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 The uniform control in greenhouse with technology capabilities is seemingly 

still difficult to be obtained due to the accuracy uncertainty of the data in 

certain locations. Considering this case, it is highly necessary to choose the 

right location for the sensor installation. This study aimed to determine 

sensor placement locations to support precision control activities, using an 

arch-type smart greenhouse measuring 8×24 m2 as the research location. Air 

temperature was calculated from 12 locations and analyzed for all possible 

combinations to designate the best sensor point according to the number of 

sensors. The analysis was conducted using the error-based method to 

ascertain the number and location of sensors that represent the smart 

greenhouse. The best location and number of sensors are identified with 

performance value under 10% and recommended for developing an adaptive 

control system. 
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1. INTRODUCTION 

In general, greenhouses are developed in two ways: the traditional model, which relies on the natural 

climate to support plant growth, and the modern model, which involves various automatic control 

technologies to support control activity [1]–[3], which use IoT monitoring mechanisms [4], [5] or wireless 

technology for communication [6]. Several control technology systems for greenhouses have been carried out 

by Wan et al. [7], who developed an ESP8266-based temperature and humidity controller and placed it in the 

middle of the greenhouse to environment monitoring and remote control. Ardiansah et al. [8] developed a 

sensor-based automatic sustainable environment monitoring in greenhouses. Although control can be 

performed by systems developed for small greenhouses, improper placement of sensors in large greenhouses 

affects the uniformity and accuracy of control. Non-uniform control can impact the growth of plants inside 

the greenhouse. 

Several studies about the placement of sensors have been carried out by several researchers, 

including Ostachowicz et al. [9], Oleynik et al. [10], Yang et al. [11], Suryanarayana et al. [12], Chen and 

Gorle [13] and Jaya et al. [14]. These studies are an attempt to identify and determine the location of sensor 

placement for maximum control and productivity in cultivation. Hu et al. [15] succeeded in identifying 

sensor locations using an grey correlation degree method in a large-scale laying hen houses. This strategy not 

only meets the goal of accurately monitoring the hen house temperature, but also saves the hardware cost, 

https://creativecommons.org/licenses/by-sa/4.0/
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which has important application value. Guenther and Sawodny [16] succeeded in simulating the distribution 

of air temperature using Gaussian regression model and computational fluid dynamics (CFD) and 

recommending the location and number of sensors in a greenhouse. Lee et al. [17] measured the temperature 

and humidity in the chicken coop for 52 locations at a height of 0.3 m above the floor and calculated the 

temperature-humidity index (THI) using the Kriging method. Three locations with the lowest, middle, and 

highest THI were chosen as ideal sensor points because the cage’s inner environment had mechanical 

ventilation. Lee et al. [18] also developed a mechanism for determining the optimal sensor location in a 

traditional greenhouse type and succeeded in recommending a sensor placement location that is 

representative of the traditional greenhouse. 

Some of the studies above have recommended the location of sensor placement in the room but have 

not considered the structure of the room and the number of sensors that must be installed. Without using a 

quantitative approach, greenhouse developers still choose sensor locations by estimating locations with the 

smallest temperature changes. Despite the fact that the placement of sensors representing the internal 

environment has to be determined by data-driven quantitative studies. This research aims to determine the 

location and number of sensors that are representative of the smart greenhouse environment, to improve the 

performance of adaptive environmental control with technological devices. Air temperature was chosen as an 

environmental parameter because it is one of the important growth variables that can be measured 

simultaneously at multiple locations. 
 
 

2. METHOD 

This study was conducted at the Siswadhi Soepardjo Field Laboratory, Department of Mechanical 

Engineering and Biosystems of IPB, in an arch-type tropical smart greenhouse in Figure 1, measuring 8×24 

m2, oriented south-north, with a roof of 2.5 m and a ridge of 7.5 m, as shown in Figure 1(a). The cultivation 

room measured ±150 m2 (7.5×20 m) with five rows of parallel planting shelves, as shown in Figure 1(b). 

Meanwhile, the control room is used to locate mechanical devices, such as the evaporative cooler, fogger, 

and nutrients. The building structure has an evaporative cooling system and a water chiller placed separately. 
 

 

  
(a) (b) 

 

Figure 1. Tropical smart greenhouse: (a) 8×24 m2 arch smart greenhouse IPB and (b) internal environment 
 
 

2.1.  Data exploration 

Figure 2 shows the layout of locations in the smart greenhouse as a reference for sensor placement. 

There are 12 locations grouped into three layers with a height of 0.65 m (h1: 1, 4, 7, 10), 1.65 m (h2: 2, 5, 8, 

11), and 2.75 m (h3: 3, 6, 9, 12). All locations are arranged vertically in the center of the room. 
 

 

 
 

Figure 2. Schematic of measuring air temperature parameter in smart greenhouse 
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Air temperature data were collected at 12 locations using a thermocouple cable for four days from 

06:00 to 18:00, then explored to determine the distribution and variability based on the maximum, minimum, 

average, and standard deviation. Non-parametric tests were used to determine the significance of data 

differences at each point. Furthermore, fulfillment of assumptions becomes the basis for identifying sensor 

locations using error-based methods, with root mean percentage error (RMSE) and mean absolute percentage 

error (MAPE) as performance indicators. The sensor location determination chart is shown in Figure 3. 

 

 

 
 

Figure 3. Data processing scheme for determining the optimal sensor location 

 

 

2.2.  Non-parametric test 

Kruskal Wallis and Wilcoxon tests are non-parametric testing methods used to determine significant 

differences in data when there is a violation of assumptions in the ANOVA test [19], [20]. The assumptions 

should be achieved H0: the temperature at the 12 sensor locations is the same, and H1: the temperature is not 

the same. There is no significant difference between the ith and the jth sensor locations when H0 is met. 

Meanwhile, there is a significant difference between the sensor locations when H1 is met since verification is 

carried out using the Wilcoxon test with p<0.05. The non-parametric test was constructed using RStudio 

4.0.2 software. 

 

2.3.  Error calculation 

An error calculations are performed to select a combination of sensor that represents the entire 

environment [18], [21]. Sensor combinations are calculated with the equation 2n-1 (n=number of location 

points), then the air temperature of each combination is compared with the average air temperature to 

calculate the performance index. The calculation of the performance index is done by parallel computation 

built through RStudio programming due to the large number of point combinations and shorter time. 

Furthermore, the MAPE and RMSE in (1) and (2) are used to calculate the accuracy of data from sensor 

locations [22]. MAPE provides information on how much the forecasting error is compared to the actual 

value [23]. The smaller the percentage error in MAPE, the more accurate the performance of the forecasting 

results. The variations of MAPE values are grouped into four performance scales as shown in Table 1, 

according to Lewis’ concept, which was reused by Liu et al. [24] to study natural gas consumption using a 

new gray fractional model, and Vaugan et al. [25] who explored machine learning-based COVID-19 

challenges. In this study, the combination of the smallest MAPE will be recommended as the sensor location. 
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Table 1. Grouping of MAPE presentation values according to Lewis’ concept 
MAPE values Performance 

< 10% 
10%-20% 

20%-50% 

> 50% 

Very good 
Good 

Good enough 

Poor 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Environmental data exploration 

Air temperature measurements at 12 location points inside the smart greenhouse for four days 

produced 7,236 data which were further explored. The distribution of each location against the external 

temperature, average room temperature, and solar energy intensity is presented in Figure 4. The average air 

temperature inside the smart greenhouses during the four days of measurement (T-reference) was lower than 

the external (T-out) due to the chiller’s continuously delivering water to the cooling pad to minimize thermal 

stress. The cooling pad provides changes in air temperature and humidity [26] and affects the performance 

efficiency of the house system even with different materials [27], [28]. Despite the high solar energy 

intensity, the chiller activity reduced the air temperature inside the smart greenhouse. The air temperature 

inside the smart greenhouse reached its highest and lowest value at 32 °C and 24 °C, which is 2 °C and 1 °C 

lower than the outside, respectively. 

 

 

 
 

Figure 4. The air temperature was measured at 12 points inside and outside the smart greenhouses for  

four days 

 

 

A summary of data at 12 location points with different heights inside the smart greenhouse is 

presented in Table 2. During the four days of measurement, the lowest average temperature occurred in point 

4 at 22.8 °C, and the highest was point 9 at 33.7 °C. The largest standard deviations were points 1, 9, and 10, 

indicating high variability in the data. Three pairs of locations with similar temperature patterns were found 

at locations 1 and 9, 3 and 10, and 4 and 8, while the others differed. 

 

 

Table 2. Summary of descriptive statistics of air temperature at 12 locations points in the smart greenhouse 
Point location Mean (℃) STD Min (℃) Max (℃) Range Coefficient of variation Q1 Q2 Q3 

1 29.85 2.00 25.5 32.5 7.0 0.07 28.1 30.7 31.40 

2 27.75 1.29 24.6 29.8 5.2 0.05 26.8 28.1 28.80 

3 29.18 1.97 25.1 31.9 6.8 0.07 27.3 29.9 30.80 
4 27.44 1.60 22.8 32 9.4 0.06 26.5 27.6 28.60 

5 27.52 1.42 24.4 29.9 5.5 0.05 26.2 28.0 28.67 

6 28.32 1.89 24.4 31.2 6.8 0.07 26.5 29.0 29.87 
7 26.70 1.20 23.8 29.2 5.4 0.05 25.7 27.1 27.62 

8 27.39 1.68 23.3 30 6.7 0.06 25.9 28.0 28.75 

9 29.79 2.90 24.2 33.7 9.5 0.10 26.8 30.8 32.30 
10 29.27 2.08 25.1 32.5 7.4 0.07 27.4 30.0 30.95 

11 25.61 0.86 23.4 27.8 4.4 0.03 24.9 25.7 26.22 

12 24.95 0.71 22.9 26.7 3.8 0.03 24.4 25.0 25.45 
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The distribution of air temperature data using the boxplot is given in Figure 5. The highest 

interquartile range is point 9, at a value of 9.5 and a standard deviation of 2.90. The lowest interquartile 

content is point 12 at 0.71 for the standard deviation value. Based on Table 2 and Figure 5, the pairs of 

locations with similar air temperature data distribution are 1 and 9 with mean values of 29.85 and 29.79, pairs 

3 and 10 with mean values of 29.18 and 29.27, pairs 4 and 8 with mean values of 27.44 and 27.39. Apart 

from these pairs, the air temperature data are spread differently. 

 

 

 
 

Figure 5. Boxplot of air temperature distribution at 12 points location inside the smart greenhouse 

 

 

3.2.  Non-parametric test 

This study used Kruskal Wallis and Wilcoxon to test the uniformity of data at each sensor location. 

The results with a reference value of 0.05 obtained a p-value of 2.2e-16, or smaller than the reference value, 

hence, H0 is rejected, and the air temperature is not uniform. Furthermore, the Wilcoxon test with a reference 

value of 0.05 found that pairs 1 and 9, 4 and 5, and 4 and 8 had p-values>0.05, namely 0.46, 0.18, and 0.53, 

respectively. This indicated there is no significant difference in the three pairs of locations, while for the 

others, there is a significant difference at p-value<0.05. The results of the data exploration and homogeneity 

test showed that there were significant differences in the data at 12 location points. Therefore, an error-based 

method was necessary to select the optimal sensor location. 

 

3.3.  Sensor location determination 

The sensor location was determined by analyzing the difference in air temperature at 12 locations in 

the smart greenhouse against the average, as shown in Figure 6. The thin line shows the air temperature at 

each location point, while the bold indicates the reference. Furthermore, the reference is the average 

temperature of all site points and represents the value inside the smart greenhouse. 

 

 

 
 

Figure 6. Comparison of air temperature at each measurement point location with the average smart 

greenhouse temperature for four days from 06.00 to 18.00 
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In each layer, the air temperature trend appears to decrease towards the cooling pad. Different 

conditions occur at points 9 and 10 with air temperatures higher than the reference due to unavoidable 

extreme data. Sensor location with trends similar to the reference air temperature is seen at points 2, 5, and 8. 

Meanwhile, sensor location with higher air temperatures value is seen at points 1, 3, 6, 9, and 10, while those 

with low air temperatures are seen at 4, 7, 11, and 12. The point recommended as the sensor location is the 

air temperature trend closest to the average. The similarity of the pattern influences the likeliness of being 

selected as a sensor location [29]. The 12 points inside the smart greenhouse have different air temperature 

distributions, but points 2, 4, 5 and 8 are most likely recommended for sensor locations. 

The combination of the 12 sensor locations with the 2n-1 equality obtained 4095. The air 

temperature from each combination is compared with the reference air temperature using RMSE and MAPE 

to obtain the smallest error. Figures 7 to 10 show some results of sensor location programming based on 

RMSE and MAPE values, for 1 to 4 sensor combinations. 
 

 

  
  

Figure 7. Combination of 1 sensor location in order 

of MAPE and RMSE values 

Figure 8. Combination of 2 sensor locations in order 

of MAPE and RMSE values 
 
 

  
  

Figure 9. Combination of 3 sensor locations in order 

of MAPE and RMSE values 

Figure 10. Combination of 4 sensor locations in order 

of MAPE and RMSE values 
 

 

The combination of one sensor location, as shown in Figure 7, point 5 has the smallest RMSE and 

MAPE values of 0.43 °C and 1.26%, followed by point 2 with values of 0.48 °C and 1.38%, point 8 with 

values of 0.83 °C and 1.89%. The combination of 2 locations, as shown in Figure 8, has 66 possibilities, with 

the lowest RMSE and MAPE values obtained in 5-6, which are 0.25 °C and 0.07%. The following 

combinations are 3-7 and 2-6, with RMSE and MAPE values of 0.28 °C, 0.8 %, and 0.34 °C, 0.1%, 

respectively. Meanwhile, the combination with the highest values is 11-12 with values of 2.72 °C and 0.89%. 

Points 5 and 6 are at altitudes of 1.75 m and 2.75 m but are in the second and third layers, y3 away from the 

cooling pad. 

The combination of 3 locations, as shown in Figure 9, has 220 possibilities, with the lowest RMSE 

and MAPE values being in the 3-5-7 of 0.19 °C and 0.06%. The next combinations are 2-5-6 and 3-10-12 

with values of 0.21 °C, 0.06%, and 0.22 °C, 0.06%, respectively. Vertically, points 3, 5, and 7 are at an 

altitude of 2.75 m, 1.75 m, and 0.65 m, y4, y3, and y2 away from the cooling pad, respectively. The 4 

locations in Figure 10 have 495 possibilities with the lowest RMSE and MAPE values in the combination of 

1-6-8-11 with 0.17 °C and 0.05%. Combinations 1-5-6-11 and 1-3-8-12 are second and third with RMSE and 

MAPE values of 0.176 °C, 0.05% and 0.18 °C, 0.053%, respectively. 

 

3.4.  Evaluation of the best location and number of sensors 

The sensor location combinations are inversely related to RMSE and MAPE. The more 

combinations, the lower the RMSE and MAPE values, the more similar the air temperature values are 
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compared to the average air temperature. Figure 11 shows the comparison the air temperature at 12 points 

and the average room air temperature based on the number of sensors. Figure 11(a) displays the RMSE value, 

and Figure 11(b) displays the MAPE value, both of which are generated by the error-based method. 

 

 

  
(a) (b) 

 

Figure 11. Error trend of 6 sensor location combinations with error-based method:  

(a) RMSE value and (b) MAPE value 

 

 

The decrease in error value is quite significant when there is a change from 1 to 2 sensors, with a 

difference of 0.18 °C and 0.54% for RMSE and MAPE. However, this decrease has no effect because the 

MAPE value for one sensor location is lower than 10% or has excellent performance. Even though the 

sensors represent the internal environment of the greenhouse, the number affects the cost of providing 

devices when building an adaptive control system. Based on these conditions, this study recommends one 

sensor at point 5 as the best sensor location when developing an adaptive control system in an 8×12 m2 arch-

type greenhouse. The air temperature conditions measured at that point are considered representative of the 

entire internal environment. 

 

3.5.  Validation of the best sensor location 

The RMSE and MAPE were validated using air temperature data recorded at point 5 for 2 days and 

compared with the reference air temperature as shown in Figure 12. The air temperature movement on the 

first day fluctuated slightly in the morning and afternoon, while on the second day the movement was more 

similar to the reference air temperature. The results of the RMSE and MAPE calculations were obtained as 

0.02 °C and 1.6%, still under 10%. Therefore, the performance of 1 sensor at point 5 is said to be very good 

and is recommended for use in adaptive control systems that use an internal air temperature parameter as part 

of the control decision-making process. 

 

 

 
 

Figure 12. Comparison of the air temperature value at point 5 with the average air temperature of the smart 

greenhouse during two days of measurement using the sensor 

 

 

4. CONCLUSION 

Kruskal-Wallis’s test results have shown significant data differences at 12 locations in the smart 

greenhouse. The Wilcoxon test found pairs of sensor locations that were not significantly different: points 1-

9, 4-5, and 4-8. Other locations that are significantly different require further study to determine sensor 

locations that represent the smart greenhouse environment. The error-based methods with different heights 

obtained the best sensor location at point 5 with RMSE and MAPE of 0.43 °C and 1.26%, respectively. The 

validation for two days resulted in RMSE and MAPE values of 0.02 °C and 1.6%, respectively, so the air 
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temperature at point 5 can represent the overall air temperature inside the 8×12 m2 arch-type smart 

greenhouse. When an adaptive control system is developed for this smart greenhouse, and using the internal 

air temperature parameter, the placement of sensor at point 5 will provide better performance, as the air 

temperature data processed for control decisions, truly describes the air temperature conditions inside the 

smart greenhouse. 
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