
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 30, No. 3, June 2023, pp. 1534~1547

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v30.i3.pp1534-1547  1534

Journal homepage: http://ijeecs.iaescore.com

Gaussian kernelized feature selection and improved multilayer

perceptive deep learning classifier for software fault prediction

Sureka Sivavelu, Venkatesh Palanisamy

School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India

Article Info ABSTRACT

Article history:

Received Dec 26, 2022

Revised Jan 5, 2023

Accepted Jan 9, 2023

 Software fault prediction is the significant process of identifying the errors or

defects or faults in a software product. But, accurate and timely detection is

the major challenging issue in different existing approaches to predicting

software defects. A novel Gaussian linear feature embedding-based statistical

test piecewise multilayer perceptive deep learning classifier (GLFE-

STPMPDLC) is introduced to improve software fault prediction accuracy and

minimize time consumption. First, the input data are collected from the

dataset. Next, the software metrics selection is carried out to select the

significant metrics using Gaussian kernelized locally linear embedding with

lesser software fault prediction. Then classification is carried out by Kaiser

Meyer piecewise multilayer perceptive deep learning classifier for software

fault prediction. The novelty of Kaiser-Meyer-Olkin (KMO) correlation test

analyzes testing and training instances. The innovation of the Heaviside step

activation function is applied for analyzing the KMO correlation test results

and providing the final software fault prediction results. Finally, accurate fault

prediction outcomes are achieved at the output layer with lesser error.

Simulation of proposed GLFE-STPMPDLC technique achieves better 5%,

3%, 3% and 3% enhancement of fault prediction accuracy, precision, recall,

and f-measure and 13% faster prediction time compared to conventional

methods.

Keywords:

Classification

Gaussian kernelized locally

linear feature embedding

Heaviside step activation

function

Kaiser-Meyer-Olkin correlation

test

Multilayer perceptive deep

learning classifier

Software fault prediction

This is an open access article under the CC BY-SA license.

Corresponding Author:

Venkatesh Palanisamy

School of Information Technology and Engineering, Vellore Institute of Technology

Vellore, India

Email: venkatesh.palanisamy@vit.ac.in

1. INTRODUCTION

The advance of source code defect forecasting process shows a vital role in developing software

quality. In order to classify the defective software modules earlier are used to such defect forecasting and

corrected them before the testing process. Software defect prediction is a vital part of software testing. It aids

software practitioners to assign their limited resources for testing as well as enhancing software quality by

identifying defect constructs in the early stages of enrichment life cycle. A software defect forecasting model

classifies the software modules based on metrics. The software defect-forecasting process includes the

extraction of metrics and structure of a defect-forecasting model. After that, software defect forecasting models

are very helpful for testing engineers to take important conclusion likes accurate and timely detection. In order

to, manufacture the software defect forecasting models, novel machine-learning algorithms and deep-learning

algorithms are needed for accurately predicting software defects.

Semantic feature learning via defect prediction via stress-based forming limit diagrams (DP-SFLDS)

method was developed in [1] to extracting the semantic and structural information using bi-directional long

short-term memory (BiLSTM) based neural network. But the complexity of the algorithm was not reduced to

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Gaussian kernelized feature selection and improved multilayer perceptive deep learning … (Sureka Sivavelu)

1535

further improve the software defect prediction. Lin and Lu [2], a convolutional graph neural network for defect

prediction (DP-GCNN) method was performed to classify module as defective or not defective based on this

information. However, it failed to analyze the fault-prone software modules for source code files of different

sizes with higher accuracy.

The singular spectrum analysis (SSA) combined with a back propagation neural network (BPNN) was

introduced in [3] to classifying the software faults. But, computational cost over the majority of data sets was

improved. Tameswar et al. [4], a hybrid deep neural network model was developed into enhances the prediction

of software bugs. However, data pre-processing techniques to potentially was not improve the quality of

available public datasets.

Chen et al. [5], a nested-stacking and heterogeneous feature selection framework was performed to

software defect prediction. However, it failed to manufacture a more intelligent and automated prediction

system. A supervised deep learning technique was performed in [6] to software defect detection. But,

performance of software defect detection was not improved. Statement-level software defect prediction was

developed in [7] using a deep-learning model based on static code features. However, it failed to minimize the

error rate of software defect prediction.

A three-stage weighting approach was introduced in [8] for detecting multi-source cross-project

software faults. But the performance of defect prediction was not improved the minimum time. Diverse

ensemble learning techniques (DELT) was developed in [9] to predict the project defects. The designed

techniques increase the complexity of the defect prediction. A hybrid deep neural network was developed in

[10] for predicting the software fault based on metaheuristic feature selection. However, it failed to perform

the multi-source cross-project defect prediction.

In this section, different approaches have been introduced for defect prediction. Miholca et al. [11], a

deep learning-based software defect prediction was performed. However, it failed to analyze the computation

time of software defect prediction. The Hellinger net model was introduced in [12] for accurate software

module defect prediction. But the designed model was not efficient in software defect prediction across larger

datasets. Goal-oriented hyper-parameter optimization for scalable training model was introduced in [13] to

classify the software defects. However, it failed to enhance the accuracy of software defect prediction.

Liu et al. [14], a flow learning-based geodesic cross-project software defect prediction approach was

performed. But it was not efficient for software defect prediction and early warning of unknown malware

variants. A stacked sparse denoising autoencoder and extreme learning machine were introduced in [15] for

detecting software faults. But it failed to optimize the other classifiers for software defect prediction. A software

defect prediction using method-call sequences was developed in [16]. But the relevant features were not

extracted for cross-project defect prediction.

An improved Elman neural network method was introduced in [17] to improve the performance of

defect prediction for time-varying characteristics. But it was not efficient for predicting the defects and solving

the practical issues in software development. An attention-based gated recurrent unit long short term memory

(GRU-LSTM) model was developed in [18] to predict the possible defective codes in the software. But it failed

to predict fault within and between projects. Finding faults using ensemble learners (ELFF) was developed in

[19] for predicting the defects in the latest software edition. But the accuracy of deep feature analysis was not

developed to develop the performance of fault prediction. A least absolute shrinkage and selection operator

support vector machine (LASSO–SVM) model was introduced in [20] to software defect prediction. But, it

failed to improve the classification accuracy.

The software defect prediction ensemble approach was introduced in [21] to discover faulty

components. But, the best-performing classifier was not identified. Novel variants of the whale optimization

algorithm (WOA) were developed in [22] to eradicate unnecessary features. However, the student’s

performance prediction issues were not handled. Cross version model with data selection (CDS) was analyzed

in [23] for choosing relevant data. Enhanced binary moth flame optimization (EBMFO) was introduced in [24]

for forecasting software faults. The designed EBMFO failed to boost the accuracy. Fuzzy filtered neuro-fuzzy

framework was investigated in [25] with higher accuracy. But, the feature selection stage was not enhanced.

Deep neural networks (DNN) prediction method was introduced in [26] with lesser dimensionality.

Novel Feature Selection approach was developed in [27] for selecting vital software metrics. The performance

of dissimilar classifiers was not detected. Two-stage data pre-processing method was discussed in [28] with

higher prediction performance. But, the time was not minimized. Semi-supervised DFCM clustering was

analyzed in [29] to address the class imbalance issue. Dynamic selection of learning techniques was introduced

in [30] for forecasting the number of software faults. But, false positive rate was not minimized.

Conventionally, features were physically considered from qualitative or quantitative description of

the module or its growth procedure. But, these features disregard both the unmistakable syntax as well as

semantics that describe a programming language employed for software expansion as well as which offer extra

information on the software modules. As well, conventional methods are illustrated in major problems

including minimum software defect prediction, better time consumption, lesser precision, recall and F-measure,

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1534-1547

1536

and it failed to provide accurate predictions. In order to, motivated by this fact, the novel Gaussian linear feature

embedding-based statistical test piecewise multilayer perceptive deep learning classifier (GLFE-STPMPDLC)

technique is developed. The strengths of proposed technique are to precisely forecast the software defect,

precision, recall, and F-measure as well as reduce the time.

In order to overcome the existing issues, major objectives of research work is contributed as:

- To develop the software fault prediction accuracy, the GLFE-STPMPDLC is comprised two different

processes namely feature or metrics selection and classification.

- To reduce the software fault prediction time, Gaussian kernelized locally linear embedding technique is

employed in GLFE-STPMPDLC to select the more relevant software metrics from the dataset. The

Gaussian kernel function is applied to a locally linear embedding technique to find the relevant metrics

based on the nearest neighbor concept. The other irrelevant features are removed from the dataset.

- To increase fault prediction accuracy and minimize the error rate, the Kaiser Meyer piecewise multilayer

perceptive deep learning classifier is applied with the selected metrics. The KMO correlation test is

applied to a multilayer perceptive deep learning classifier to determine software faults through testing and

training data analysis. The Heaviside step activation function is used to evaluate the correlation test and

provide the final prediction results. After that, the weight updating of the deep learning classifier

minimizes the prediction error.

- Finally, a comprehensive experimental assessment is carried out with a variety of performance parameters

to illustrate the improvement of the GLFE-STPMPDLC technique over conventional deep learning

methods.

The paper is organized by: In section 2, provides a brief explanation of the proposed GLFE-

STPMPDLC technique with a neat architecture diagram. In section 3, describes the Gaussian kernelized feature

selection and improved multilayer perceptive deep learning classifier for software fault prediction. In section

4, presents the performance results of the proposed GLFE-STPMPDLC technique and conventional deep

learning methods are discussed with different metrics and dataset description. Finally, section 5 is concluding

the paper.

2. PROPOSED METHOD

Software fault prediction aims to identify the defective modules of software programs earlier to the

testing stage of the development process. The early faults prediction system helps to remove software defects

and obtains cost-efficient and better-quality software products. Software faults are logic or execution errors of

defects or bugs that cause the system to produce incorrect testing outcomes. As a result, an early forecasting

system of software defects is important. The predicting faults-proneness of a module also reduces the time,

effort, manpower, and consequently the cost to develop better quality software projects. A module represents

a software component or section of a program that includes one or more source codes written in a particular

language consisting of subprograms and functions. To predict faults in software modules are performed for

wide range of statistical and machine learning models. However, the model performance is vulnerable to

irrelevant and redundant features. In addition, the previous model mainly uses data mining techniques, but the

accurate prediction performance is still a challenging issue.

Based on this motivation, this paper proposes an improved multilayer perceptive classifier to detect

the software fault in source code lines and enhance the software quality. Software quality analysis is a main

concern in software testing with relevant code metrics or features. Initially, data set comprises many irrelevant

or redundant features, which affects the accuracy of software fault forecasting. As a result, proposed GLFE-

STPMPDLC technique is used to selecting a subset of the relevant features to the defects.

Figure 1 illustrates the architecture of the proposed GLFE-STPMPDLC technique which includes two

different processes such as feature selection and classification. Let us consider a dataset ‘𝐷’ is a set of software

entities (modules, classes, functions) 𝑀1, 𝑀2, 𝑀3, … 𝑀𝑚 is a training instance. The software entities are

illustrated as numerical vectors and showed by a set of software features (i.e. software

metrics). 𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛. A training data set including both positive and negative samples is used for

constructing the software defect predictor to classify instances in order to predict the Defected and non-defected

instances. Therefore, the proposed technique improved the accuracy of review or testing.

First, the feature selection also called metric selection is carried out in GLFE-STPMPDLC by

selecting only relevant features for minimizing the time complexity of fault prediction. Software metric is

quantity of software characteristics to evaluate software performance. In the proposed GLFE-STPMPDLC

technique, Gaussian kernelized locally linear feature embedding is applied for a relevant feature or metric

selection and removes the other features to enhance the performance of fault prediction with minimum time.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Gaussian kernelized feature selection and improved multilayer perceptive deep learning … (Sureka Sivavelu)

1537

A locally linear feature embedding is a dimensionality reduction technique used to find the relevant feature or

metric based on the nearest neighbor concept with the help of the Gaussian kernel function.

Finally, the Kaiser Meyer piecewise multilayer perceptive deep learning classifier is performed in

GLFE-STPMPDLC technique for predicting the performance of accurate fault prediction with lesser time by

deeply learning the testing and training data by using KMO correlation test. The KMO correlation test is a

statistical measure to find out the well-matched results for software fault prediction through the analysis of

testing and training data. The Heaviside step activation function is applied to examine the correlation test

results. After that, the weights are updated until the algorithm finds the minimum error. The process of proposed

GLFE-STPMPDLC technique is briefly described in following sub-sections.

Figure 1. Architecture diagram of the proposed GLFE-STPMPDLC technique

3. METHOD DESCRIPTION

3.1. Gaussian kernelized locally linear embedding-based feature selection

Feature selection is a fundamental process of the proposed GLFE-STPMPDLC technique to minimize

the complexity of fault prediction. While building a deep learning model for a large dataset, a lot of features

are presented and not all these features are significant for every time. These unnecessary features lead to

minimizing the overall accuracy of the model and increase its complexity. Therefore, feature selection is a

significant process while building a machine-learning model for a large dataset. The important aim of feature

selection is to determine the preeminent feasible set of features. The definition software fault prediction is

estimating the errors (sometimes called defects) in a software product based on previously defined metrics.

Figure 2 illustrates the architecture diagram of Gaussian kernelized locally linear embedding for

selecting the significant features (i.e. software metrics) for predicting the defective or non-defective modules

to develop the quality of software products. The training instances are collected from dataset. After the data

collection process, the significant features are selected by applying a Gaussian kernelized locally linear

embedding technique. The proposed method is a dimensionality reduction technique used for finding a set of

the nearest neighbors of each point (i.e. features). The nearest neighbor’s points are identified by using

Gaussian kernel functions. A Gaussian kernel is a localized similarity measure between two random variables

(i.e. two features).

In Figure 2, consider the number of metrics or features 𝑋 = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛} gathered from dataset.

Then, Gaussian kernel function is applied for finding nearest neighbor’s features in two-dimensional space.

Therefore, nearest neighbor’s features selection process as shown in (1).

𝑁𝑖𝑗 = ∑ = ∑ [exp [−
1

2𝑉2 (||𝑋𝑖 − 𝛽𝑋𝑗||
2

)]𝑛
𝑗=1

𝑛
𝑖=1 (1)

According to (1), 𝑁𝑖𝑗 indicates a Gaussian kernel function between the two features 𝑋𝑖 and the nearest features

‘𝑋𝑗’ and ‘𝛽’ denotes a weight vector. As a result, the sum of each row of the weight vector is normalized into

‘𝛽 =1’. The relevant and irrelevant features are identified through the Gaussian kernel as stated (2).

𝑁𝑖𝑗 = {
𝑋𝑖 ~ 𝑋𝑗 ; 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

0 ; 𝑛𝑜𝑡 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒
 (2)

According to (2), 𝑵𝒊𝒋 indicates an output of a Gaussian kernel locally-linear feature embedding

technique. As a result, the nearest neighbor feature is said to be a relevant feature for classification, and the

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1534-1547

1538

remaining features are said to be irrelevant features. These irrelevant features are removed from the dataset and

the relevant features are specified to input of a deep learning classifier for fault prediction. The algorithmic

process of the Gaussian kernel locally-linear embedding-based feature selection is given in Algorithm 1.

Figure 2. Architecture diagram of Gaussian kernelized locally linear embedding-based feature selection

Algorithm 1. Gaussian kernel locally-linear feature embedding
Input: Dataset ‘𝐷’, features or software metrics 𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛

Output: Select significant features
Begin

1. Collect the features or software metrics 𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛 from the dataset

2. For each feature ‘𝑋’
3. Apply Gaussian kernel to find neighboring features

4. If (𝑁𝑖𝑗 > 0) then
5. Two features are said to be a neighbor

6. Selected as a relevant feature

7. else

8. Two features are not a neighbor

9. Selected as an irrelevant feature

10. end if

9. Select relevant features

10. Remove the irrelevant features

11. end for

End

Algorithm 1, represents the process of the GLFE technique for selecting the significant software

metrics. The number of features and data are collected from the dataset. After that, the Gaussian kernel is

applied to finding neighboring features. These selected neighboring features are used for fault prediction and

other metrics are removed from the dataset to minimize the time complexity.

3.2. Kaiser Meyer piecewise multilayer perceptive deep learning classifier for software fault prediction

After the significant metric selection, the GLFE-STPMPDLC technique performs software fault

prediction using Kaiser Meyer piecewise multilayer perceptive deep learning classifier. The proposed classifier

takes the input as relevant software metrics also called training instances. Then the proposed deep learning

classifier analyzes the training instance with the testing instances to identify the defects in the module of

software code for improving the quality of products. The main advantage of the improved multilayer perceptive

classifier is to include less feature compatibility and it also handles large sizes of data handling and provides

accurate results with minimum error.

Figure 3 illustrates a flow process of classifications for predicting the software fault based on the set of

metrics. A multilayer perceptron (MLP) is a type of deep learning feed-forward artificial neural network that

comprised numerous layers of perceptrons (with threshold activation). A perceptron is an artificial neuron that

includes some numerical inputs along with the weights and a bias. A Multilayer in deep learning classifier

including the three layers of nodes namely an input layer, more than one hidden layer, and an output layer. Starting

with the input layer, the training, and testing data forward to the hidden layers. This process is the feed-forward

propagation. The input and output layers are always single layers, whereas the hidden layer contains numerous

sub-layers for analyzing the given training data instances. Each layer generally includes small individual units

called artificial neurons or perceptrons or nodes. Input training instances and testing instances are given to the

perceptrons and transferred into the other layer from a previous layer's neurons. The connection between the

perceptrons or neurons is called a synapse. The model is constructed as shown in Figure 3.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Gaussian kernelized feature selection and improved multilayer perceptive deep learning … (Sureka Sivavelu)

1539

Figure 3. Flow process of multilayer perceptive classifer

Figure 4, shows the schematic illustration of deep multilayer perceptron involves the input layer,

hidden layers, and output layer. Let us consider the training sets {𝑋𝑖 , 𝑍𝑖 } where 𝑋𝑖 denotes an input or training

data i.e. 𝐴1, 𝐴2,𝐴3, … . 𝐴𝑛 is a source code and 𝑍𝑖 is a final deep-learning classification result. The artificial

neuron in the input layer receives input and applies to weight along with bias as shown in Figure 4.

Figure 4. Schematic illustration of the multilayer perceptron

As shown in Figure 5, an artificial neuron receives the weighted sum of input training data with bias

as input. Therefore, the activity of the neuron ‘𝑅(𝑡)’ is obtained as mentioned in (3).

𝑅(𝑡) = ∑ 𝐴𝑖(𝑡) ∗ 𝑡𝑛
𝑖=1 (3)

Where the activity of neuron in the layer ‘𝑅(𝑡)’ indicates that the weighted ‘𝜗𝑖’ sum of the input ‘𝐴𝑖(𝑡)’ and

add to the bias function ‘𝐾’ that stored the value is ‘1’. The weight takes numerical values and controls the

level of significance of each input. The main purpose of including a bias term is to transfer the activation

function of each perceptron not get a zero value. In the proposed deep learning classifier and the significant

parameters are weights and biases. The optimal values for those parameters are determined during the learning

process of the deep neural network.

Then the input is transferred into the hidden layers. A random number of hidden layers and sub-layers

are positioned with input and output layers. In hidden layer, data analysis is performed by using KMO

correlation test with training and testing data as,

𝜌𝑘𝑚𝑜 =
∑ ∑ |𝐴𝑖−𝑇𝑗|

2𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ |𝐴𝑖−𝑇𝑗|
2𝑛

𝑗=1
𝑛
𝑖=1 +∑ ∑ 𝑉𝑖𝑗

2𝑛
𝑗=1

𝑛
𝑖=1

 (4)

where,′ 𝜌𝑘𝑚𝑜’ indicates a KMO correlation test coefficient, 𝐴𝑖 indicates training data, 𝑇𝑗 denotes testing data,

𝑉𝑖𝑗 denotes the partial correlation between the training and testing data and it is calculated using (5).

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1534-1547

1540

𝑉𝑖𝑗 =
𝐴𝑖−𝑇𝑗

√(1−𝐴𝑖)2(1−𝑇𝑗)
2
 (5)

The correlation coefficient ‘ 𝜌𝑘𝑚𝑜’ is provides output value between 0 and 1. The correlation test

coefficient results are given to the Heaviside step activation function and it provides the final classification

results.

Figure 6, represent the flow process of Heaviside step activation. The similarity coefficient results are

given to the Heaviside step activation for producing the final classification results. The advantage of the

activation function is to learn the complex testing and training data. The Heaviside step activation also called

the piecewise function provides the output of the best-normalized function with 1 and 0, it makes an accurate

software fault prediction. Another advantage is to provide an exact value from the model's output.

Figure 5. Flow process of perceptron or artificial neuron

Figure 6. Flow process of Heaviside step activation

As shown in (6), 𝑓 denotes a Heaviside step activation, ‘𝜌𝑘𝑚𝑜’ indicates the correlation test

coefficient results. The Heaviside step activation function provides ‘1’ indicating that the software fault or

defects are correctly predicted based on the correlation test coefficient between testing and training data. The

Heaviside step activation function returns ‘0’ indicating that the non-defects are correctly predicted.

𝑓 = {
𝜌𝑘𝑚𝑜 = 1; 𝑑𝑒𝑓𝑒𝑐𝑡𝑠

𝜌𝑘𝑚𝑜 = 0; 𝑛𝑜𝑛 − 𝑑𝑒𝑓𝑒𝑐𝑡𝑠
 (6)

After classification results, the error rate is measured for each learning process is measured as (7).

𝐸𝑅 =
1

2
 (𝑓𝑎 − 𝑓0)2 (7)

Where the error rate ‘𝐸𝑅’ is computed as a squared difference between the actual classification results ‘𝑓𝑎’ and

output produced by the perceptron ‘𝑓𝑜’. For each iteration, weights get updated as,

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Gaussian kernelized feature selection and improved multilayer perceptive deep learning … (Sureka Sivavelu)

1541

𝑉𝑖(𝑡 + 1) = 𝑉𝑡 ∗ 𝜏 [
𝜕𝐸𝑅

𝜕 𝑉𝑖
] (8)

where, 𝜗𝑖(𝑡 + 1) indicates an updated weight, 𝜗𝑡 indicates a current weight, 𝐸𝑅 denotes an error rate, 𝜏

indicates a learning rate (𝜏 < 1), ‘
𝜕 𝐸𝑅

𝜕 𝜗𝑡
’ indicates a partial derivative of the error ‘𝐸𝑅’ with respect to current

weight ‘ 𝜗𝑡’. This process is repeated until finding the lesser error. Finally, the software fault prediction result

with a minimum error rate is obtained at the output layer. The algorithmic process of the Kaiser Meyer

Piecewise multilayer perceptive deep learning classifier is given in Algorithm 2.

Algorithm 2. Kaiser Meyer piecewise multilayer perceptive deep learning classifier
Input: Selected relevant features or software metrics and training data

Output: Increase the software fault prediction accuracy
Begin

1. Number of training data at the input layer

2. For each training data 𝐴𝑖

3. Assign weight ‘ 𝜗𝑖’ and bias ‘𝐾’
4. Obtain the perceptron activity at the input layer ‘𝑅(𝑡)’
5. end for

6. For each training data with testing disease data – [hidden layers]

7. Perform Kaiser–Meyer–Olkin (KMO) correlation test ‘ 𝜌𝑘𝑚𝑜’

8. Apply Heaviside step activation function ‘𝑓’
9. If (𝜌𝑘𝑚𝑜 = 1) then

10. 𝑓 returns ‘1’
11. Correctly predicted as defects or faults
12. else

13. 𝑓 returns ‘0’
14. Correctly predicted as non-defects
15. End if
16. For each classification results

17. Measure the error rate ‘𝐸𝑅’

18. Update the weight ‘𝜗𝑖(𝑡 + 1)’
19. Find minimum error
20. Obtain the final classification results with minimum error at the output layer

End

Algorithm 2, represents the process of software fault prediction with better accuracy and lesser time

consumption. Kaiser Meyer piecewise multilayer perceptive deep learning classifier includes many layers to

learn the given input software metrics. The selected software metrics are given to the input layer. For each

input, the weights and biases are assigned to identify the activity of the neurons. Then the input is transferred

into the neuron of the hidden layer. The KMO correlation test is applied to analyze the training data with the

testing faults data. After that, the correlation test results are given to the Heaviside step establishment function

at hidden layer. Activation function analyzes the correlation test results and provides final classification results

either ‘1 or ‘0’. If activation function returns ‘1’, then software fault is correctly predicted. If not, activation

function returns ‘0’. Following the classification, error rate for each classification result is measured based on

squared difference between the actual and predicted output results. Then, initial weight gets updated and

measures the error rate. This process is continuously iterated until the algorithm reaches minimum error.

Finally, software fault prediction results are displayed at output layer resulting in improving accuracy and

reduced the error rate.

4. PERFORMANCE ANALYSIS AND DISCUSSION

The proposed GLFE-STPMPDLC technique and existing DP-GCNN [1], DP-SFLDS [2] are

discussed in Java language using software defect prediction data analysis taken from [31]. This is a PROMISE

repository and is publicly available for software engineering. This data set is producing highly precise

predictors for defects. The dataset includes 10,885 instances and 22 attributes or features or metrics. The

attribute information is given in Table 1. The dataset class value is discrete. The Static code measures are

mechanically as well as cheaply gathered. First, the metric selection process is performed using the Gaussian

kernelized locally linear embedding technique to select relevant features for defect prediction. With the selected

features, the Kaiser Meyer piecewise multilayer perceptive deep learning classifier is applied for predicting the

software defects base on the final attributes and it indicates true and false. True indicates software modules

have defects and false indicates modules have no defects.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1534-1547

1542

Table 1. Attributes information
S. No Features or attributes or metrics Description

1 Loc Line of code
2 𝑉(𝑔) Cyclomatic complexity

3 𝑒𝑉(𝑔) Essential complexity

4 𝑖𝑉(𝑔) Design complexity

5 n Total operators + operands

6 v volume
7 l Program length

8 d Difficulty

9 i Intelligence
10 e Error approximation

11 b Effort approximation

12 t Time estimator
13 locode Count of Line of code

14 locomment Count of Line of comment

15 loblank Count of blank lines

16 locodeandcomment Count of Line of code and comment

17 Uniq_Op Unique operators

18 Uniq_Opnd Unique Operands
19 Total_Op Total operators

20 Total_Opnd Total Operands
21 Branch count Flow graph

22 Defects {False, True} indicates whether the module has defects or not

4.1. Software fault prediction accuracy

The number of instances that are correctly predicted as defects or not are used to find the software

fault prediction accuracy. The prediction accuracy is mathematically as shown in (9).

𝑆𝐹𝑃𝐴 = (
𝑇𝑝+𝐹𝑝

𝑇𝑝+𝐹𝑝+𝑇𝑛+𝐹𝑛
) ∗ 100 (9)

Where, 𝑆𝐹𝑃𝐴 is a Software fault prediction accuracy, 𝑇𝑝 indicates a true positive, 𝐹𝑝 denotes a false positive,

 𝑇𝑛 𝑖s a true negative, 𝐹𝑛 is a false negative. Accuracy is measured in terms of percentage (%).

- true positive: Defects module suitably predicted as defects

- true negative: Non-defects module correctly identified as Non-defects.

- false positive: Non-defects modules incorrectly identified as defects.

- false negative: Defects modules incorrectly identified as Non-defects.

Figure 7, graphical illustration of software fault prediction accuracy for ten various numbers of

instances taken from datasets. As shown in Figure 5, the number of instances are collected and taken as input

in the ‘𝑥 ′ directions and performance analysis of prediction accuracy of different methods is observed at the

‘y’ directions. The accuracy of proposed GLFE-STPMPDLC technique is better than other two existing

methods. This is because of Kaiser Meyer piecewise multilayer perceptive deep learning classifier. As a result,

higher true positives and lesser false negatives, false positives, and true negatives results are obtained. The

average of ten comparison results specifies that the proposed GLFE-STPMPDLC technique improves the

performance of software fault prediction accuracy by 4% and 5% when compared to existing [1] and [2]

respectively.

4.2. Precision

Precision is measured as number of true positives and false positives. Therefore, precision is calculated

in (10).

𝑃𝑟 = (
𝑇𝑝

𝑇𝑝+𝐹𝑝
) ∗ 100 (10)

Where, 𝑃𝑟 is a Precision, 𝑇𝑝 symbolizes the true positive, 𝐹𝑝 is a false positive. The Precision is measured in

percentage (%).

Figure 8, provide the performance assessment of precision with three methods namely GLFE-

STPMPDLC technique and existing [1] and [2]. The performance of precision is improved by 2% and 3%

when compared to [1] and [2] respectively. This is due to the application of an improved multilayer perceptive

deep learning classifier. The deep learning technique accurately analyzes the selected software metrics with

the testing metrics and is classified into two different classes such as defective or non-defective modules. In

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Gaussian kernelized feature selection and improved multilayer perceptive deep learning … (Sureka Sivavelu)

1543

addition, the false positive rate is minimized by updating the weight and finding a minimal error. This in turn

increases the accuracy.

Figure 7. Perfomance comparison of software fault prediction accuaracy

Figure 8. Perfomance comparison of precision

4.3. Impact of recall

The recall is measured to determine the number of true positives as well as false negatives during the

prediction. It is formulated as given in (11).

𝑅𝑐 = (
𝑇𝑝

𝑇𝑝+𝐹𝑛
) ∗ 100 (11)

Where 𝑅𝑐 is a recall, 𝑇𝑝 is a true positive, 𝐹𝑛 is a false negative. The recall is measured in percentage (%).

Figure 9 exhibit the overall performance of recall using three different classifiers such as GLFE-

STPMPDLC technique and existing DP-GCNN [1], DP-SFLDS [2]. The performance of recall using the

GLFE-STPMPDLC technique is improved when compared to existing methods [1], [2] respectively. The

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1534-1547

1544

performance of recall using GLFE-STPMPDLC is improved by 2% when compared to [1] and 3% when

compared to existing [2] respectively.

4.4. Impact of F-measure

F-measure is measured as the mean value of both precisions as well as recall. It is computed using the

mathematical formula given in (12).

𝑀𝐸𝑆𝐹 = [2 ∗
𝑃𝑟∗𝑅𝑐

𝑃𝑟+𝑅𝑐
] ∗ 100 (12)

Where 𝑀𝐸𝑆𝐹 indicates an F-measure computed based on based on precision 𝑃𝑟 and recall 𝑅𝑐. F-measure is

measured in percentage (%).

Figure 10, represents the performance results of F-measure Vs number of instances taken from the

dataset. The F-measure is computed with respect to precision as well as recall. Finally, the overall results of

the proposed GLFE-STPMPDLC technique are compared to the results of existing methods. The average of

ten comparison results indicates that the overall performance of F-measure is significantly improved by 2%

and 3% when compared to existing [1] and [2] respectively.

4.5. Impact of prediction time

Time is defined as amount of time taken by algorithm to accurately predict defective or non-defective

software modules. Therefore, overall time consumption of fault prediction is measured as (13).

𝑃𝑡 = [𝑛] ∗ 𝑡(𝑃𝑂𝐼) (13)

Where 𝑃𝑡 indicates a prediction time, 𝑛 denotes the number of instances, 𝑡 denotes a time for predicting one

instance (𝑃𝑂𝐼). Prediction time is measured in milliseconds (ms).

In Figure 11, shows the graphical design of software fault prediction time using three different

methods namely GLFE-STPMPDLC and existing DP-GCNN [1], DP-SFLDS [2]. From the figure, a prediction

time gets increased while increasing the number of instances in experiments. However, the GLFE-STPMPDLC

decreases the time consumption fault prediction when compared to other existing methods. This is owing to

GLFE-STPMPDLC technique performing the software metric selection using the Gaussian kernel locally

linear embedding technique. Hence it minimizes the time consumption of software fault prediction. The overall

performance is software fault prediction time of GLFE-STPMPDLC technique is minimized by 9% and 16%

when compared to existing [1], [2] respectively.

Figure 9. Perforamnce comparison of recall

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Gaussian kernelized feature selection and improved multilayer perceptive deep learning … (Sureka Sivavelu)

1545

Figure 10. Performance comparison of f-measure

Figure 11. Performance comparison of prediction time

5. CONCLUSION

To overcome this paper, rapid expansion of larger and more complex software systems, quick and

accurate detection of potential defects are essential in the source code of the software. In this paper, the GLFE-

STPMPDLC technique is introduced. The main aim of proposed work is improved accurate and quick software

defect prediction by enhance the prediction accuracy. First, the GLFE-STPMPDLC technique finds the

semantic features or metrics by using Gaussian kernel locally linear embedding. Followed by this, a Kaiser

Meyer piecewise multilayer perceptive deep learning classifier is developed for deeply learning the training

and testing data using the KMO correlation test. The Heaviside step activation function analyzes the correlation

outcomes and classifies the defective or non-defective software modules. A comprehensive experimental

evaluation is carried out with different performance metrics likes software fault prediction accuracy, precision,

recall, F-measure, and prediction time with respect to the number of instances. The overall performance results

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1534-1547

1546

illustrate the presented GLFE-STPMPDLC technique achieves better prediction accuracy, precision, recall,

and f-measure up to 5%, 3%, 3%, and 3% with minimum time by 13% than the existing deep learning methods.

The proposed work is further suggested to use a new convolution deep neural network for identifying the

software faults by using regression method. In future works should concentrate on evaluating the performance

of the proposed methods against different parameters, such as false positive rate and memory consumption.

REFERENCES
[1] L. Sikic, A. S. Kurdija, K. Vladimir, and M. Silic, “Graph neural network for source code defect prediction,” IEEE Access, vol. 10,

pp. 10402–10415, 2022, doi: 10.1109/ACCESS.2022.3144598.

[2] J. Lin and L. Lu, “Semantic feature learning via dual sequences for defect prediction,” IEEE Access, vol. 9, pp. 13112–13124, 2021,

doi: 10.1109/ACCESS.2021.3051957.
[3] S. Kassaymeh, S. Abdullah, M. A. Al-Betar, and M. Alweshah, “Salp swarm optimizer for modeling the software fault prediction

problem,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, pp. 3365–3378, Jun. 2022, doi:

10.1016/j.jksuci.2021.01.015.
[4] K. Tameswar, G. Suddul, and K. Dookhitram, “A hybrid deep learning approach with genetic and coral reefs metaheuristics for

enhanced defect detection in software,” International Journal of Information Management Data Insights, vol. 2, no. 2, p. 100105,

Nov. 2022, doi: 10.1016/j.jjimei.2022.100105.
[5] L. Q. Chen, C. Wang, and S. L. Song, “Software defect prediction based on nested-stacking and heterogeneous feature selection,”

Complex and Intelligent Systems, vol. 8, no. 4, pp. 3333–3348, Aug. 2022, doi: 10.1007/s40747-022-00676-y.

[6] T. Hai, J. Zhou, N. Li, S. K. Jain, S. Agrawal, and I. B. Dhaou, “Cloud-based bug tracking software defects analysis using deep
learning,” Journal of Cloud Computing, vol. 11, no. 1, p. 32, Aug. 2022, doi: 10.1186/s13677-022-00311-8.

[7] A. Majd, M. Vahidi-Asl, A. Khalilian, P. Poorsarvi-Tehrani, and H. Haghighi, “SLDeep: Statement-level software defect prediction
using deep-learning model on static code features,” Expert Systems with Applications, vol. 147, p. 113156, Jun. 2020, doi:

10.1016/j.eswa.2019.113156.

[8] J. Bai, J. Jia, and L. F. Capretz, “A three-stage transfer learning framework for multi-source cross-project software defect
prediction,” Information and Software Technology, vol. 150, p. 106985, Oct. 2022, doi: 10.1016/j.infsof.2022.106985.

[9] U. S. Bhutamapuram and R. Sadam, “With-in-project defect prediction using bootstrap aggregation based diverse ensemble learning

technique,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 10, pp. 8675–8691, Nov. 2022, doi:
10.1016/j.jksuci.2021.09.010.

[10] K. Zhu, S. Ying, N. Zhang, and D. Zhu, “Software defect prediction based on enhanced metaheuristic feature selection optimization

and a hybrid deep neural network,” Journal of Systems and Software, vol. 180, p. 111026, Oct. 2021, doi: 10.1016/j.jss.2021.111026.
[11] D. L. Miholca, V. I. Tomescu, and G. Czibula, “An in-depth analysis of the software features- impact on the performance of deep

learning-based software defect predictors,” IEEE Access, vol. 10, pp. 64801–64818, 2022, doi: 10.1109/ACCESS.2022.3181995.

[12] T. Chakraborty and A. K. Chakraborty, “Hellinger Net: A hybrid imbalance learning model to improve software defect prediction,”
IEEE Transactions on Reliability, vol. 70, no. 2, pp. 481–494, Jun. 2021, doi: 10.1109/TR.2020.3020238.

[13] R. Yedida and T. Menzies, “On the value of oversampling for deep learning in software defect prediction,” IEEE Transactions on

Software Engineering, vol. 48, no. 8, pp. 3103–3116, Aug. 2022, doi: 10.1109/TSE.2021.3079841.
[14] W. Liu, B. Wang, and W. Wang, “Deep learning software defect prediction methods for cloud environments research,” Scientific

Programming, vol. 2021, pp. 1–11, Nov. 2021, doi: 10.1155/2021/2323100.

[15] N. Zhang, S. Ying, K. Zhu, and D. Zhu, “Software defect prediction based on stacked sparse denoising autoencoders and enhanced
extreme learning machine,” IET Software, vol. 16, no. 1, pp. 29–47, Feb. 2022, doi: 10.1049/sfw2.12029.

[16] F. Yang, Y. Huang, H. Xu, P. Xiao, and W. Zheng, “Fine-grained software defect prediction based on the method-call sequence,”

Computational Intelligence and Neuroscience, vol. 2022, pp. 1–15, Aug. 2022, doi: 10.1155/2022/4311548.
[17] K. Song, S. K. Lv, D. Hu, and P. He, “Software defect prediction based on elman neural network and cuckoo search algorithm,”

Mathematical Problems in Engineering, vol. 2021, pp. 1–14, Nov. 2021, doi: 10.1155/2021/5954432.

[18] H. S. Munir, S. Ren, M. Mustafa, C. N. Siddique, and S. Qayyum, “Attention based GRU-LSTM for software defect prediction,”
PLoS ONE, vol. 16, no. 3 March, p. e0247444, Mar. 2021, doi: 10.1371/journal.pone.0247444.

[19] E. A. Felix and S. P. Lee, “Predicting the number of defects in a new software version,” PLoS ONE, vol. 15, no. 3, p. e0229131,

Mar. 2020, doi: 10.1371/journal.pone.0229131.
[20] K. Wang, L. Liu, C. Yuan, and Z. Wang, “Software defect prediction model based on LASSO–SVM,” Neural Computing and

Applications, vol. 33, no. 14, pp. 8249–8259, Jul. 2021, doi: 10.1007/s00521-020-04960-1.

[21] S. Huda et al., “An ensemble oversampling model for class imbalance problem in software defect prediction,” IEEE Access, vol. 6,
pp. 24184–24195, 2018, doi: 10.1109/ACCESS.2018.2817572.

[22] Y. Hassouneh, H. Turabieh, T. Thaher, I. Tumar, H. Chantar, and J. Too, “Boosted whale optimization algorithm with natural

selection operators for software fault prediction,” IEEE Access, vol. 9, pp. 14239–14258, 2021, doi:
10.1109/ACCESS.2021.3052149.

[23] J. Zhang et al., “CDS: A cross-version software defect prediction model with data selection,” IEEE Access, vol. 8, pp. 110059–

110072, 2020, doi: 10.1109/ACCESS.2020.3001440.
[24] I. Tumar, Y. Hassouneh, H. Turabieh, and T. Thaher, “Enhanced binary moth flame optimization as a feature selection algorithm

to predict software fault prediction,” IEEE Access, vol. 8, pp. 8041–8055, 2020, doi: 10.1109/ACCESS.2020.2964321.

[25] K. Juneja, “A fuzzy-filtered neuro-fuzzy framework for software fault prediction for inter-version and inter-project evaluation,”
Applied Soft Computing Journal, vol. 77, pp. 696–713, Apr. 2019, doi: 10.1016/j.asoc.2019.02.008.

[26] W. Geng, “Cognitive deep neural networks prediction method for software fault tendency module based on Bound Particle Swarm

Optimization,” Cognitive Systems Research, vol. 52, pp. 12–20, Dec. 2018, doi: 10.1016/j.cogsys.2018.06.001.
[27] H. Turabieh, M. Mafarja, and X. Li, “Iterated feature selection algorithms with layered recurrent neural network for software fault

prediction,” Expert Systems with Applications, vol. 122, pp. 27–42, May 2019, doi: 10.1016/j.eswa.2018.12.033.

[28] S. Riaz, A. Arshad, and L. Jiao, “Rough noise-filtered easy ensemble for software fault prediction,” IEEE Access, vol. 6, pp. 46886–
46899, 2018, doi: 10.1109/ACCESS.2018.2865383.

[29] A. Arshad, S. Riaz, L. Jiao, and A. Murthy, “Semi-supervised deep fuzzy c-mean clustering for software fault prediction,” IEEE

Access, vol. 6, pp. 25675–25685, 2018, doi: 10.1109/ACCESS.2018.2835304.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Gaussian kernelized feature selection and improved multilayer perceptive deep learning … (Sureka Sivavelu)

1547

[30] S. S. Rathore and S. Kumar, “An approach for the prediction of number of software faults based on the dynamic selection of learning
techniques,” IEEE Transactions on Reliability, vol. 68, no. 1, pp. 216–236, Mar. 2019, doi: 10.1109/TR.2018.2864206.

[31] M. Cevik, “Software defect prediction data analysis,” www.kaggle.com, 2020, https://www.kaggle.com/code/

semustafacevik/software-defect-prediction-data-analysis/data (accessed Jan. 6, 2022).

BIOGRAPHIES OF AUTHORS

Prof. Sureka Sivavelu is Assistant Professor (Sr) at School of Information

Technology and Engineering, Vellore Institute of Technology, Vellore from 2007 to till date.

She holds an MSC(CS) with university rank. She holds her M.Tech. (CSE) in VIT. She used

to hold some administrative posts with the School of Information Technology and

Engineering. Her Research area is Software Testing. She has supervised more than 20 UG

and PG Projects. She can be contacted at email: ssureka@vit.ac.in.

Dr. Venkatesh Palanisamy is currently working as Professor, School of

Information Technology and Engineering, Vellore Institute of Technology, India. He

received MS (By Research) in 2008 and PhD in 2013 from Anna University, Chennai, India

in Computer Science domain. He has over 21 years of teaching experience and currently

guiding 2 PhD students. He has published papers in reputed peer-reviewed national and

international journals. His research interests are in machine learning, data analytics, Internet

of Things and healthcare analytics. Currently he holds the post of Assistant Director

(Software Development Cell), involving in software product design and delivery. He can be

contacted at email: venkatesh.palanisamy@vit.ac.in.

https://orcid.org/0000-0003-4693-1620?lang=en
https://scholar.google.com/citations?hl=en&user=03UtUvQAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55803314600
https://orcid.org/0000-0001-7967-4638

