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Abstract 
Grey system theory is a scientific theory possessed with wide adaptability to study poor 

information. The construction method of the background value in multivariable grey model was analyzed. 
The trapezoid formula and extrapolation method using rational interpolation and numerical integration was 
proposed based on the theory of vector valued continued fractions. And a non-equidistant multivariable 
grey model MGRM (1,n) was built through applying reciprocal accumulated generating operation. The 
model is suitable for building both equidistant and non-equidistant models, and it broadens the application 
range of the grey model and effectively increases both the fitting and the prediction precisions of the 
model. The applicability and the reliability of the model built were proven by real cases. 

 
Keywords: Multivariable, Background Value, Reciprocal Accumulated Generating Operation, Non-
Equidistant, Continued Fraction, Trapezoid Formula, MGRM (1,N) Model, Least Square Method  

    
Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved. 

 
 

1. Introduction 
Grey model is an important element of the grey system theory, GM(1,1), GM(1,N) and 

MGM(1,N) are among the grey models most commonly used [1-3]. Grey system models are 
mostly based on equidistant sequences while a big part of the original data obtained in practical 
work is constituted of non-equidistant sequences. Therefore, it is of practical and theoretical 
significances to build models based on non-equidistant sequences. Since the construction 
method of the background value is a major factor that influences the prediction precision and 
the adaptability, optimizing the background values of the model would be an important way to 
improve the model. References [4-7] and etc proposed multiple construction methods of 
backgrounds values and multiple non-equidistant GM(1,1) models in order to improve both the 
fitting and the prediction precision of GM(1,1) model. However, systems in society, economics 
and engineering usually contain multiple variables with inner connections. Model MGM(1,N) is 
the extended form of model GM(1,1) with n-element variables, but it’s neither a simple 
combination of n GM(1,1) models nor a single n-element first-order differential equation like 
model GM(1,n). MGM(1,N) builds n n-element differential equations and then solves them to 
obtain a series of parameters that could reflect the correlations among multiple variables [8]. 

Reference [8] took the first component of sequence )1(x  as the initial condition of the grey 
differential equations, and an optimized MGM(1,N) model was built after some modification. 
Reference [9] built a multivariable new-information MGM(1,N) model with the n’th component of 

)1(x  being the initial condition of the grey differential equations based on the principle that new 
information should be considered in priority. And reference [10] built a multivariable new-

information MGM(1,N) model with the n’th component of 
)1(x  being the initial condition of the 

grey differential equations and the initial values as well as the background value coefficient q  

optimized and modified. However, these MGM(1,N) models are all equidistant. Reference [11] 
built non-equidistant multivariable MGM(1,N) models through fitting background values with 
homogeneous exponential functions. But there were inherent defects in the modeling 
mechanism of this model because non-homogeneous exponential functions are of greater 
universality than homogeneous ones. Reference [12] built a multivariable non-equidistant 
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MGM(1,N) model while its model precision requires further improvement for the background 
values were generated using the average value. Reference [13] built a non-equidistant 
multivariable GM(1,N) model through fitting background values with non-homogeneous 
exponential functions, and the precision was therefore improved. Reference [14] analyzed the 
construction method of background values in multivariable grey model MGM(1,m), and 
proposed the trapezoid formula and extrapolation method using rational interpolation and 
numerical integration to reconstruct background values based on vector valued continued 
fractions. Reference [15] built the non-equidistant multivariable new information optimization 
NMGRM(1,n) based on new information background value constructing.So both the simulation 
and the prediction precisions were effectively increased while the model would usually be 

multivariable equidistant MGM(1,m) model. For the original sequence )0(x  which is 
monotonically decreasing, reference [16] proposed the inverse accumulated generating 
operation and built the grey model GOM(1,1) which is based on inverse accumulated generating 
operation, reference [17] proposed the reciprocal accumulated generating operation and built 
the grey model GRM(1,1) which is based on reciprocal generating operation, and reference [18] 
improved the grey model GRM(1,1) and built the improved grey model CGRM(1,1) which based 
on reciprocal accumulated generating operation. The models based on both reciprocal 
accumulated generating operation and inverse accumulated generating operation make the 

generated sequence )1(x  decrease monotonically. Fit )1(x  with a monotonically decreasing 

curve, and )1(x̂  which is the model value of )1(x  could be obtained. And there won’t be any 
illogical errors like those in traditional accumulated generating operation and inverse 

accumulated generating operation modeling methods when )0(x̂  which is the predicted value of 
)0(x . So the modeling precision is increased. This paper built a multivariable non-equidistant 

grey model MGRM(1,n) using reciprocal accumulated generating operation based on the idea of 
constructing background values, while the model GRM (1,1) built in reference [17] and [18] is 
equidistant and univariate. The model MGRM (1,n), with high precision as well as great 
theoretical and applicable values, is suitable for both equidistant and non-equidistant modeling, 
and it extends the applied range of grey models. 
 
 
2. Multivariable Non-Equidistant Grey Model MGRM(1,N) Based on Reciprocal 
Accumulated Generating Operation Method 

Suppose sequence )](,),(,),([ )00()00(
1

)00()00(
mijiii txtxtx X . When 

constttt jjj  1  
and mjni ,,2,,,2,1    where n  is the number of variables and m  

is the number of sequences of each variable, we call )00(
iX  a non-equidistant distance sequence. 
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tx
tx

ji
ji  , and we call ))(,),(( )0(

1
)0()0(

miii txtx x  the reciprocal sequence 
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1,,,2,1  jjj tttni  , we call )1(
iX  the first-order accumulated 

generation (1-AG0) of the non-equidistant distance sequence )0(
iX . 

         Suppose the original data matrix of multiple variables is 
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where the measured values of variables of ),2,1)(()0( mjtj X  at jt  are displayed as 

)](,),(),([)( )0()0(
2

)0(
1

)0(
jnjjj txtxtxt X , and ),,2,1,,,2,1)]((,),(,),(),([ )0()0(

2
)0(

1
)0( mjnitxtxtxtx mijiii    is non-

equidistant which means 1 jj tt  is not a constant. 

For building the model, first conduct accumulation once on the original data and a new 
matrix is derived as 
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where ),,2,1)(()1( nitx ji   is equivalent to 
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Generate multivariable non-equidistant MGRM(1,n) model as n -element first-order 

differential equations based on reciprocal accumulation: 
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B , then equation (4) could be wrote as  
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 (5) 

 

Take )( 1
)1( tix  which is the first component of ),,2,1)(()1( mjt ji x  as the original 

condition of the grey differential equations, and the continuous time response of equation (5) is 
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To distinguish A  and B , we dissociate equation (4) and obtain: 
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To distinguish A  and B , we integrate equation (4) on ],[ 1 jj tt   and obtain 
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Take ),,2,1(),,,,( 21 nibaaa iiniii   Ta  and iâ  which is the value of ia  could be 

obtained through least square method as 
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And the identify values of A  and B  could be obtained as 
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The calculated value of model MGRM(1,n) based on reciprocal accumulation is 
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And the discrete solution is 
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The equation is taken as the first column of the data and the original value of the 

solution. And the fitting value of the original data restored from it is 
 

)()(ˆ
1

)0(
1

)0( tXtX ii   

),,3,2(

)/())(ˆ)(ˆ()(ˆ
11

)1()1()0(

mj

ttttt jjjijiji



 XXX
 (13) 

 

Then we obtain ),,2,1)((ˆ )00( mjtx ji   which is the model value of the original 

sequence using Definition 1. 
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We could see that the non-equidistant model MGRM(1,n) degraded into the non-
equidistant model GRM(1,1) when 1n . And the non-equidistant model MGRM(1,n), a 
combination of n  non-equidistant model GRM(1,n), is not only available for modeling but also 
suitable for predicting or data fitting and processing when 0B . Models like MGRM(1,2), 
MGRM(1,3) and MGRM(1,4) were generated according to different specific n values.  
 
 
3. Construct Background Values of MGRM (1,N) Model Based on the Theory of Vector 
Valued Continued Fractions   

The background values of non-equidistant multivariable models MGRM (1,n) are 
generated using the average value, which results in unsatisfactory model precisions. Therefore, 
we adopted the trapezoid formula and extrapolation method using rational interpolation and 
numerical integration based on the theory of vector valued continued fractions to increase the 
model precision. 
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where nkxxx k ,,1,0,,0],,,[ 10    is the k -order inverse difference of vector set mV  
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The non-equidistant model built through equation (14) instead of equation (9) according 

to the first section is the non-equidistant multivariable grey model MGRM(1,n) based on 
reciprocal accumulated generating operation.  

 
 
 

4. Application 
In contact strength calculation, parameters like the principle curvature function )(F  

and coefficients am  and bm  of the long radius a  and the short radius b  of the point contact 

ellipse are usually looked up in the parameter table. The data below was extracted from Table 1 
[19]. 

 
 

Table 1. Values of F(ρ), ma and m b 
F(ρ) 0.9995 0.9990 0.9980 0.9970 0.9960 0.9930 0.9920 0.9910 

am  23.95 18.53 14.25 12.26 11.02 8.92 8.47 8.10 

bm  0.163 0.185 0.212 0.228 0.241 0.268 0.275 0.281 

F(ρ) 0.9900 0.9890 0.9880 0.9870 0.9860 0.9850 0.9840 0.9810 

am  7.76 7.49 7.25 7.02 6.84 6.64 6.47 6.06 

bm  0.287 0.292 0.297 0.301 0.305 0.310 0.314 0.325 

F(ρ) 0.9800 0.9790 0.9780 0.9770     

am  5.95 5.83 5.72 5.63     

bm  0.328 0.332 0.335 0.338     

 
 

Take bm  which is the parameter of the ellipse short radius b  as jt , the principle 

curvature function )(F  as 1x  ,and am  which is the parameter of the ellipse short radius a  as 

2x . We built a non-equidistant MGRM(1,2) model based on reciprocal accumulated generating 

operation according to the method proposed in the paper. And the parameters of the model are 
shown as 
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3.4483    0.4032   

2.4327    0.1249- 
A ,   

0.5031- 

1.0237 
B      

 
The fitted value of the principle curvature function )(F  is: 

 

)(ˆ F = [0.9995, 0.99978, 0.99938, 0.99832, 0.99717, .99601, 0.99487, 0.99371, 

0.99258, 0.99152, 0.99046, 0.98944, 0.98845, 0.98752, 0.98666, 0.98565, 
0.9846, 0.98376, 0.98289, 0.98186, 0.98094, 0.97999, 0.97901, 0.97815, 
0.97697] 

 
The absolute error of the principle curvature function is: 
 
q  [0, 0.00078371, 0.001381, 0.0013223, 0.0011731, 0.0010093, 0.00087083, 

0.00071486, 0.00058468, 0.00051998, 0.00046475, 0.00043722, 0.00045081, 
0.00052141, 0.00066052, 0.00065248, 0.00060466, 0.00076081, 0.00089019, 
0.00086448, 0.0009399, 0.00098793, 0.001011, 0.0011521]  

 
The relative error of the principle curvature function is: 
 
e  [0, 0.07845, 0.13838, 0.13263, 0.11778, 0.10144, 0.087609, 0.07199, 0.05894    

0.052471, 0.046945, 0.044208, 0.045628, 0.052828, 0.06699, 0.066242    
0.061449, 0.077397, 0.090651, 0.088122, 0.095909, 0.10091, 0.10338, 0.11792] 

 
And the average value of the relative error is 0.079094% which shows a high model 

precision. 
 
 
5. Conclusion 

The trapezoid formula and extrapolation method using rational interpolation and 
numerical integration was proposed based on the theory of vector valued continued fractions. 
And a non-equidistant multivariable grey model MGRM (1,n) was built through applying 
reciprocal accumulated generating operation. The model is suitable for building both equidistant 
and non-equidistant models, and it broadens the application range of the grey model and 
effectively increases both the fitting and the prediction precisions of the model. The applicability 
and the reliability of the model built were proven by real cases. Therefore, this model is of 
important practical and theoretical model, and it is worthy of popularization. 
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