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 Direction of arrival (DOA) estimation for a sparse channel has attracted 

serious attention recently. Better signal analysis and denoising achieve 

accuracy in DOA determination. This paper proposes an underdetermined 

DOA estimation for multiple input and multiple outputs (MIMO) sparse 

channels. A novel multi-kernel-based non-negative sparse Bayesian learning 

(MK NNSBL) framework is implemented using the multiplied form of basis 

vector within the manifold matrix for a defined grid. Meanwhile, virtual 

antenna locations are reconfigured by exploiting the conventional cuckoo 

search algorithm (CCSA) for the fine reception of incoming signals on a non-

uniform linear array (NULA). The simulated results reveal that the novel 

approach outperforms in its optimal root mean square error (RMSE) for 

various signal-to-noise ratio (SNR) limits and the compilation time. The 

convergence comparative graph indicates the improved performance in the 

proposed framework over existing algorithms. 
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1. INTRODUCTION 

Wireless mobile communication plays a vital role in today’s life. To satisfy the stringent demands of 

dense users’ requirements such as higher data rates, signal-to-noise ratio (SNR), and high accuracy with fewer 

errors different generations of cellular networks have evolved right from early first-generation (1G) to current 

fourth generation (4G). Now, the fifth generation (5G) network is the new version of the mobile communication 

system which is commercialized to deploy for usage. Nowadays, the need for direction of arrival (DOA) 

estimation is increasing rapidly day by day in 5G wireless mobile communication systems, radar, sonar, 

electronic surveillance, seismology, re-configurable intelligent surfaces (RIS), and medical diagnosis. DOA 

estimation is performed virtually using computers rather than the manual method to avoid the need for physical 

adjustment of an antenna and extra phase shifter for beam steering. DOA estimation means finding the exact 

direction of transmitted electromagnetic signals that impinges on the receiving antenna elements in an array 

over a noisy channel. 

In general, DOA estimation techniques have three main classifications such as spectral estimation, 

parametric subspace-based estimation (PSBE), and deterministic parametric estimation (DPE) [1]. The popular 

parametric subspace-based methods multiple signal classification (MUSIC) and estimation of signal 

parameters via rotational invariance technique (ESPRIT) [2] are implied to a greater extent among others, but 

sparse Bayesian learning (SBL) is a popular method that can be used for sparse signal recovery (SSR) in 

compressive sensing (CS) [3]. The MUSIC and ESPRIT algorithms comparison based on implementation time 
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is discussed [4] where, the MUSIC technique uses noise eigenvectors, and ESPRIT uses signal eigenvectors. 

A new improved MUSIC method DOA approximation is performed on circular and non-circular sparse wave 

forms to improve the degrees of freedom (DOF) [5]. A cross dipole array is exploited with augmented 

quaternion (AQ) ESPRIT type for DOA estimation for low SNR limits [6]. For increasing the small step size 

between the elements and over low SNR values, an enhanced standard ESPRIT (ES ESPRIT) based DOA 

finding method is developed [7]. The source localization method is a tough task in a sparse channel so, in this 

regard, the SSR procedure provides good accuracy without knowing the number of sources, without taking 

many snapshots, and with the correlation of signals [8]. The extremely effective SBL technique was first 

introduced by Tipping for finding sparse solutions by making use of basis functions [9]. 

Further, in this regard to address the problems in a joint direction-of-departure (DOD) and DOA 

estimation over bi-static MIMO radar SBL is adopted [10], and the Kalman filter method [11]. To overcome 

the complexity only real-value-based SBL is presented on arbitrary linear arrays [12], and on sparse arrays for 

off-grid targets using underdetermined criteria [13]. A novel SBL with phase errors (SBLPE) approach is 

proposed with acceptable complexity [14]. An analysis is described of the recent SBL based algorithms with 

their challenges [15]. A joint SBL method is implemented to find two targets at bistatic radar working passively [16]. 

Non-negative based SBL for an underdetermined DOA finding is adopted with the cumulative and hybrid form 

of basis vector using the optimized antenna reconfiguration method [17]. Basis pursuit denoising (BPDN) 

based multi-kernel approach is used for a non-uniform linear array (NULA) [18]. By using a symmetric MIMO 

array joint DOA estimation along with the range and reflectivity of back scattered waves in near-field 

applications are derived [19]. Time-varying SBL-based DOA estimation is sequentially performed for an 

unknown variance over the channel [20], and for block sparse signals [21]. The important objective of this 

paper is to find solutions to all the above discussed issues in literature such as off-grid models showing high 

computational complexity, simulations on low SNR values [22], low accuracy algorithms, need for more 

compilation time with memory, high RMSE, lack of DOF flexibility, and lower optimized results for NULA. 

The main contributions in this paper are divided into two sections. Firstly, multiplicative basis vector formation 

within the manifold matrix for beam rotation as per need along with expectation maximization (EM) method. 

Secondly, the variation in the virtual antenna locations for fine impinging of incoming signals on the array 

employing the simple conventional cuckoo search algorithm (CCSA) technique. On simulations, the results of 

the novel method show that it achieves good results on different SNR limits than the non-negative sparse 

Bayesian learning (NNSBL) approach. The remainder of the paper is assembled as follows. A step-by-step 

analysis of the proposed multi-kernel based SBL algorithm is introduced in section 2. The virtual optimal 

antenna reconfiguration method is described in the flowchart in section 3. Evident results and discussions are 

plotted in section 4 followed by a conclusion of the new proposed model in section 5. 
 

 

2. THE PROPOSED MULTI-KERNEL-BASED SPARSE BAYESIAN LEARNING FRAMEWORK 

The multi-kernel approach in the NNSBL framework is applied for an underdetermined DOA 

estimation scenario by considering the multiplicative basis vector. In MIMO applications if the number of 

incoming sources is greater than or equal to the number of elements in an array it is termed an underdetermined 

condition. The posterior values are maximized by exploiting the prior values via NNSBL [22]. Adaptive beam 

forming accuracy is enhanced with multiplicative basis vector and optimal antenna reconfiguration model.  

The DOA estimation proposed method includes two approaches: i) multiplicative basis vector formation within 

the manifold matrix for beam rotation as per need and ii) the variation in the virtual antenna locations for fine 

impinging of incoming signals on an array. 
 

2.1.  Multiplicative basis vector-based multi-kernel NNSBL method 

The proposed implementation includes the multi-kernel basis vector in the form of multiplication 

within the steering matrix. To reduce most of the sparsity, BPDN-based SSR methods are employed for 

calculating the DOA. The improvements in the conventional DOA approximation approach for signal recovery 

are briefed. This type of basis vector consideration is a novel development especially made for MIMO 

applications. 
 

2.2.  Signal model 

Consider ‘𝐾’ narrowband far-field incoming signals from different directions in a MIMO sparse 

channel falling on an omnidirectional antenna. An analysis of NULA of antenna elements that are separated 

by integer multiples of half-wavelength is carried out. Similar to Rao subspace method, the transmitter count 

is double or huger than the number of receiving sensors is considered [23]. Minimum redundancy positioning 

of antenna elements in an array enhances the DOF [24]. The independent variable is the distance that is 

considered for antenna reconfiguration as per the application. So, let us assume the distance between the 
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antenna elements is ‘d’ and the used total element number is ‘E’ then the difference in distance between the 

elements is given by:  
 

𝛺 = 𝑑𝑒1 − 𝑑𝑒2, 𝑒1 = 0,1, … , 𝐸 − 1 𝑎𝑛𝑑 𝑒2 = 0,1, … , 𝐸 − 1 (1) 
 

assume narrowband uncorrelated source signals are given by:  
 

𝑠𝑏(𝑡), 𝑏 = 1, 2, … , 𝐾 (2) 
 

introducing noise into the channel concerning E antenna elements is assumed as:  
 

𝑛𝑒(𝑡), 𝑒 = 0,1, … , 𝐸 − 1 (3) 
 

the array signal model is designed to be:  
 

u(t) = As(t) + n(t), t = 1,2, . . . , T (4) 
 

where 𝑢(𝑡) = [𝑢1(𝑡), . . . , 𝑢𝐸(𝑡)] is the received signals at an array end, the predefined DOA grid is 𝛩 =
[𝜃1, . . . , 𝜃𝐾], 𝑠(𝑡) = [𝑠1(𝑡), . . . , 𝑠𝐾(𝑡)] and 𝑛(𝑡) = [𝑛1(𝑡), . . . , 𝑛𝐸(𝑡)] are the transmitted signals with 

unknown channel noise vectors at time ‘𝑡’ respectively. Array manifold matrix or steering matrix is used to 

steer the antenna elements which contains a group of steering vectors as:  
 

𝐴 = [𝑎(𝜃1), 𝑎(𝜃2), . . , 𝑎(𝜃𝐾)] (5) 
 

𝑎(𝜃𝐾) is known as the steering vector of the Kth source signal. Each steering vector is denoted as 𝑎(𝜃𝑘) =
 [1, 𝑣 (𝑑𝑒1 , 𝜃𝑘) … 𝑣 (𝑑𝐸 − 1, 𝜃𝐾)] 𝑇, which includes multiplied basis functions related to phase given by 

𝑣 (𝑑𝑒, 𝜃𝑘) = 𝑒𝑥𝑝 [−𝑗2𝜋(𝑑𝑒/ 𝜆)𝑠𝑖𝑛 𝜃𝑘], {}T indicates transpose notation. 

Some general assumptions are also made concerning the source and the noise signals having zero-

mean with independent variances ‘σn
2 ’, acting upon all the signals. The aim is to find arriving angles ‘𝜃’ of 

various sources ‘𝐾’ so that 𝑢(𝑡) must fall within the on-grid angles. The basis vector used in the manifold 

matrix is responsible to predict the fine DOA angles. From the assumptions made earlier, the covariance matrix 

‘Ru’ is: 
 

Ru = E{u(t)u(t)H} = A(θ)GA(θ)H + H (6) 
 

where (6) includes E(.) and (.)H which indicates the expectation and hermitian operation. G and H are the 

sources and channel noise covariance matrix respectively. 

DOA estimation is performed on the assumption that the incident source signals are symmetric 

circularly gaussian distributed, and the residual error is of covariance matrix estimation [25]. On vectorizing 

‘Ru’ virtual form of the manifold is formed using a covariance matrix. The residual error is the difference 

between estimated and actual received DOA values given by:  
 

ŷ − y = vec(R̂u) − vec(Ru)~∁ℕ(0, Ru
T ⨂Ru

 /T) (7) 
 

where, ‘ŷ’ is the estimated received signal and ‘vec (R̂u)’ is the estimate of the covariance matrix vectorized. 

The actual received signal is ‘𝑦’ and vectorized covariance matrix is ‘vec (Ru)’. 

Further, the vectorized Ru is equated as y= vec (Ru) = (A∗⨂ A)g +σn
2 1m where ⨂ denotes kronecker 

product. g= [σ1
2 , σ2

2 , σ3
2 , . . . σK

2 ]T is the source variance vector with {}T as transpose notation. The array 

manifold matrix in virtual is considered as A= (A∗⨂ A). So, by considering R̃u = Ru
T ⨂Ru

 /T with T as the 

period and all the above-mentioned assumptions, (7) is transformed as ŷ~∁ℕ ( Ag + σn
2 1m, R̃u). 

BPDN is widely used nowadays to estimate DOA in sparse channels. Later by considering ′Φ’ as an 

overcomplete basis matrix for A parameterized by all the directions on the grid Θ and on multiplying the basis 

vectors gives the best DOA estimates described by (8).  
 

ŷ~∁ℕ(Φw + σn
2 1m, R̃u) (8) 

 

From (8) describes that only positive real values are present in the sparse matrix ‘w’. This matrix includes the 

positions at actual DOA as ones and other positions as zeros. The vector 1k= [e1
T , e2

T , e3
T . . . eK

T ]T with eK vector 

is zeros leaving the Kth entry as one where {}T indicates transpose notation. The building block of the manifold 

matrix is the product of multiple basis vectors leading to the name called multi-kernel based SBL approach 

[26]. By exploiting prior values, expected posterior values maximizing is the primitive aim of the research. 
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The method adopted for doing this is called EM. The main key parameter RMSE is calculated using the mean 

of residual errors and by taking the square root on it. This RMSE is formulated in (9). For a better 

understanding, the table of notations used for the analysis in the novel method is defined in Table 1. 
 

RMSE = √ 1/K ∑ ( ŷi − yi)
2K

i=1  (9) 

 

 

Table 1. Table of notations with definitions 
Notation Definition 

A The manifold matrix 
K The narrowband far field incoming signals fall on receiving array from different directions 

E Maximum elements in an array 

s (t) The transmitted signals matrix 
a Steering vector in steering matrix 

v The basis function corresponding to a particular steering vector 

d Distance between antenna elements 
n (t) AWGN noise matrix at the element 

u (t) The received signals matrix at the array end 

Ru The covariance matrix of ‘u’ 

G Source covariance matrix 
H Channel noise covariance matrix 

 ŷi The estimated DOA of the received signal 

yi The true DOA of the received signal 

 

 

3. VIRTUAL OPTIMAL ANTENNA RECONFIGURATION METHOD 

Antenna locations are varied virtually to reduce the objective parameter RMSE to an optimal value 

by exploiting the CCSA. It is an efficient, easy, and iterative optimization approach followed in recent days. 

The best antenna location search is initialized with the guess position. The significant steps are proceeded with 

the random walks. 
 

3.1.  Conventional cuckoo search algorithm (CCSA) 

The stochastic CCSA is one of the simple meta-heuristic algorithms employed to solve most 

optimization problems. It is a bio-inspired algorithm. The general nature of the cuckoo bird is that it does not 

build its own nest and manipulates the host bird by laying its egg in host nests. This caliber of cuckoo makes 

its younger generations succeed further. In comparison, cuckoo and host birds are considered as signals 

whereas nests are taken to be antenna element locations. Levy distribution is the sum of the small steps of the 

cuckoo bird. The goal is to find the best possible locations on replacing the old ones until the optimal RMSE 

value is reached. During the implementation, CCSA works on an outer loop and NNSBL is simulated as an 

inner loop to find the exact DOA. The differential distance is calculated over iterations until the least RMSE is 

reached. The flowchart includes the local refinements and global best finding as the significant steps in CCSA 

as shown in Figure 1. 
 
 

 
 

Figure 1. Flowchart of the CCSA method 
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4. RESULTS AND DISCUSSION 

Exploiting the unique CCSA model with the proposed NNSBL framework resolves most of the sparse 

DOA estimation problems in a virtual manner. CCSA works on an outer loop and NNSBL is simulated as an 

inner loop to estimate the sharp DOA. The additive white gaussian noise (AWGN) is the noisy channel 

analyzed with a 1-degree grid difference for ‘𝑇’ snapshots. The simulations are performed using Matlab 

software. Thirteen NULA element positions are deployed at [1]–[10], [12]–[14] and are spaced by integer 

multiples of half the wavelength. The different key parameters considered for the simulation in terms of 

frequency of the carrier signal, number of antennas in the MIMO model, and predefined grid angles are shown 

in Table 2. 

 

 

Table 2. Key simulation parameter of the proposed MIMO model 
Key parameters Configuration 

Array pattern type Non-uniform linear array 

Number of receive antennas 13 

Number of transmit signals 15 
Range of antenna coverage -700 to 700 

Measuring bearing limit -600 to 600 

Frequency of carrier signal 200 MHz 
Velocity of propagation 380 m/s 

Transmit signals angles -68.40 -55.10 -42.20 -30.20 -22.60 -10.40 -6.20 2.40 7.30 15.60 23.20 31.40 42.20 55.20 68.20 

 

 

4.1.  Various stochastic signals generations and its diversity 

This section illustrates the generation of stochastic uncorrelated fifteen narrowband source signals 

falling on the receive sensor array. Uncorrelated signals limit the interference because their transmission time 

is very less than that of the correlation time. Real-time-varying signals are influenced when transmitted over 

the AWGN channel. Thus, the entire fifteen noise-influenced transmitted signals falling on the array further 

undergo beam rotating operation as per the steering matrix. Different signals show unique amplitude variations 

concerning time because of their random generation as shown in Figure 2. 

 

 

 
 

Figure 2. Various narrowband source signals generations at multiple sources 

 

 

Time-varying AWGN signals affect the transmitted signals when sent over a MIMO sparse channel. 

There are about thirteen such kinds of noisy signals at receiving array. The range of a such noisy signal is taken 

from -20 dB to 30 dB. A well-known BPDN method in wireless communications is further employed to reduce 

the sparsity of the impinging signals on an array during the implementation.  

The uniqueness of the employed MIMO sparse array is that it follows Khatri Rao criteria. Initially, in 

this new method, all the prior’s values are assumed to be unknown. But, while implementing the MK NNSBL 
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method entire prior values, differential distance, and the predefined grid is initialized to start the learning 

procedure in the machine. Later, by using the EM method these priors are increased to maximum posterior 

values. 

The manifold matrix is also known as the steering matrix responsible for exact beam rotation 

operations. The generated unique manifold matrix is a row matrix containing the steering vectors of each 

element. Such thirteen steering vectors are formed by multiplying the basis vectors that depend on the 

differential distance, and wavelength. Stochastic steering vectors require the BPDN method for fine DOA peak 

estimation with low errors. Various stochastic signal generations and their diversity is implemented over 400 

snapshots and 100 iterations for each SNR value. Thus, the framed manifold matrix with the multiplicative 

form of basis vector is called as multi-kernel approach and is represented in Figure 3. 

 

 

 
 

Figure 3. Manifold matrix “A” on combining all the multiplied basis vectors 

 

 

4.2.  Comparison of novel MK NNSBL DOA peaks over existing NNSBL DOA peaks estimation  

This performance comparison experiment between the novel MK NNSBL DOA peaks estimation 

over existing NNSBL DOA peaks approximation is executed by assuming the uncorrelated signals. The 

basic NNSBL method working in a stochastic nature shows less sharpened DOA peaks in the normalized 

spatial spectrum. The reason is it is employed with only one basis vector so-called single kernel 

implementation. Since only positive or real prior values are used to find posterior values, it is termed a non-

negative approach.  

A 15×13 MIMO sparse wireless communication system model based on conventional NNSBL is 

compiled and the respective simulation plots for various SNR values are shown in Figure 4. By varying SNR 

in terms of -20, -10, 0, 10, 20, and 30 dB, the DOA estimation with fifteen incident signals on a thirteen 

elements antenna array is performed. And it is represented in Figures 4(a)-(f) respectively. 

The proposed MK NNSBL algorithm works in a stochastic nature that varies multiplied basis 

vectors continuously for producing the overall manifold matrix. This method shows fine-sharpened DOA 

peaks in the normalized spatial spectrum because of multi-kernel implementation. The estimated output is 

the product of the manifold matrix vectors and the incident signals which are then added with AWGN 

signals.  

A 15×13 MIMO sparse wireless communication system model based on MK NNSBL is compiled and 

the respective simulation plots for various SNR values are plotted in Figure 5. In the same way as NNSBL, by 

varying SNR in terms of -20, -10, 0, 10, 20, and 30 dB the DOA estimation for MK NNSBL is also performed. 

And it is given in Figures 5(a)-(f) respectively. From the simulation plots, it can be observed that the estimated 

DOA matches very well with the true DOA and shows very sharp peaks using MK NNSBL than traditional 

NNSBL. 
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

 

Figure 4. DOA estimation using conventional NNSBL for various SNR values: (a) -20 dB, (b) -10 dB,  

(c) 0 dB, (d) 10 dB, (e) 20 dB, and (f) 30 dB, where dotted vertical lines indicate actual DOAs, and  

brown plots are estimated ones 
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

 

Figure 5. DOA estimation using multi-kernel NNSBL for various SNR values: (a) -20 dB, (b) -10 dB,  

(c) 0 dB, (d) 10 dB, (e) 20 dB, and (f) 30 dB, where vertical lines show true DOAs, and sharp blue  

peaks are estimated DOA ones 

 

 

4.3.  Convergence comparative graph 

Performance evaluation of an underdetermined DOA estimation is validated in terms of the RMSE vs 

SNR convergence graph. CCSA method is exploited to find the optimized differential co-array distance for the 

antenna reconfiguration purpose in NULA because of its simplicity. Further, the SNR is varied from -20 to 30 

dB and the RMSE is estimated for 15 iterations over different decibels in the defined range. RMSE vs SNR 

convergence plot for the conventional NNSBL and MK NNSBL DOA estimation is given in Figure 6. Overall, 

RMSE for the basic NNSBL algorithm is reduced from 2.9 to 2.31. Whereas RMSE for the proposed MK 

NNSBL algorithm is dominating with its values around 1.55 to 1.67. 

Compilation time is the significant parameter in the MIMO model that represents the speed of the 

model in seconds. It depends on the computational complexity of the method adopted as well. The Table 3. 

discusses the compilation time needed for each algorithm’s execution for different SNR values from -20, -10, 

0, 10, 20, to 30 dB, and that indicates the complexity in implementation. The simulation results show that the 

MK NNSBL algorithm with CCSA-based antenna reconfiguration takes less time and is having superior 

performance in finding fine DOAs. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 31, No. 1, July 2023: 170-179 

178 

 
 

Figure 6. RMSE vs SNR convergence plot for conventional NNSBL and MK NNSBL 

 

 

Table 3. Comparison of NNSBL vs MK NNSBL algorithm’s compilation time 
SNR (in decibels) Compilation time of NNSBL (in seconds) Compilation time of MK NNSBL (in seconds) 

-20 2.9830 3.0800 
-10 3.0514 3.5497 

0 3.3812 3.3670 

10 3.4306 3.3135 
20 3.4055 3.2970 

30 3.4180 3.2370 

 

 

5. CONCLUSION 

Based on the literature survey the existing DOA estimation methods have more computational 

complexity, low accuracy, more compilation time with memory, high RMSE for low SNR, and lower optimized 

results for NULA. To overcome all these issues, sparse signal recovery-based methods are employed. Two 

significant methods are proposed in this paper. Firstly, multiplicative basis vector formation within the 

manifold matrix for beam rotation as per need along with EM method. Secondly, the variation in the virtual 

antenna locations for fine impinging of incoming signals on an array by utilizing the simple CCSA. The 

improvement in DOA estimation accuracy is observed through MATLAB simulation plots. Based on these 

simulation plots it is found that the estimated DOA almost matches with actual values with sharp peaks. The 

convergence comparative graph of root mean square error versus various signal-to-noise ratio values proves 

that the novel algorithm dominates with its reduced error. Further, the complexity increases whereas 

compilation time decrease in the multi-kernel approach comparatively. Finally, the overall results show that 

there is a satisfactory improved performance in the proposed method when compared with the conventional 

one. And therefore, this novel method can be used for 5G massive MIMO array real-time applications. 
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