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Abstract 
To overcome the problem of premature convergence on Particle Swarm Optimization (PSO), this 

paper proposes both the improved particle swarm optimization methods (IPSO) based on self-adaptive 
regulation strategy and the Chaos Theory. Given the effective balance of particles’ searching and 
development ability, the self-adaptive regulation strategy is employed to optimize the inertia weight. To 
improve efficiency and quality of searching, the learning factor is optimized by generating Chaotic 
Sequences by Chaos Theory. The improved method proposed in this paper achieves better convergence 
performance and increases the searching speed. Simulation results of some typical optimization problems 
and comparisons with typical multi-objective optimization algorithms show that IPSO has a fast 
convergence speed, the diversity of non-dominated and the ideal convergence. The algorithm meets the 
requirements of multi-objective optimization problem. 
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1. Introduction 
Multi-objective optimization problem (MOP) is the Frequently Asked Questions in the 

field of engineering, which is composed of the multiple pending optimization targets. Its main 
characteristic is a conflict exists among the targets, all of which are not able to obtain the 
optimal value at the same time [1]. While designing a new product, the yield, quality, the cost 
consumption, profits and so on are usually considered. In order to achieve the high yield, high-
quality, low-consumption, low-cost, high-profit, one needs to establish the most optimization 
design models containing a multiple of targets.  

The MOP method can be divided into the traditional multi-objective optimization 
methods and algorithms based on swarm intelligence multi-objective optimization method. 
These traditional methods are: evaluation function method [2], interactive Planning Law [3], 
layered Solving method [4], etc. whose essence is to transfer the objective function of each sub 
multi-objective to single objective function and solve it. These traditional methods encountered 
much difficulty in solving high-dimensional complex multi-objective problems, such as the 
different nature of the sub-target unit, thus can not compare and solve unsatisfactory results 
related [5].  

In recent years, the intelligent algorithm groups used in the multi-objective optimization 
are widely Concerned by a lot of scholars, and many of the multiobjective optimization 
algorithms based on swarm intelligence algorithm are put forward [6, 7]. Such as, the Fonseca 
and Fleming put forward MOGA algorithm [8]. This algorithm is too dependent on the choice of 
the shared function, and it needs to determine the shared radius which may generate a larger 
selective pressure, so as to the immature convergence. Horn and Nafpliotis have also put 
forward NPGA algorithm [9], but it is difficult to select the radius of the niche for the algorithm in 
adjustment, as well as select the suitable comparison set of the proper scale, so that the 
optimization results are not ideal. Srinivas and Deb have put forward NSGA algorithm [10], 
whose advantage is the arbitrary choice of  multiple targets optimization, and the ability of 
getting uniformly distributed non-inferiority optimal solution, but its drawback is a lower 
computational efficiency with calculating complexity degrees O ( MN3) (M- target of the quantity, 
N for the population size). Thiele and Zitzler put forward multi-objective evolutionary algorithm 
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SPEA [11]. This algorithm adopts the elite reserves strategy, though the computation efficiency 
is high, but its computational complexity degree is as high as the cube of the population. Deb 
and Pratap put forward the second generation of NSGA, referred to as the NSGA-II [12], whose 
the computational complexity degree O(MN2), the complexity of the algorithm significantly 
reduce. This algorithm introduces the fast non-inferiority sorting and the new the diversity of 
protection method, to overcome the shortcomings of the NSGA. We put forward a crowded 
conception, and have the elitist strategy, is conducive to maintain the uniformity of the excellent 
individuals reconciliation, to improve the level of the populations as a whole evolutionary. 
NSGA-II algorithm, as a kind of typical multi-objective optimization algorithm, is based on the 
NSGA-II algorithm. However, this algorithm has some problems, for example, the ability to 
adapt to changes in the search space. The algorithm is easy to cause premature convergence 
and strong randomness of the particle search in an iterative process, resulting in inefficient 
search. 

Over the past decade, the particle swarm optimization algorithm is applied in solving 
multi-objective optimization problem and has been concerned by many scholars widespread. 
PSO and genetic algorithm (GA) are all swarm intelligence algorithms, but compared to GA, 
PSO, with less parameter to adjust, has stronger global search ability, and is easier to 
implement, so it is favored by researchers. But in the application of particle swarm algorithm to 
solve multi-objective optimization problems, the researchers found that: particle swarm 
optimization in the optimization process is prone to premature convergence, and especially 
more difficult in solving high-dimensional complex objective function.  

The convergence speed is very slow in approaching or entering optimal region, 
resulting in a local extreme, with a less ideal solution. As to PSO premature convergence 
problem, domestic and foreign scholars have proposed a variety of improvement programs. 
Xuesong Yan [13] proposed orthogonal particle swarm optimization algorithm and used the 
proposed algorithm for digital circuit optimization design; S.-H. Zhou [14] used fuzzy 
membership functions and adaptive strategy to improve the PSO algorithm and proposed 
adaptive fuzzy particle swarm optimization (AFPSO); A QoS-based hybrid particle swarm 
optimization (GHPSO) to schedule applications to cloud resources is presented and in GHPSO, 
crossover and mutation of genetic algorithm is embedded into the particle swarm optimization 
algorithm [15]. Chen MinYou [16] proposed a multi-objective optimization method based on 
adaptive particle swarm algorithm. Xu Gang et al [17] proposed a hybrid of particle swarm multi-
objective optimization algorithm and multi-objective search for particle algorithm. Most of them 
are improved by adjusting the parameters of the algorithm, such as putting forward a variety of 
linear and non-linear inertia weight dynamic adjustment strategy, or introducing a shrinkage 
factor. The improved PSO algorithm has been improved on the performance and efficiency, but 
there is still much room for improvement. Therefore, in order to provide a better performance, a 
more efficient, but lower-cost particle swarm optimization algorithm, in new ways to improve 
algorithm have been explored and tried by academic and industry researchers [6, 18, 19]. 

In view of the proposed research questions, we use the chaos theory and adaptive 
power adjustment strategy to improve the standard particle swarm algorithm, and propose the 
improved chaotic adaptive particle swarm optimization (IPSO). Inertia weight of the algorithm is 
evolutionary by the adaptive strategy, and the learning factor is optimized by chaotic sequences 
generated by chaos theory. Improved particle swarm algorithm can improve the algorithm's 
premature problem and improve the search speed. Finally, the algorithm is applied to multi-
objective optimization problem to verify the performance convergence accuracy and speed, 
global convergence effect of the algorithm. 
 
 
2. Chaos Adaptive Particle Swarm Optimization (APSO) 
2.1. Standard Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (Particle Swarm Optimization, PSO) [20] is an evolutionary 
algorithm group based on the social behavior for birds, propsed by scholars Eberhart and 
Kennedy in 1995. PSO algorithm is inspired by the behavior of the biological communities for 
solving optimization problems. In the particle optimization process, the potential solution is 
envisaged to a "particle" in the n-dimensional space. The particles fly in the solution space at a 
certain speed and direction. In an iterative process, each particle has two global variables, the 
best position of all particles (pbest) and the best position of itself. Assuming that in an n-



TELKOMNIKA  ISSN: 2302-4046  
 

Chaos adaptive improved particle swarm algorithm for solving multi-objective … (Xing Xu) 

705

dimensional search space, a population  1, 2, ,
T

nX x x x K  is composed of m particles, the 

position of the i-th particle is expressed as  ,1, ,2, ,,
T

i i i i nx x x x K , its speed 

 ,1, ,2, ,,
T

i i i i nx x x x K , its individual extreme  ,1, ,2, ,,
T

i i i i np p p p K , global extreme value 

 ,1, ,2, ,,
T

g g g g np p p p K . In the (k + 1) th iteration process, the particles update their own 

pace and location by the Eq. (1) and (2). 
 

1 ()( - ) ()( - )
, , 1 , , 2 , ,
k k k k k kv v c rand p x c rand p x
i d i d i d i d g d i d

   
 (1) 

 

 (2) 
 

where  is inertia weight, which maintains particle inertia with the ability to extend the search 
space; C1 and C2 are learning factors, on behalf of each particle into the best position in the 

statistical acceleration term weight; rand () is a random number between (0,1), 
,

k

i dv  and 
,

k

i dx , 

the speed and position of the d-dimensional particles in the k-th iteration; 
,

k

i d
p  the position of 

the d-dimensional individual extreme of particle i. 
,

k

g d
p  the location of global extreme value in 

d-dimensional groups. 
 

2.2. Chaos Adaptive Particle Swarm Optimization 
 PSO algorithm has the advantages as follows: being easy to describe, easy to 

implement, little parameters to adjust, high convergence speed, low computational cost, and no 
demands on memory and CPU speed; It has been proven to be an effective method of 
optimization problem. Standard PSO algorithm has its own limitations, for example, the 
algorithm implementation process has a great relationship with the value of parameters; In the 
high dimensional complex optimization problems, the algorithm is very easy to stay at some 
point, which is not the global optimum yet. It is the premature convergence; in addition, 
algorithm convergence speed has become markedly slow when approaching or entering the 
optimal solution area. 

In order to solve the disadvantages mentioned above and to improve the premature 
convergence of the algorithm and the speed of convergence, the article optimizes weighting 

factor inertia weight   to the standard PSO algorithm, learning factor C1, C2 three parameters 
with adaptive weight adjustment strategy and chaos theory. We get the chaotic Self-adaptive 
particle swarm Optimization (IPSO) algorithm. Inertia weight factor is adjusted by the Eq. (3). 

 

)( max( )max max min
)( max

niteriter

niter
   

      
  

 (3) 

 
where iter is the current number of iterations of the algorithm.  is the maximum number 
of iterations of PSO algorithm allowed to perform. n is the non-linear modulation index. 

In the process of PSO algorithm optimization iteration, the learning factor C1, C2 are 
adjusted by the chaotic sequence generated through the chaos theory. Because the chaotic 
variables change with randomness, ergodicity and regularity, the IPSO algorithm can maintain 
the diversity of the population to overcome the problem of premature convergence and improve 
the performance of global search. This article takes advantage of the classic LORENZ's 

k+1 k k+1
i,d i,d i,dx = x + v

maxiter
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equation to achieve the evolution of the chaotic variable and optimize the search, as shown in 
Eq. (4) above. 

 

   

  



  

( )
dx

y z
dt
dy

x ay
dt
dz

b xz cz
dt

 (4) 

 
In Eq.4, parameters  a, r and b are control parameters. In Lorenz equation, valid values 

for a, r and b, are a = 10, R = 28 and b = 8/3 respectively. The IPSO algorithm performs the 
following steps: 

(1) initialize the particle swarm 
To initialize the position and velocity of the particles in the PSO algorithm, initial position 

and velocity of the particle are generated randomly. And each particle current position is set as 
the particle individual extreme, and the optimal individual extreme value is selected as the 
global optimum. 

(2) calculate the value of the adaptation of the particle in group; 
(3) compare the adaptation value of each particle with the adapted value in the best 

position. If better, the current position is set as the best location; 
(4) compare the fitness value of each particle with the fitness value of the global best 

position. if better, set the current position as the global best position; 
(5) compute learning factor C1, C2 and inertia weight weight  to get a new inertia 

weight and learning factors, to optimize the speed and position of the particle; 
(6) If the end condition meets, the global best position is the optimal solution, save the 

results and exit. Otherwise, returns to step (2). 
 
 
3. Results and Analysis 

In order to test the performance of the chaotic adaptive particle swarm optimization, 
choose two standard test functions proposed by Schaffer [21] and ZDT3 proposed by Deb [6] as 
a test case; test functions are as follows. 
Test function SCH1: 

min ( ) ( ( ), ( ))1 2
. . [ 5,7]

f x x xf f

s t x



 
 

where 2( )1 xf x , 2( ) ( 2)2 xf x   

Test function SCH2： 

min ( ) ( ( ), ( ))1 2
. . [ 5,10]

f x x xf f

s t x



 
 

where 

, ( 1)

2 , (1 3)
( )1 4 , (3 4)

4 , ( 4)

x x

x x
xf

x x

x x

  
          
    

, 2( 5)2f x   

Test function ZDT3： 
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where ( ) 11 xf x , 1( ) ( )[1 ( ) sin(10 )]1 12 ( )
xx g x g xf x x

g x
   , 

( ) 1 9( ) ( 1)
2

n
g x nxi

i
  


 

Perform simulation optimization experiments on the test function SCH1, SCH2, ZDT3 
with IPSO algorithm. Set the number of particles and the number of iterations as 100 and 50. 

Inertia weight   and learning factors C1, C2 are calculated according to the formula (3) and (4) 
respectively. The test results are shown in Figure 1, Figure 2, and Figure 3. 

From Figure 1 – Figure 3, the three test functions present interface accurately, and the 
three test functions are simulated by the algorithm and the complete Pareto curve is presented. 
Especially for the ZDT3 test function which is more difficult, the target vector is well-distributed. 
Therefore, it is valuable to the multi-objective optimization problem in the project. 

 
 

 
 

Figure 1. IPSO solving SCH1 function Pareto 
 
 

 
 

Figure 2. IPSO solving SCH1 function Pareto 
 
 

 
 

Figure 3. IPSO solving ZDT3 function Pareto 
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In order to assess the non-inferiority Convergence of Solutions and distribution 
uniformity, this article assesses the performance of the algorithm with the indicators of 
Convergence and distribution,  which are defined respectively as follows [18, 19]: 
(1) Gonvergence Distance (GD) GD is used to describe the distance between the non-
dominated solution that the algorithm has searched and the true Pareto optimal front-end. 
 

2

1

N
di

iGD
N


  

where N is the number of non-dominated solutions which algorithm searched, 
2

id  means the 

shortest Euclidean distance between the noninferior solution i and the true Pareto optimal front-
end solution. 
(2) Distribution index SP, is used to evaluate the uniformity of distribution of non-dominated 
solution concentrated solution. 

2
1 2[ ]( )

1

n
d din iSP
d

 
 ,  
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1 n

i
i

d
n d



 
 

where n is the number of non--dominated solutions in centralized solution, id  is  the shortest 

Qu Distance between the i-th non-inferior solution and all the solutions among the real Pareto 
optimal front-end. 

By using IPSO algorithm to run each test function for 30 times, get test function 
convergence indicators GD, distribution indicators SP and average computation time CT, and 
calculate the average value of three standard test functions GD, SP and CT, results are shown 
as the table 1 below. 
 
 

Table 1. IPSO optimizing test function performance statistics 
Algorithm SCH1 SCH2 ZDT3 average 

GD 0.000344 0.000336 0.000327 0.000336 
SP 0.0034 0.0037 0.0031 0.0034 
CT 2.023 2.134 2.213 2.123 

 
 
Evaluation indicators GD, SP, CT confirmed the accuracy of the IPSO algorithm for 

multi-objective Pareto. GD shows that the noninferior solution is very close to the true Pareto 
optimal front-end; SP shows that the noninferior solution is well-distribution; CT shows that the 
running time spent is in the allowable range. 

Compare the IPSO algorithm with the average of convergence indicators GD, 
distribution index SP and calculation time CT of the three test functions solved by classic non-
inferiority classified multi-objective genetic algorithm (NSGA-II), multi-objective particle swarm 
optimization (MOPSO) algorithm. Results are shown in Table 2. 

 
 
Table 2. contrast of results of the optimization test function in three algorithms 

Algorithm NSGA II MOPSO IPSO 
GD 0.000353 0.000355 0.000336 
SP 0.0036 0.0040 0.0034 
CT 2.402 0.076 2.123 
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By the results in Table 2, IPSO algorithm GD is significantly better than NSGA II and 
MOPSO GD, the distance between the noninferior solution obtained and the true Pareto optimal 
front-end decreased by 4.8% and 5.4%. SP evaluate the distribution of the target space by 
calculating the distance changes between the each individual and the the neighbors. The 
smaller the value its Description distribution, the better the situation is. Table 2 shows that the 
SP value of IPSO is minimum, indicating that the IPSO algorithm non--inferior solution is more 
uniform distribution relative to the other two algorithms. In terms of computation time CT, the 
time spent in the process of IPSO running is less than NSGA II, but time-consuming is higher 
than the MOPSO algorithms, because the search process in the improved algorithm is not 
isometric step search and the standard PSO algorithm is, and its flight direction is single. It is 
clear that time-consuming of IPSO algorithm is more than the standard PSO algorithm. But 
IPSO time-consuming is within the scope allowed. In summary, by comparing performance 
indicators of GD, SP and CT with other algorithms, the feasibility and effectiveness of the 
proposed algorithm has been verified. 
 
 
4. Conclusion 

The paper proposes a chaotic Adaptive Improved Particle Swarm Optimization (IPSO). 
The algorithm uses chaos theory and adaptive strategy to optimize the parameters of the PSO 
algorithm to overcome the premature convergence of the PSO algorithm, and improve the 
convergence rate. The solution set is better distributed. The experimental results of three 
standard test function show that while the algorithm solving multi-objective problem, the 
resulting non-dominated solutions can be a good approximation of the Pareto optimal solution 
set, and evenly distributed.  While comparing the proposed algorithm with other algorithms, the 
IPSO algorithm performs better. 
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