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Abstract 
Gabor system plays an important role in signal processing, image processing and other 

applications because of their redundancy properties. In this paper, symmetric or antisymmetric Gabor 
frames in two dimensions about any symmetric points are constructed from Gabor frames given. In 
special, symmetric or antisymmetric Parseval Gabor frames with better properties are obtained. Some 
thoughts of existing results in wavelet analysis are borrowed.  At last, some examples are provided to 
prove the theory. 
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1. Introduction 
Today we are living in a data world. On the one hand, people have to develop the way 

to process all kind of types of data. On other hand, they are faces with analyzing the accuracy of 
such methods and providing a deeper understanding of the underlying structures. There is a 
pressing need for those tasks deriving from various fields such as signal processing, image 
processing, digital communications, medical imaging, and so on.  

In the late 18th century, the Fourier Transform is the first tool to analyze the data. When 
the Fast Fourier Transform (FFT) was developed, it achieved the greatest achievements. 
Today, FFT is still one of the most fundamental algorithms and can be found in various 
applications. However, the Fourier Transform itself has a serious disadvantage: a local 
perturbation of f  leads to a change of all Fourier coefficients simultaneously, since it merely 

analyzes the global structure of a signal. However, in many signal processing we have to detect 
the location of the signal, and this indicates a defect in an engineering process.  

This deficiency led to the birth of the new fields of applied harmonic analysis, which is 
nowadays already one of the major research areas in applied mathematics. It exploits not only 
methods from harmonic analysis, but also borrows from areas such as approximation theory, 
numerical mathematics and operator theory. 

Frames were first introduced by Duffin and Schaeffer [1] in the field of nonharmonic 
Fourier series. Since the ground breaking work of Daubechies, Grossmann, and Meyer [2], the 
theory of frames has been widely studied. Traditionally, frames were used in signal processing, 
image processing and other applications [3-4]. Recently, frames are also used to mitigate the 
effect of losses in packet-based communication systems and hence to improve the robustness 
of data transmission [5].  

An important example about frame is wavelet frame, which is obtained by shifting and 
dilating a finite family of functions. Wavelet theory has been studied extensively in both theory 
and applications since 1980's. The main advantage of wavelets is their time-frequency 
localization property.  

The theory of wavelets plays undoubtedly an important role in all mathematical, 
engineering and other fields throughout the last decade. Thus, few other mathematical 
theoretical sciences have enjoyed this much attention and popularity. 

Then, we briefly review the history of wavelet analysis. In 1985, Stephane Mallat [6] 
gave wavelets an additional jump-start through his work in digital signal processing. He 
discovered some relationships among quadrature mirror filters, pyramid algorithms and 
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orthonormal wavelet bases. Inspired by these results, Y. Meyer constructed the first non-trivial 
wavelets. Unlike the Haar wavelets, the Meyer wavelets are continuously differentiable, 
however they do not have compact support. Later, Ingrid Daubechies [7], [8] used Mallat ’s work 
to construct a set of wavelet orthonormal basis functions that are perhaps the most elegant, and 
have become the corner stone of wavelet applications today. Though people have given an 
algorithm for constructing the mother wavelet by multiresolution analysis (MRA), not every 
wavelet is generated from an MRA as J. Journe in 1992 demonstrated by his celebrated 
example.  

Another important concrete realization of frames is Gabor frames. Gabor systems were 
first introduced by Gabor [2]. They are generated by modulations and translations of some 

functions. That is, we choose fixed functions 2 2( )g L R  and two parameters , 0a b  , and 

define the associated Gabor system ( , , )G g a b by 

 

( , , ) { : , },lb kaG g a b E T g j k Z   (1.1)  

 

where ( ) ( )kaT f x f x ka   and 2( ) ( )lbx
lbE f x e f x . Such systems, also called Weyl-

Heisenberg systems, were introduced by Gabor with the aim of constructing efficient, time-
frequency localized expansions of signals as (infinite) linear combinations of elements. A major 
development in the theory of Gabor systems is due to Daubechies, Grossmann and Meyer [2] 
who placed the problem of Gabor expansions in the framework of frames for a Hilbert space. 
We state the definition of frames and give their main properties in Section 2. Since the 
appearance of [2], Gabor systems are widely studied by many researchersby characterizing 
Gabor systems being frames and efficiently computing canonical duals.  

The fundamental problems of Gabor theory are: how should we choose functions such 
that Gabor systems possess the spanning properties. When do the Gabor systems span a 

dense subspace of 2 2( )L R ? When do Gabor systems constitute frames or linearly independent 

families for 2 2( )L R ? The investigation about these problems is nowadays referred to as Gabor 

analysis [9]. At last, we think the monograph of Grochenig [10] provides an elaborate depict 
about time frequency analysis and Gabor systems. 

Shearlet systems [11] are systems generated by one single generator with parabolic 
scaling, shearing, and translation operators applied to it, in the same way wavelet systems are 
dyadic scalings and translations of a single function, but including a directionality characteristic 
owing to the additional shearing operation (and the anisotropic scaling). In fact, from above 
shearlet’s definition, it is obvious that shearlet system is a kind of special composite dilation 
wavelet system. 

The main advantages of shearlet theory lie in that the shearing filters can have smaller 
support sizes than the directional filters used in the contourlet transform and can be 
implemented much more efficiently. An additional appealing point to make in favor of the 
shearlets approach is that they provide a unified treatment of such continuum models as well as 
digital models, allowing, for instance, a precise resolution of wavefront sets, optimally sparse 
representations of cartoon-like images, and associated to fast decomposition algorithms. 
Shearlet systems can be designed to efficiently encode anisotropic features. In order to achieve 
optimal sparsity, shearlets are scaled according to a parabolic scaling law. They parameterize 
directions by slope encoded in a shear matrix. Readers can refer to papers [12-13] for more 
knowledge about shearlet theory. 

Shearlet system plays an important role in image compression, denoising, edge 
analysis and detection [14-15]. With the improvements of shearlet theory, people will obtain 
more huge success. 

It is well known that the symmetry of wavelet plays an important role in image 
processing. In [16], authors gave a simple way to construct symmetric or antisymmetric wavelet 
frames from any wavelet frames given. Motivated by the way of [16], we will discuss the case of 
Gabor system. We obtain some similar results in Gabor analysis. 

In this paper, symmetric or antisymmetric Gabor frames in two dimensions about any 
symmetric points are constructed from Gabor frames given. In special, symmetric or 
antisymmetric Parseval Gabor frames are obtained. This way makes the amount of Gabor 
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frames largely increase. We borrow some thoughts of existing result in wavelet analysis.  At 
last, some examples are provided to prove the theory. 
 
 
2. Preliminaries  

In this section, some notations and some results which will be used later are introduced. 

Throughout this paper, the following notations will be used. 2R and 2Z  denote the set 

of n-dimensional real numbers and the set of integers, respectively. 2 2( )L R  is the space of all 

square-integrable functions, and ,     and  · ‖‖ denote the inner product and norm in 2 2( )L R

, respectively, and 2( )l Z  denotes the space of all square summable sequences. 

We use the Fourier transform in the form 
2

2ˆ ( ) ( ) ,ix

R
f f x e dx     where   denotes 

the standard inner product in 2R . 
Let us recall the definition of frame. 
 

Definition 1. Let H  be a separable Hilbert space. A sequence { }i i Nf   of elements of 

H  is a frame for H  if there exist constants 0 C D     such that for all f H , we have 

   
22 2

, .i
i N

C f f f D f


   (2.1) 

 
The numbers ,C D  are called lower and upper frame bounds, respectively (the largest 

C and the smallest D for which (2.1) holds are the optimal frame bounds). Those sequences 
which satisfy only the upper inequality in (2.1) are called Bessel sequences. A frame is tight if 
C D . If 1C D  , it is called a Parseval frame. 

 

Let fT denote the synthesis operator of { }i i Nf f  , i.e., ( )f i i
i

T c c f  for each 

sequence of scalars ( )i i Nc c  . Then the frame operator *( )f fSh T T h  associated with 

{ }i i Nf   is a bounded, invertible, and positive operator mapping of H  on itself. This provides 

the reconstruction formula 
 

1 1

 , , .,i i i i
i i

h h f f h f f h H
 

 

           (2.2) 

 

where 1
i if S f . The family { }i i Nf 

  is also a frame for H and is called the canonical 

dual frame of { }i i Nf  . If { }i i Ng   is any sequence in H  which satisfies 

 

1 1

, , , , i i i i
i i

h h g f h f g h H
 

 

          (2.3) 

 

it is called an alternate dual frame of { }i i Nf  . 

Then, we will give the definitions of composite dilation multiwavelet frame and the frame 
composite dilation multiwavelet. 

 
Definition 2. We say that the Gabor system defined by (1.1) is a Gabor frame if it is a 

frame for 2 2( )L R .  
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3. Main Results 
In this section, we consider to construct symmetric or antisymmetric Gabor frames with 

any symmetric points from any Gabor system frames given. 

For some functions 2 2( )g L R and fixed point 2y R , define new symmetric or 

antisymmetric functions with symmetric point y  as the following: 

 

1

2

( ) ( )
( ) ,

2
( ) ( )

( ) .
2

g y x g y x
g x

g y x g y x
g x

  


  


 (3.1) 

 
Thus, we have 

 
Theorem 3.1 Suppose that Gabor system 
 

2{ : , }m
l kE T g k Z l Z   

 

defined by (1.1) is a frame for 2 2( )L R  with frame bounds 1 2,C C , then Gabor system 

 

1 2
2{ : , }l k l kE T g E T g k Z l Z   (3.2)  

 

is a symmetric or antisymmetric frame for 2 2( )L R  about any symmetric points y  with frame 

bounds 1 2,C C , where the functions 1 2( ), ( )g x g x  are defined by (3.1). 

Proof.  Because Gabor system 
 

2{ : , }l kE T g k Z l Z   

 

is a frame with frame bounds 1 2,C C , for all 2 2( ) ( )f x L R , we have 

 

2

2 2 2
1 2, | .l k

l Z k Z

C f f E T g C f
 

    ‖‖ ‖‖  (3.3)  

 
In order to prove that Gabor system defined by (3.2) is a frame, we firstly calculate the 

series 
 

2 2

2 2
1 2, | , |l k l k

l Z l Zk Z k Z

f E T g f E T g
  

        (3.4) 

 

According to definition of 1g  and the property of inner product, we can obtain 

 

2 2
1

( ) ( )
| ( ), | | ( ), ( ), |

2 2l k l k l k

g y g y
f E T g f E T f E T

   
            (3.5) 

 

For any complex numbers 1 2,z z , it is well known that the following equality holds 

2 2 2
1 2 1 2 1 2 1 2| | | | | | .z z z z z z z z      (3.6) 

 
From (3.5) and (3.6), we have 
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2 2 2
1

1 1
( ), ( ) | | ( ), ( ) | | ( ), ( ) |

4 4l k l k l kf E T g f E T g y f E T g y               
 

1
( ), ( ) ( ), ( )

4 l k l kf E T g y f gE T y           (3.7) 

1
( ), ( ) ( ), ( ) .

4 l k l kf E T g y f E T g y         
 
 

 
In the similar way, we can prove 
 

2
2 2 21 1

( ), ( ) | | ( ), ( ) | | ( ), ( ) |
4 4l k l k l kf E T g f E T g y f E T g y                 

1
( ), ( ) ( ), ( )

4 l k l kf E T g y f gE T y           (3.8) 

1
( ), ( ) ( ), ( ) .

4 l k l kf E T g y f E T g y           

 
 

Comparing with (3.7) and (3.8), we get 

 

2 2

2 2
1 2, | , |l k l k

l Z l Zk Z k Z

f E T g f E T g
  

        

2

21
| ( ), ( ) |

2 l k
l Z k Z

f E T g y
 

        (3.9) 

2

21
| ( ), ( ) |

2 l k
l Z k Z

f E T g y
 

       

 
By simple calculation, we have 

 

2

2 2

2

| ( ), ( ) | | ( ) | ., ( )l k l k
k Z l kZ Z Zl

f E T g y f y E T g
  

             (3.10) 

 
According to (3.3), we obtain 
 

2

2 2 2
1 2( ) ( ), | ( ) ,l k

l Z k Z

C f y f y E T g C f y
 

             ‖ ‖ ‖ ‖  (3.11) 

 

From (3.10), (3.11) and the equality 2 2( ) ( ) ,mf x f    ‖ ‖ ‖ ‖ we deduce 

 

2

2 2 2 2
1 2

2, ( ) | , ( ) ( ).l k
l Z k Z

C f f E T g y C f f x L R
 

        ‖‖ ‖‖  (3.12) 

 
At last, comparing with (3.3), (3.9) and (3.12), we get 
 

2

2 2 2 2
1 1 2

2
2, | ., |l k l k

l Z k Z l Z k Z

C f f E T g f E T g C f
   

         ‖‖ ‖‖
 

 (3.13) 

 
Therefore, we have completed the proof of Theorem 3.1. 
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Remark  
(1) In particular, if that Gabor system is an orthonormal base, then, by simper deduction, we 
obtain the construction of symmetric or antisymmetric Parseval Gabor frames about origin from 
any Gabor frames given. 
 
Corollary 3.1. Suppose that Gabor system  

 

{ : , }l kE T g k Z l Z   

 

is an orthonormal base for 2 ( )L R , then, Gabor system 

 

21{ : , }l k l kET g ET g k Z l Z                     

 

is a symmetric or antisymmetric Parseval frame for 2 ( ),L R  where the functions 1 2( ), ( )g x g x  

are defined by (3.1). 
 
(2)  By adjusting the proof of theorem 3.1, we easily obtain the generalization of theorem 3.1. 
 
Corollary 3.2.  Suppose that Gabor system 
 

{ : , }la kbE T g k Z l Z   

 

defined by (1.1) is a frame for 2 ( )L R  with frame bounds 1 2,C C , then Gabor system 

 

1 2{ : , }la kb la kbE T g E T g k Z l Z   (3.14)  

 

is a symmetric or antisymmetric frame for 2 ( )L R  about origin with frame bounds 1 2,C C , where 

the functions 1 2( ), ( )g x g x  are defined by (3.1). 

 
 
4. Some examples 

In paper [12], authors constructed several examples of symmetric or antisymmetric 
wavelet frames from any wavelet frames given.  
           In the following, we mainly devote to constructing symmetric or antisymmetric Gabor 
frames about any symmetric points. We only provide several examples to prove our theory. 
 

Example 1. Let 2 ( )g L R  be a real-valued bounded function with supp [0, ]g L  for which 

 

( ) 1.
n Z

g x n


   

 

Let 
1

(0, ]
2 1

b
L




. Consider any scalar sequence { : 1, 2, , 2, 1}na n N N N N        

for which 
 

0 , 2 , 1,2, , 1,n na b a a b b N      

 

and define 2 ( )h L R  by 
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1

1

( ) ( )
N

n
n N

h x a g x n


 

  . 

 

Then, According to theorem 3.1 of [13], the functions 2 ( )g L R and 2 ( )h L R  generate dual 

frames { : , }la kE T g k Z l Z   and { : , }la kE T h k Z l Z   for 2 ( )L R . 

For a fixed point y R , define new symmetric or antisymmetric functions with the 

symmetry as the following: 
 

1 2

( ) ( ) ( ) ( )
( ) , ( ) ;

2 2

g y x g y x g y x g y x
g x g x

     
    

1 2

( ) ( ) ( ) ( )
( ) , ( ) .

2 2

h y x h y x h y x h y x
h x g x

     
 

 
  

Then, according to Theorem 3.1, both Gabor system 
 

1 2{ : , }la k la kE T g E T g k Z l Z    

 
and Gabor system 
 

1 2{ : , }la k la kE T h E T h k Z l Z    

 

are symmetric Gabor frames about symmetric point y  for 2 ( )L R . Furthermore, we can prove 

that they generate a symmetric or antisymmetric dual frames for 2 ( )L R . 

 

Example 2.  If we partition [0, )a  into disjoint measurable sets ( )n n ZA  ,let { }n nB A n   and 

define ( , ) nf x y d nx   for all .ny A  

Then, according to [13], the function ( )g x  by the following 

 

( )
nn B

n Z

g x c 


  

 
yields a Parseval Gabor frame. 

Define new symmetric or antisymmetric functions with the symmetry as the following: 

 

1 2

( ) ( ) ( ) ( )
( ) , ( ) .

2 2

g y x g y x g y x g y x
g x g x

     
   

 
Then, according to Theorem 3.1, Gabor system 
 

1 2{ : , }la k la kE T g E T g k Z l Z    

 

is symmetric Gabor frames about symmetric point y  for 2 ( )L R . 

 
 
5. Conclusion 

In this paper, symmetric or antisymmetric Gabor frames in two dimensions about any 
symmetric points are constructed from Gabor frames given. In special, symmetric or 
antisymmetric Parseval Gabor frames are obtained. This way makes the amount of Gabor 
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frames largely increase. We borrow some thoughts of existing result in wavelet analysis.  At 
last, some examples are provided to prove the theory. 
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