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 Software fault prediction is the significant process of identifying the errors or 

defects or faults in a software product. But, accurate and timely detection is 

the major challenging issue in different existing approaches to predicting 

software defects. A novel Gaussian linear feature embedding-based statistical 

test piecewise multilayer perceptive deep learning classifier (GLFE-

STPMPDLC) is introduced to improve software fault prediction accuracy and 

minimize time consumption. First, the input data are collected from the 

dataset. Next, the software metrics selection is carried out to select the 

significant metrics using Gaussian kernelized locally linear embedding with 

lesser software fault prediction. Then classification is carried out by Kaiser 

Meyer piecewise multilayer perceptive deep learning classifier for software 

fault prediction. The novelty of Kaiser-Meyer-Olkin (KMO) correlation test 

analyzes testing and training instances. The innovation of the Heaviside step 

activation function is applied for analyzing the KMO correlation test results 

and providing the final software fault prediction results. Finally, accurate fault 

prediction outcomes are achieved at the output layer with lesser error. 

Simulation of proposed GLFE-STPMPDLC technique achieves better 5%, 

3%, 3% and 3% enhancement of fault prediction accuracy, precision, recall, 

and f-measure and 13% faster prediction time compared to conventional 

methods. 
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1. INTRODUCTION  

The advance of source code defect forecasting process shows a vital role in developing software 

quality. In order to classify the defective software modules earlier are used to such defect forecasting and 

corrected them before the testing process. Software defect prediction is a vital part of software testing. It aids 

software practitioners to assign their limited resources for testing as well as enhancing software quality by 

identifying defect constructs in the early stages of enrichment life cycle. A software defect forecasting model 

classifies the software modules based on metrics. The software defect-forecasting process includes the 

extraction of metrics and structure of a defect-forecasting model. After that, software defect forecasting models 

are very helpful for testing engineers to take important conclusion likes accurate and timely detection. In order 

to, manufacture the software defect forecasting models, novel machine-learning algorithms and deep-learning 

algorithms are needed for accurately predicting software defects. 

Semantic feature learning via defect prediction via stress-based forming limit diagrams (DP-SFLDS) 

method was developed in [1] to extracting the semantic and structural information using bi-directional long 

short-term memory (BiLSTM) based neural network. But the complexity of the algorithm was not reduced to 
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further improve the software defect prediction. Lin and Lu [2], a convolutional graph neural network for defect 

prediction (DP-GCNN) method was performed to classify module as defective or not defective based on this 

information. However, it failed to analyze the fault-prone software modules for source code files of different 

sizes with higher accuracy.  

The singular spectrum analysis (SSA) combined with a back propagation neural network (BPNN) was 

introduced in [3] to classifying the software faults. But, computational cost over the majority of data sets was 

improved. Tameswar et al. [4], a hybrid deep neural network model was developed into enhances the prediction 

of software bugs. However, data pre-processing techniques to potentially was not improve the quality of 

available public datasets. 

Chen et al. [5], a nested-stacking and heterogeneous feature selection framework was performed to 

software defect prediction. However, it failed to manufacture a more intelligent and automated prediction 

system. A supervised deep learning technique was performed in [6] to software defect detection. But, 

performance of software defect detection was not improved. Statement-level software defect prediction was 

developed in [7] using a deep-learning model based on static code features. However, it failed to minimize the 

error rate of software defect prediction.  

A three-stage weighting approach was introduced in [8] for detecting multi-source cross-project 

software faults. But the performance of defect prediction was not improved the minimum time. Diverse 

ensemble learning techniques (DELT) was developed in [9] to predict the project defects. The designed 

techniques increase the complexity of the defect prediction. A hybrid deep neural network was developed in 

[10] for predicting the software fault based on metaheuristic feature selection. However, it failed to perform 

the multi-source cross-project defect prediction. 

In this section, different approaches have been introduced for defect prediction. Miholca et al. [11], a 

deep learning-based software defect prediction was performed. However, it failed to analyze the computation 

time of software defect prediction. The Hellinger net model was introduced in [12] for accurate software 

module defect prediction. But the designed model was not efficient in software defect prediction across larger 

datasets. Goal-oriented hyper-parameter optimization for scalable training model was introduced in [13] to 

classify the software defects. However, it failed to enhance the accuracy of software defect prediction.  

Liu et al. [14], a flow learning-based geodesic cross-project software defect prediction approach was 

performed. But it was not efficient for software defect prediction and early warning of unknown malware 

variants. A stacked sparse denoising autoencoder and extreme learning machine were introduced in [15] for 

detecting software faults. But it failed to optimize the other classifiers for software defect prediction. A software 

defect prediction using method-call sequences was developed in [16]. But the relevant features were not 

extracted for cross-project defect prediction.  

An improved Elman neural network method was introduced in [17] to improve the performance of 

defect prediction for time-varying characteristics. But it was not efficient for predicting the defects and solving 

the practical issues in software development. An attention-based gated recurrent unit long short term memory 

(GRU-LSTM) model was developed in [18] to predict the possible defective codes in the software. But it failed 

to predict fault within and between projects. Finding faults using ensemble learners (ELFF) was developed in 

[19] for predicting the defects in the latest software edition. But the accuracy of deep feature analysis was not 

developed to develop the performance of fault prediction. A least absolute shrinkage and selection operator 

support vector machine (LASSO–SVM) model was introduced in [20] to software defect prediction. But, it 

failed to improve the classification accuracy. 

The software defect prediction ensemble approach was introduced in [21] to discover faulty 

components. But, the best-performing classifier was not identified. Novel variants of the whale optimization 

algorithm (WOA) were developed in [22] to eradicate unnecessary features. However, the student’s 

performance prediction issues were not handled. Cross version model with data selection (CDS) was analyzed 

in [23] for choosing relevant data. Enhanced binary moth flame optimization (EBMFO) was introduced in [24] 

for forecasting software faults. The designed EBMFO failed to boost the accuracy. Fuzzy filtered neuro-fuzzy 

framework was investigated in [25] with higher accuracy. But, the feature selection stage was not enhanced.  

Deep neural networks (DNN) prediction method was introduced in [26] with lesser dimensionality. 

Novel Feature Selection approach was developed in [27] for selecting vital software metrics. The performance 

of dissimilar classifiers was not detected. Two-stage data pre-processing method was discussed in [28] with 

higher prediction performance. But, the time was not minimized. Semi-supervised DFCM clustering was 

analyzed in [29] to address the class imbalance issue. Dynamic selection of learning techniques was introduced 

in [30] for forecasting the number of software faults. But, false positive rate was not minimized. 

Conventionally, features were physically considered from qualitative or quantitative description of 

the module or its growth procedure. But, these features disregard both the unmistakable syntax as well as 

semantics that describe a programming language employed for software expansion as well as which offer extra 

information on the software modules. As well, conventional methods are illustrated in major problems 

including minimum software defect prediction, better time consumption, lesser precision, recall and F-measure, 
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and it failed to provide accurate predictions. In order to, motivated by this fact, the novel Gaussian linear feature 

embedding-based statistical test piecewise multilayer perceptive deep learning classifier (GLFE-STPMPDLC) 

technique is developed. The strengths of proposed technique are to precisely forecast the software defect, 

precision, recall, and F-measure as well as reduce the time. 

In order to overcome the existing issues, major objectives of research work is contributed as: 

- To develop the software fault prediction accuracy, the GLFE-STPMPDLC is comprised two different 

processes namely feature or metrics selection and classification.  

- To reduce the software fault prediction time, Gaussian kernelized locally linear embedding technique is 

employed in GLFE-STPMPDLC to select the more relevant software metrics from the dataset. The 

Gaussian kernel function is applied to a locally linear embedding technique to find the relevant metrics 

based on the nearest neighbor concept. The other irrelevant features are removed from the dataset.  

- To increase fault prediction accuracy and minimize the error rate, the Kaiser Meyer piecewise multilayer 

perceptive deep learning classifier is applied with the selected metrics. The KMO correlation test is 

applied to a multilayer perceptive deep learning classifier to determine software faults through testing and 

training data analysis. The Heaviside step activation function is used to evaluate the correlation test and 

provide the final prediction results. After that, the weight updating of the deep learning classifier 

minimizes the prediction error. 

- Finally, a comprehensive experimental assessment is carried out with a variety of performance parameters 

to illustrate the improvement of the GLFE-STPMPDLC technique over conventional deep learning 

methods. 

The paper is organized by: In section 2, provides a brief explanation of the proposed GLFE-

STPMPDLC technique with a neat architecture diagram. In section 3, describes the Gaussian kernelized feature 

selection and improved multilayer perceptive deep learning classifier for software fault prediction. In section 

4, presents the performance results of the proposed GLFE-STPMPDLC technique and conventional deep 

learning methods are discussed with different metrics and dataset description. Finally, section 5 is concluding 

the paper.  

 

 

2. PROPOSED METHOD 

Software fault prediction aims to identify the defective modules of software programs earlier to the 

testing stage of the development process. The early faults prediction system helps to remove software defects 

and obtains cost-efficient and better-quality software products. Software faults are logic or execution errors of 

defects or bugs that cause the system to produce incorrect testing outcomes. As a result, an early forecasting 

system of software defects is important. The predicting faults-proneness of a module also reduces the time, 

effort, manpower, and consequently the cost to develop better quality software projects. A module represents 

a software component or section of a program that includes one or more source codes written in a particular 

language consisting of subprograms and functions. To predict faults in software modules are performed for 

wide range of statistical and machine learning models. However, the model performance is vulnerable to 

irrelevant and redundant features. In addition, the previous model mainly uses data mining techniques, but the 

accurate prediction performance is still a challenging issue.  

Based on this motivation, this paper proposes an improved multilayer perceptive classifier to detect 

the software fault in source code lines and enhance the software quality. Software quality analysis is a main 

concern in software testing with relevant code metrics or features. Initially, data set comprises many irrelevant 

or redundant features, which affects the accuracy of software fault forecasting. As a result, proposed GLFE-

STPMPDLC technique is used to selecting a subset of the relevant features to the defects.  

Figure 1 illustrates the architecture of the proposed GLFE-STPMPDLC technique which includes two 

different processes such as feature selection and classification. Let us consider a dataset ‘𝐷’ is a set of software 

entities (modules, classes, functions) 𝑀1, 𝑀2, 𝑀3, … 𝑀𝑚 is a training instance. The software entities are 

illustrated as numerical vectors and showed by a set of software features (i.e. software 

metrics). 𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛. A training data set including both positive and negative samples is used for 

constructing the software defect predictor to classify instances in order to predict the Defected and non-defected 

instances. Therefore, the proposed technique improved the accuracy of review or testing.  

First, the feature selection also called metric selection is carried out in GLFE-STPMPDLC by 

selecting only relevant features for minimizing the time complexity of fault prediction. Software metric is 

quantity of software characteristics to evaluate software performance. In the proposed GLFE-STPMPDLC 

technique, Gaussian kernelized locally linear feature embedding is applied for a relevant feature or metric 

selection and removes the other features to enhance the performance of fault prediction with minimum time. 
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A locally linear feature embedding is a dimensionality reduction technique used to find the relevant feature or 

metric based on the nearest neighbor concept with the help of the Gaussian kernel function.  

Finally, the Kaiser Meyer piecewise multilayer perceptive deep learning classifier is performed in 

GLFE-STPMPDLC technique for predicting the performance of accurate fault prediction with lesser time by 

deeply learning the testing and training data by using KMO correlation test. The KMO correlation test is a 

statistical measure to find out the well-matched results for software fault prediction through the analysis of 

testing and training data. The Heaviside step activation function is applied to examine the correlation test 

results. After that, the weights are updated until the algorithm finds the minimum error. The process of proposed 

GLFE-STPMPDLC technique is briefly described in following sub-sections. 

 

 

 
 

Figure 1. Architecture diagram of the proposed GLFE-STPMPDLC technique 

 

 

3. METHOD DESCRIPTION 

3.1.  Gaussian kernelized locally linear embedding-based feature selection  

Feature selection is a fundamental process of the proposed GLFE-STPMPDLC technique to minimize 

the complexity of fault prediction. While building a deep learning model for a large dataset, a lot of features 

are presented and not all these features are significant for every time. These unnecessary features lead to 

minimizing the overall accuracy of the model and increase its complexity. Therefore, feature selection is a 

significant process while building a machine-learning model for a large dataset. The important aim of feature 

selection is to determine the preeminent feasible set of features. The definition software fault prediction is 

estimating the errors (sometimes called defects) in a software product based on previously defined metrics.  

Figure 2 illustrates the architecture diagram of Gaussian kernelized locally linear embedding for 

selecting the significant features (i.e. software metrics) for predicting the defective or non-defective modules 

to develop the quality of software products. The training instances are collected from dataset. After the data 

collection process, the significant features are selected by applying a Gaussian kernelized locally linear 

embedding technique. The proposed method is a dimensionality reduction technique used for finding a set of 

the nearest neighbors of each point (i.e. features). The nearest neighbor’s points are identified by using 

Gaussian kernel functions. A Gaussian kernel is a localized similarity measure between two random variables 

(i.e. two features). 

In Figure 2, consider the number of metrics or features 𝑋 = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛} gathered from dataset. 

Then, Gaussian kernel function is applied for finding nearest neighbor’s features in two-dimensional space. 

Therefore, nearest neighbor’s features selection process as shown in (1). 

 

𝑁𝑖𝑗 = ∑ = ∑ [exp [−
1

2𝑉2 (||𝑋𝑖 − 𝛽𝑋𝑗||
2

)]𝑛
𝑗=1

𝑛
𝑖=1  (1) 

 

According to (1), 𝑁𝑖𝑗 indicates a Gaussian kernel function between the two features 𝑋𝑖 and the nearest features 

‘𝑋𝑗’ and ‘𝛽’ denotes a weight vector. As a result, the sum of each row of the weight vector is normalized into 

‘𝛽 =1’. The relevant and irrelevant features are identified through the Gaussian kernel as stated (2).  

 

𝑁𝑖𝑗 =  {
𝑋𝑖 ~ 𝑋𝑗 ; 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

0 ; 𝑛𝑜𝑡 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒
 (2) 

 

According to (2), 𝑵𝒊𝒋 indicates an output of a Gaussian kernel locally-linear feature embedding 

technique. As a result, the nearest neighbor feature is said to be a relevant feature for classification, and the 
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remaining features are said to be irrelevant features. These irrelevant features are removed from the dataset and 

the relevant features are specified to input of a deep learning classifier for fault prediction. The algorithmic 

process of the Gaussian kernel locally-linear embedding-based feature selection is given in Algorithm 1.  

 

 

 
 

Figure 2. Architecture diagram of Gaussian kernelized locally linear embedding-based feature selection 

 

 

Algorithm 1. Gaussian kernel locally-linear feature embedding 
Input: Dataset ‘𝐷’, features or software metrics  𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛  

Output: Select significant features 
Begin  

1. Collect the features or software metrics  𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛 from the dataset 

2. For each feature ‘𝑋’  
3. Apply Gaussian kernel to find neighboring features  

4. If (𝑁𝑖𝑗 > 0) then 
5. Two features are said to be a neighbor  

6. Selected as a relevant feature 

7. else 

8. Two features are not a neighbor  

9. Selected as an irrelevant feature 

10. end if 

9. Select relevant features  

10. Remove the irrelevant features 

11. end for 

End 

 

Algorithm 1, represents the process of the GLFE technique for selecting the significant software 

metrics. The number of features and data are collected from the dataset. After that, the Gaussian kernel is 

applied to finding neighboring features. These selected neighboring features are used for fault prediction and 

other metrics are removed from the dataset to minimize the time complexity.  

 

3.2.  Kaiser Meyer piecewise multilayer perceptive deep learning classifier for software fault prediction  

After the significant metric selection, the GLFE-STPMPDLC technique performs software fault 

prediction using Kaiser Meyer piecewise multilayer perceptive deep learning classifier. The proposed classifier 

takes the input as relevant software metrics also called training instances. Then the proposed deep learning 

classifier analyzes the training instance with the testing instances to identify the defects in the module of 

software code for improving the quality of products. The main advantage of the improved multilayer perceptive 

classifier is to include less feature compatibility and it also handles large sizes of data handling and provides 

accurate results with minimum error.  

Figure 3 illustrates a flow process of classifications for predicting the software fault based on the set of 

metrics. A multilayer perceptron (MLP) is a type of deep learning feed-forward artificial neural network that 

comprised numerous layers of perceptrons (with threshold activation). A perceptron is an artificial neuron that 

includes some numerical inputs along with the weights and a bias. A Multilayer in deep learning classifier 

including the three layers of nodes namely an input layer, more than one hidden layer, and an output layer. Starting 

with the input layer, the training, and testing data forward to the hidden layers. This process is the feed-forward 

propagation. The input and output layers are always single layers, whereas the hidden layer contains numerous 

sub-layers for analyzing the given training data instances. Each layer generally includes small individual units 

called artificial neurons or perceptrons or nodes. Input training instances and testing instances are given to the 

perceptrons and transferred into the other layer from a previous layer's neurons. The connection between the 

perceptrons or neurons is called a synapse. The model is constructed as shown in Figure 3. 
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Figure 3. Flow process of multilayer perceptive classifer 

 

 

Figure 4, shows the schematic illustration of deep multilayer perceptron involves the input layer, 

hidden layers, and output layer. Let us consider the training sets {𝑋𝑖 , 𝑍𝑖  } where 𝑋𝑖 denotes an input or training 

data i.e. 𝐴1, 𝐴2,𝐴3, … . 𝐴𝑛  is a source code and 𝑍𝑖  is a final deep-learning classification result. The artificial 

neuron in the input layer receives input and applies to weight along with bias as shown in Figure 4.  

 

 

 
 

Figure 4. Schematic illustration of the multilayer perceptron 

 

 

As shown in Figure 5, an artificial neuron receives the weighted sum of input training data with bias 

as input. Therefore, the activity of the neuron ‘𝑅(𝑡)’ is obtained as mentioned in (3). 

 

𝑅(𝑡) = ∑ 𝐴𝑖(𝑡) ∗ 𝑡𝑛
𝑖=1  (3) 

 

Where the activity of neuron in the layer ‘𝑅(𝑡)’ indicates that the weighted ‘𝜗𝑖’ sum of the input ‘𝐴𝑖(𝑡)’ and 

add to the bias function ‘𝐾’ that stored the value is ‘1’. The weight takes numerical values and controls the 

level of significance of each input. The main purpose of including a bias term is to transfer the activation 

function of each perceptron not get a zero value. In the proposed deep learning classifier and the significant 

parameters are weights and biases. The optimal values for those parameters are determined during the learning 

process of the deep neural network. 

Then the input is transferred into the hidden layers. A random number of hidden layers and sub-layers 

are positioned with input and output layers. In hidden layer, data analysis is performed by using KMO 

correlation test with training and testing data as, 

 

𝜌𝑘𝑚𝑜 =  
∑ ∑ |𝐴𝑖−𝑇𝑗|

2𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ |𝐴𝑖−𝑇𝑗|
2𝑛

𝑗=1
𝑛
𝑖=1 +∑ ∑ 𝑉𝑖𝑗

2𝑛
𝑗=1

𝑛
𝑖=1

 (4) 

 

where,′ 𝜌𝑘𝑚𝑜’ indicates a KMO correlation test coefficient, 𝐴𝑖 indicates training data, 𝑇𝑗 denotes testing data, 

𝑉𝑖𝑗 denotes the partial correlation between the training and testing data and it is calculated using (5).  
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𝑉𝑖𝑗 =  
𝐴𝑖−𝑇𝑗

√(1−𝐴𝑖)2(1−𝑇𝑗)
2
 (5) 

 

The correlation coefficient ‘ 𝜌𝑘𝑚𝑜’ is provides output value between 0 and 1. The correlation test 

coefficient results are given to the Heaviside step activation function and it provides the final classification 

results.  

Figure 6, represent the flow process of Heaviside step activation. The similarity coefficient results are 

given to the Heaviside step activation for producing the final classification results. The advantage of the 

activation function is to learn the complex testing and training data. The Heaviside step activation also called 

the piecewise function provides the output of the best-normalized function with 1 and 0, it makes an accurate 

software fault prediction. Another advantage is to provide an exact value from the model's output.  

 

 

 
 

Figure 5. Flow process of perceptron or artificial neuron 

 

 

 
 

Figure 6. Flow process of Heaviside step activation 

 

 

As shown in (6), 𝑓  denotes a Heaviside step activation, ‘𝜌𝑘𝑚𝑜’ indicates the correlation test 

coefficient results. The Heaviside step activation function provides ‘1’ indicating that the software fault or 

defects are correctly predicted based on the correlation test coefficient between testing and training data. The 

Heaviside step activation function returns ‘0’ indicating that the non-defects are correctly predicted.  

 

𝑓 =  {
𝜌𝑘𝑚𝑜 = 1; 𝑑𝑒𝑓𝑒𝑐𝑡𝑠

𝜌𝑘𝑚𝑜 = 0; 𝑛𝑜𝑛 −  𝑑𝑒𝑓𝑒𝑐𝑡𝑠
 (6) 

 

After classification results, the error rate is measured for each learning process is measured as (7).  

 

𝐸𝑅 =
1

2
 (𝑓𝑎 − 𝑓0)2 (7) 

 

Where the error rate ‘𝐸𝑅’ is computed as a squared difference between the actual classification results ‘𝑓𝑎’ and 

output produced by the perceptron ‘𝑓𝑜’. For each iteration, weights get updated as, 
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𝑉𝑖(𝑡 + 1) = 𝑉𝑡 ∗  𝜏 [
𝜕𝐸𝑅

𝜕 𝑉𝑖
] (8) 

 

where, 𝜗𝑖(𝑡 + 1) indicates an updated weight, 𝜗𝑡 indicates a current weight, 𝐸𝑅 denotes an error rate, 𝜏 

indicates a learning rate (𝜏 < 1), ‘
𝜕 𝐸𝑅

𝜕 𝜗𝑡
’ indicates a partial derivative of the error ‘𝐸𝑅’ with respect to current 

weight ‘ 𝜗𝑡’. This process is repeated until finding the lesser error. Finally, the software fault prediction result 

with a minimum error rate is obtained at the output layer. The algorithmic process of the Kaiser Meyer 

Piecewise multilayer perceptive deep learning classifier is given in Algorithm 2. 

 

Algorithm 2. Kaiser Meyer piecewise multilayer perceptive deep learning classifier 
Input: Selected relevant features or software metrics and training data  

Output: Increase the software fault prediction accuracy 
Begin 

1. Number of training data at the input layer 

2.  For each training data 𝐴𝑖  

3.  Assign weight ‘ 𝜗𝑖’ and bias ‘𝐾’ 
4.  Obtain the perceptron activity at the input layer ‘𝑅(𝑡)’ 
5.  end for 

6.  For each training data with testing disease data – [hidden layers] 

7.  Perform Kaiser–Meyer–Olkin (KMO) correlation test ‘ 𝜌𝑘𝑚𝑜’ 

8.  Apply Heaviside step activation function ‘𝑓’ 
9.  If ( 𝜌𝑘𝑚𝑜 = 1 ) then 

10.  𝑓 returns ‘1’ 
11.  Correctly predicted as defects or faults  
12.  else 

13.  𝑓 returns ‘0’ 
14.  Correctly predicted as non-defects  
15. End if 
16.  For each classification results  

17.  Measure the error rate ‘𝐸𝑅’ 

18.  Update the weight ‘𝜗𝑖(𝑡 + 1)’ 
19.  Find minimum error  
20.  Obtain the final classification results with minimum error at the output layer  

End 

 

Algorithm 2, represents the process of software fault prediction with better accuracy and lesser time 

consumption. Kaiser Meyer piecewise multilayer perceptive deep learning classifier includes many layers to 

learn the given input software metrics. The selected software metrics are given to the input layer. For each 

input, the weights and biases are assigned to identify the activity of the neurons. Then the input is transferred 

into the neuron of the hidden layer. The KMO correlation test is applied to analyze the training data with the 

testing faults data. After that, the correlation test results are given to the Heaviside step establishment function 

at hidden layer. Activation function analyzes the correlation test results and provides final classification results 

either ‘1 or ‘0’. If activation function returns ‘1’, then software fault is correctly predicted. If not, activation 

function returns ‘0’. Following the classification, error rate for each classification result is measured based on 

squared difference between the actual and predicted output results. Then, initial weight gets updated and 

measures the error rate. This process is continuously iterated until the algorithm reaches minimum error. 

Finally, software fault prediction results are displayed at output layer resulting in improving accuracy and 

reduced the error rate.  

 

 

4. PERFORMANCE ANALYSIS AND DISCUSSION 

The proposed GLFE-STPMPDLC technique and existing DP-GCNN [1], DP-SFLDS [2] are 

discussed in Java language using software defect prediction data analysis taken from [31]. This is a PROMISE 

repository and is publicly available for software engineering. This data set is producing highly precise 

predictors for defects. The dataset includes 10,885 instances and 22 attributes or features or metrics. The 

attribute information is given in Table 1. The dataset class value is discrete. The Static code measures are 

mechanically as well as cheaply gathered. First, the metric selection process is performed using the Gaussian 

kernelized locally linear embedding technique to select relevant features for defect prediction. With the selected 

features, the Kaiser Meyer piecewise multilayer perceptive deep learning classifier is applied for predicting the 

software defects base on the final attributes and it indicates true and false. True indicates software modules 

have defects and false indicates modules have no defects. 
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Table 1. Attributes information 
S. No Features or attributes or metrics Description 

1 Loc Line of code 
2 𝑉(𝑔)  Cyclomatic complexity 

3 𝑒𝑉(𝑔)  Essential complexity 

4 𝑖𝑉(𝑔)  Design complexity 

5 n Total operators + operands 

6 v volume 
7 l Program length 

8 d Difficulty 

9 i Intelligence 
10 e Error approximation 

11 b Effort approximation 

12 t Time estimator 
13 locode Count of Line of code 

14 locomment Count of Line of comment 

15 loblank Count of blank lines 

16 locodeandcomment Count of Line of code and comment 

17 Uniq_Op Unique operators 

18 Uniq_Opnd Unique Operands 
19 Total_Op Total operators 

20 Total_Opnd Total Operands 
21 Branch count Flow graph 

22 Defects {False, True} indicates whether the module has defects or not 

 

 

4.1.  Software fault prediction accuracy 

The number of instances that are correctly predicted as defects or not are used to find the software 

fault prediction accuracy. The prediction accuracy is mathematically as shown in (9). 

 

𝑆𝐹𝑃𝐴 =  (
𝑇𝑝+𝐹𝑝

𝑇𝑝+𝐹𝑝+𝑇𝑛+𝐹𝑛
) ∗ 100 (9) 

 

Where, 𝑆𝐹𝑃𝐴 is a Software fault prediction accuracy,  𝑇𝑝 indicates a true positive, 𝐹𝑝 denotes a false positive, 

 𝑇𝑛 𝑖s a true negative, 𝐹𝑛 is a false negative. Accuracy is measured in terms of percentage (%).  

- true positive: Defects module suitably predicted as defects  

- true negative: Non-defects module correctly identified as Non-defects. 

- false positive: Non-defects modules incorrectly identified as defects. 

- false negative: Defects modules incorrectly identified as Non-defects. 

Figure 7, graphical illustration of software fault prediction accuracy for ten various numbers of 

instances taken from datasets. As shown in Figure 5, the number of instances are collected and taken as input 

in the ‘𝑥 ′  directions and performance analysis of prediction accuracy of different methods is observed at the 

‘y’ directions. The accuracy of proposed GLFE-STPMPDLC technique is better than other two existing 

methods. This is because of Kaiser Meyer piecewise multilayer perceptive deep learning classifier. As a result, 

higher true positives and lesser false negatives, false positives, and true negatives results are obtained. The 

average of ten comparison results specifies that the proposed GLFE-STPMPDLC technique improves the 

performance of software fault prediction accuracy by 4% and 5% when compared to existing [1] and [2] 

respectively.  

 

4.2.  Precision 

Precision is measured as number of true positives and false positives. Therefore, precision is calculated 

in (10).  

 

𝑃𝑟 = (
𝑇𝑝

𝑇𝑝+𝐹𝑝
) ∗ 100 (10) 

 

Where, 𝑃𝑟 is a Precision,  𝑇𝑝 symbolizes the true positive,   𝐹𝑝 is a false positive. The Precision is measured in 

percentage (%).  

Figure 8, provide the performance assessment of precision with three methods namely GLFE-

STPMPDLC technique and existing [1] and [2]. The performance of precision is improved by 2% and 3% 

when compared to [1] and [2] respectively. This is due to the application of an improved multilayer perceptive 

deep learning classifier. The deep learning technique accurately analyzes the selected software metrics with 

the testing metrics and is classified into two different classes such as defective or non-defective modules. In 
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addition, the false positive rate is minimized by updating the weight and finding a minimal error. This in turn 

increases the accuracy.  

 

 

 
 

Figure 7. Perfomance comparison of software fault prediction accuaracy 

 

 

 
 

Figure 8. Perfomance comparison of precision 

 

 

4.3.  Impact of recall  

The recall is measured to determine the number of true positives as well as false negatives during the 

prediction. It is formulated as given in (11).  

 

𝑅𝑐 =  (
𝑇𝑝

𝑇𝑝+𝐹𝑛
) ∗ 100 (11) 

 

Where 𝑅𝑐 is a recall, 𝑇𝑝 is a true positive, 𝐹𝑛 is a false negative. The recall is measured in percentage (%).  

Figure 9 exhibit the overall performance of recall using three different classifiers such as GLFE-

STPMPDLC technique and existing DP-GCNN [1], DP-SFLDS [2]. The performance of recall using the 

GLFE-STPMPDLC technique is improved when compared to existing methods [1], [2] respectively. The 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 3, June 2023: 1534-1547 

1544 

performance of recall using GLFE-STPMPDLC is improved by 2% when compared to [1] and 3% when 

compared to existing [2] respectively.  

 

4.4.  Impact of F-measure 

F-measure is measured as the mean value of both precisions as well as recall. It is computed using the 

mathematical formula given in (12). 

 

𝑀𝐸𝑆𝐹 =  [2 ∗
𝑃𝑟∗𝑅𝑐

𝑃𝑟+𝑅𝑐
] ∗ 100 (12) 

 

Where 𝑀𝐸𝑆𝐹  indicates an F-measure computed based on based on precision 𝑃𝑟  and recall 𝑅𝑐. F-measure is 

measured in percentage (%). 

Figure 10, represents the performance results of F-measure Vs number of instances taken from the 

dataset. The F-measure is computed with respect to precision as well as recall. Finally, the overall results of 

the proposed GLFE-STPMPDLC technique are compared to the results of existing methods. The average of 

ten comparison results indicates that the overall performance of F-measure is significantly improved by 2% 

and 3% when compared to existing [1] and [2] respectively.  

 

4.5.  Impact of prediction time 

Time is defined as amount of time taken by algorithm to accurately predict defective or non-defective 

software modules. Therefore, overall time consumption of fault prediction is measured as (13).  

 

𝑃𝑡 = [𝑛] ∗ 𝑡(𝑃𝑂𝐼) (13) 

 

Where 𝑃𝑡 indicates a prediction time, 𝑛 denotes the number of instances, 𝑡 denotes a time for predicting one 

instance (𝑃𝑂𝐼). Prediction time is measured in milliseconds (ms). 

In Figure 11, shows the graphical design of software fault prediction time using three different 

methods namely GLFE-STPMPDLC and existing DP-GCNN [1], DP-SFLDS [2]. From the figure, a prediction 

time gets increased while increasing the number of instances in experiments. However, the GLFE-STPMPDLC 

decreases the time consumption fault prediction when compared to other existing methods. This is owing to 

GLFE-STPMPDLC technique performing the software metric selection using the Gaussian kernel locally 

linear embedding technique. Hence it minimizes the time consumption of software fault prediction. The overall 

performance is software fault prediction time of GLFE-STPMPDLC technique is minimized by 9% and 16% 

when compared to existing [1], [2] respectively.  

 

 

 
 

Figure 9. Perforamnce comparison of recall 
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Figure 10. Performance comparison of f-measure 

 

 

 
 

Figure 11. Performance comparison of prediction time 

 

 

5. CONCLUSION 

To overcome this paper, rapid expansion of larger and more complex software systems, quick and 

accurate detection of potential defects are essential in the source code of the software. In this paper, the GLFE-

STPMPDLC technique is introduced. The main aim of proposed work is improved accurate and quick software 

defect prediction by enhance the prediction accuracy. First, the GLFE-STPMPDLC technique finds the 

semantic features or metrics by using Gaussian kernel locally linear embedding. Followed by this, a Kaiser 

Meyer piecewise multilayer perceptive deep learning classifier is developed for deeply learning the training 

and testing data using the KMO correlation test. The Heaviside step activation function analyzes the correlation 

outcomes and classifies the defective or non-defective software modules. A comprehensive experimental 

evaluation is carried out with different performance metrics likes software fault prediction accuracy, precision, 

recall, F-measure, and prediction time with respect to the number of instances. The overall performance results 
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illustrate the presented GLFE-STPMPDLC technique achieves better prediction accuracy, precision, recall, 

and f-measure up to 5%, 3%, 3%, and 3% with minimum time by 13% than the existing deep learning methods. 

The proposed work is further suggested to use a new convolution deep neural network for identifying the 

software faults by using regression method. In future works should concentrate on evaluating the performance 

of the proposed methods against different parameters, such as false positive rate and memory consumption. 
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