring signature has not only the blind attribute of blind signature, but also the 
anonymity of ring signature. In 2005, the first blind ring signature was proposed by Chan et al. 
[15], but it proved to be not secure. In 2006, another scheme was introduced by Wu et al. [16], 
while the scheme did not satisfy the unconditional anonymity, Javier et al. [17] put forth a blind 
ring signature with constant length and gave the security model of it. In this paper, a concrete 
construction of certificateless blind ring signature is proposed along with its security proofs. 
 
 
2.  Preliminaries 

Let G  be an additive group of prime order q  and TG  be a multiplicative group of the 

same order. A bilinear pairing is a map TGGGe :  that satisfies the following properties: 
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1. Bilinear:    , ,
ab

e aP bQ e P Q  for all ,P Q G  , , qa b Z . 

2. Non-degeneracy： there exists ,P Q G  such that  , 1e P Q  . 

3. Computability： There is an efficient algorithm to compute  ,e P Q for all ,P Q G . 

 

k-Collision Attack Algorithm (k-CAA) problem. For an integer k ，and qs Z , P G , 

given 
1

1

1 1
, ..., , , , , ...,

k

kt t P Q sP P P
t s t s


 

 
 
 

, to compute 
1

P
c s

 for some  *
1\ ,...,q kc Z t t .  

 

Modified Inverse Computational Diffie-Hellman (mICDH) problem. For *, qa b Z , 

given , ,b P aP G , to compute   1
a b P


 . 

 
 
3.  A Concrete Certificateless Blind Ring Signature Scheme (CL-BRS) 

In this section, we give the concrete construction of my CL-BRS.  
 
Setup: Let G , G  be groups of the same order q , the bilinear pairing is given as 

: Te G G G  . Given a security parameter k , let P  is a generator of G . Choose a random 

number *
R qs Z  and set pubP sP ,  ,g e P P . Define three hash functions  *

1

*: 0,1 qH Z , 

 *

2

*: 0,1 qH Z , 
3

*: qH G Z . The parameters are  1 2 3, , , , , , , , ,T pubparams G G q e g P P H H H  

and the system public-private key pair is pubmpk p , msk s . 

 
Partial-Private-Key-Extract: A user submits his identity information ID  to KGC. KGC 

computes  1IDq H ID  and returns   1
ID IDD s q P

   to user as his partial private key. 

 
Set-Public-Private-Key: After obtaining his partial private key IDD ， the user chooses a 

random number *
ID qx Z ，computes  1ID pubQ P H ID P  ， ID ID IDR x Q ，  3ID IDy H R ，

  1
ID ID ID IDS x y D

   and output ( ,ID IDR S ) as his public-private key pair. 

 
Blind-Ring-Sign: Given the message m , there is a group of n  users whose identities 

from the set  1, ..., nL ID ID  and the actual signer’s identity is  1, ...,AID A n . To produce a 

blind ring signature, the user and actual signer perform the following setps. 

1. The signer randomly chooses a number qx Z , computes xr g ，

 ID ID IDU x R y Q  , and randomly chooses a number , 1, ..., ,i qa Z i n i A   ，computes 

i iV a P ,   ,
i i ii ID ID IDi A

u e P a R y Q


  ， then sends  , , , 1,..., ,ir U u V i n i A   to the user. 

2. (Blinding) The user randomly chooses *, qZ    as blinding factors. He computes 

'r r g  ，
'U U ，  1 '

2 , ,h H m L r   , sends h  to the signer. 

3. (Signing) The signer sends back S , where  
AIDS x h S xP   . 

4. (Unblinding) The user computes AV S  and outputs  ' '
1, , , , , ..., nm u r U V V  . 

Then  ' '
1, , , , ..., nu r U V V  is the blind ring signature of the message m . 
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Verify: To verify a blind ring signature  ， the verifier firstly computes  ' '
2 , ,h H m L r

, and verify    '' '

1

?

, ,
i i i

n

i ID ID IDi

hr g e P U u e V R y Q


   holds with equality， then accept the blind 

ring signature as valid and output True if the above equation holds, otherwise, output False. 
 
 

4.  Analysis of the Proposed CLBRS Scheme  
4.1. Correctness 

 1
,

i i i

n

i ID ID IDi
e V R y Q


  

        1, 1,
, , , ,

A A A i i i A A A A i i i

n

A ID ID ID i ID ID ID ID ID ID IDi i A

n
i ID ID IDi i A

e V R y Q e V R y Q e x h S xP R y Q e V R y Q 
   

          

    1,
, ,

A A A A i i iID ID ID ID

n
i ID ID IDi i A

e x h S xP R y Q e V R y Q 
 

     

      1,
, , ,

i i iA A A A A A A

n
iID ID ID ID ID ID ID ID ID IDi i A

e x h S R y Q e xP R y Q e V R y Q 
 

      

          ''
'2 , , ' '

1,
, , ,,

i i i

x H m L r hn
i ID ID IDi i A

e P P e P U r g e P U ue V R y Q  

 
    

 
4.2. Security Proofs 

Theorem 1. Our CLBRS scheme has the blindness property. 
Proof. As it can be easily proved, so we omit it here. 
 
Theorem 2.  Our CLBRS scheme has the unconditional anonymity property. 

Proof. Let  ' '
1, , , , , ..., nm u r U V V   be a valid blind ring signature of a message m  on 

behalf of a group of n  members specified by identities in L . Since all , 1, ..., ,i qa Z i n i A    are 

randomly generated, hence   ,
i i ii ID ID IDi A

u e P a R y Q


   and all  1,..., ,i ia PV i n i A    

are also uniformly distributed. Also since qx Z  and , qZ    are randomly generated, so 
'r r g  , 'U U  and AV S  are uniformly distributed. This fact shows that the signature 

  does not leak any information about the identity of the actual signer. 
 
Theorem 3. Our CLBRS scheme is existential unforgeable against the Type I adversary 

in the random oracle model assuming the k-CAA is hard. 
Proof. Let IA  be a forger that breaks the proposed signature scheme under adaptive 

chosen message and identity attack. There will exists an algorithm B  that can use IA  to solve 

the k-CAA instance (
1

1

1 1
, ..., , , , , ...,

k

kt t P Q sP P P
t s t s


 

) where 
1Hk q  (we suppose IA  

makes at most 
1Hq  queries to 1H  oracle). Its goal is to compute 

1
P

t s
 for some  1,..., kt t t  

and *
ID  denotes an arbitrary signer associated with the forgery. 

B sets  ,g e P P  and pubP Q sP   where msk s  is the master key, which is 

unknown to B . B  then gives the system public parameters params  to IA . Without loss of 

generality, we assume that any extraction (Partial-Private-Key-Extract, Public-Private-Key) and 
Sign queries are preceded by 1H  query, and Private-Key and Sign queries are preceded by 

Public-Key query. B  maintains four lists 1L , 2L , 3L  and   4 , , , 0,1ID IDL ID R x c  , where all of 

them are initially empty. When the attacker IA  issues a number of queries, B  responses as 

follows : 
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1H  Queries: When IA  queries  1 iH ID  where 
1

1 Hi q  ， if  such query has already 

been made, B  checks the list 1L  and outputs the corresponding 
iIDq . Otherwise, B  picks 

 
1

1, Hj q  at random. If i j  (we let *
iID ID  at this point), B  randomly chooses *

x qt Z  and 

returns * xID
q t , otherwise B  returns  1, ,...,

iID i i kq t t t t  . B then computes 

i iID pub IDQ P q P   and adds  , ,
i ii ID IDID Q q  to 1L . 

2H  Queries: When IA  queries  '2 , ,H m L r , if such query has already been made, B  

checks the list 2L  and outputs the corresponding ih . Otherwise, B  randomly chooses *
i qh Z  

and adds  ', , , im L r h  to 2L , then returns ih . 

3H  Queries: When IA  queries  3 iIDH R , if such query has already been made, B  

checks the list 3L  and outputs the corresponding
iIDy . Otherwise, B  randomly chooses *

iID qy Z  

and adds  ,
i iID IDR y  to list 3L , then returns

iIDy . 

Partial-Private-Key Queries: When IA  makes a query on the partial private key of input

iID , if *
iID ID , B output FALL and aborts the simulation; else if *

iID ID , B  returns 

  1

iID iD t s P
  . 

Public-Key Queries: When IA  makes a query on the public key of input iID , if the list 

4L  contains  , , ,
i ii ID IDID R x c , B  returns 

iIDR . Otherwise, B  finds  , ,
i ii ID IDID Q q  in 1L , and 

randomly chooses *

iID qx Z . B  then returns
i i iID ID IDR x Q  and adds  , , ,1

i ii ID IDID R x  to 4L . 

Private-Key Queries: When IA  makes a query on the private key of input iID , if 

*
iID ID , B output FALL and aborts the simulation; else if *

iID ID , B finds  , , ,
i ii ID IDID R x c  in 

4L . If 1c   and the list 3L  contains  ,
i iID IDR y , B  returns   1

i i i iID ID ID IDS x y D


  ; if 1c   and 

the list 3L  does not contain  ,
i iID IDR y , B  queries   3 iIDH R  and returns 

  1

i i i iID ID ID IDS x y D


  ; if 0c  , B  gets additionally information '

iIDx  from IA  and simulates as 

in the above case ( 1c  ). 
Public-key-Replacement Queries: When IA  makes a query on public key replacement 

of input  ,
ii IDID R , if the list 4L  contains  , , ,

i ii ID IDID R x c , B  sets '

i iID IDR R and 0c  . 

Otherwise, B  makes a public-key-replacement query on iID , then sets '

i iID IDR R and 0c  . 

Blind-Ring-Sign Queries: When IA  queries a blind ring signature on message m  and a 

group of n  users whose identities from the set  1, ..., nL ID ID , B performs as following: 

(a) B  first finds  , ,
i ii ID IDID Q q ,  , , ,

i ii ID IDID R x c  in the list 1L  and 4L  for all  1,...,i n . 

(b) If 1c  ， B  chooses an index  1,...,A n , and finds  ,
i iID IDR y  for  1,...,i n  in the 

list 3L ; if it does not contain 
iIDR , B  randomly chooses *

iID qy Z , and adds  ,
i iID IDR y  to 3L . 

B  then randomly chooses *
i qa Z  and computes i iV a P , for all  1, ..., ,i n i A  ; B then 

randomly chooses ',AV U G , *
A qh Z , computes   ,

i i ii ID ID IDi A
u e P a R y Q


  , 
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   ' ' , ,A

A A A

h
A ID ID IDr g e U P e V R y Q    and set  '2 , ,Ah H m L r . If the list 2L  has already 

contained  '2 , ,H m L r , B  output FALL and aborts the simulation. Otherwise, B  returns 

 ' '
1, , , , , ..., nm u r U V V   and adds  ', , , Am L r h  to 2L . 

(c) If 0c  , B  gets additionally information '

iIDx  from IA  and simulates as in the above 

case ( 1c  ). 

       Forgery: Finally, IA  outputs the a tuple    * * ' '
1 1,, , , , , , ,n

i i A i AL h m u r U V V     which 

means   is a blind ring signature on message *m  on behalf of the group specified by identities 

in  * * *
1 , ..., nL ID ID , where suppose the actual signer’s identity is AID  and  '2

* *
1 , ,h H m L r . 

According to the forking lemma, B  then replays IA  with the same random tape but different 

2H . Suppose 2H  outputs 1 2h h  in the first round and the second round respectively. We can 

get another different valid forge    * * ' ' '
2 1,, , , , , , ,n

i i A i AL h m u r U V V    . According to the 

equations as follows:  

     1' '

1,
, , ,

A A A i i iA ID ID ID

n

i ID ID IDi i A

hr g e P U u e V R y Q e V R y Q
 

         (1) 

     2' '

1,

', , ,
A A A i i iID ID ID

n

i ID ID IDi i A

h
Ar g e P U u e V R y Q e V R y Q

 
         (2) 

we can get  1 2 ' ,
A A A

h h
A A ID ID IDg e V V R y Q    ，  that is 

      1 2 ', ,
A A A

h h
A A ID ID IDe P P e V V x y s q P

     ，  then we have 

 '

1 2

1
, ,A A

A

ID ID
A A

ID

x y
e P P e V V P

s q h h

   
        

. So the solution of the problem k-CAA is 

 '

1 2

1 A A

A

ID ID
A A

ID

x y
P V V

s q h h


 

 
. 

 
Theorem 4. Our CLBRS scheme is existential unforgeable against the Type II 

adversary in the random oracle model assuming the mICDH is hard. 
Proof. As the proof is quite straightforward, so we omit it here. 

 
 
4. Conclusion 

In this paper, we propose a concrete construction of certificateless blind ring signature 
scheme based on bilinear pairings in the random oracle model, which is more efficient by pre-
computing the pairing  ,g e P P . Note that CLBRS schemes may be more efficient than blind 

ring signature schemes in traditional PKC since they avoid the costly computation for verification 
of the public key certificates. Also, it is impossible for the KGC to forge valid ring signatures 
because of no key-escrow in the certificateless public key setting. 
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