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 Nematodes represent very abundant and the largest species diversity in the 

world. Nematodes, which live in a soil environment, possess several functions 

in agricultural systems. There are two huge groups of soil nematodes, a non-

parasitic nematode, which contributes positively to ecological processes, and 

a plant-parasitic nematode, which cause various disease and reduces yield 

losses in the agricultural system. Early detection and classification in the 

agricultural area infected with plant-parasitic nematode and interpreting the 

soil level condition in this area required a fast and reliable detection system. 

However, nematode identification is challenging and time-consuming due to 

their similar morphology. This study applied a pre-trained faster region-based 

convolutional neural network (RCNN) for plant-parasitic and non-parasitic 

nematodes detection. These deep learning-based object detection models gave 

satisfactory results as the accuracy reached 87.5%. 
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1. INTRODUCTION  

The nematode family, a family of roundworms from the phylum nematoda, represents the largest 

species diversity in the world [1], [2]. They live in almost any environment, such as soil, water, plants, and 

animals [3]-[6]. Despite ubiquitous in many habitats, nematodes are often overlooked due to their small size. 

They are microscopic and can be as little as 250 𝜇m or as large as 10 mm. Their diameter rarely reaches 40 𝜇m 

and is typically not visible to the unaided eye [7]. Due to their tiny size and complex taxonomy, nematodes 

have not gotten much attention in the aquatic environment. However, they are still important in those 

ecosystems [5], [8]. 

Nematodes possess a crucial part in the soil ecosystem as essential members of the soil fauna. They 

participate in complicated food webs with other soil organisms to carry out important tasks and provide 

ecological services, such as the preservation of soil structure. Additionally, they participate in biological 

processes like nitrogen cycling and play important roles in soil ecology, which both have an impact on crop 

plants [9], [10]. There are two huge groups of soil nematodes, the first group is a beneficial nematode known 

as a non-parasitic nematode, and the second group is a plant-parasitic nematode. Most soil nematode species 

contribute positively to ecological processes rather than being plant parasites or pests. For example, the 

microbial community, which controls decomposition rates and affects the growth and metabolic activities of 

microorganisms, is influenced by microbial grazing mesofauna, such as nematodes. There are inherent 
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mechanisms in both of the opposing nematode groups that keep and regulate the balance of life in many 

creatures [11]-[13]. The other group, the plant-parasitic nematode, is a significant threat to agricultural 

production [14]. These groups have a primary role in causing damage and reducing yield losses. The damage 

caused by pant-parasitic nematodes is estimated to be up to $US80 billion annually [15]. These plant parasitic 

nematodes cause various diseases that can be fatal to the infected plants.  

The contradictory behavior of those two nematodes requires reliable identification. Nematodes 

identification is challenging due to the number of factors that may influence the performance of the 

identification, including their tiny size and the massive amount of diversity of nematodes present in a sample. 

The other reasons are the non-availability of specific morphological features and the choice of the most accurate 

and appropriate method [3], [16], [17]. The existing method may be a traditional one, which is time-consuming 

and prone to error. The improvement approach is necessary for nematode identification. A fast and accurate 

detection and classification system of those two groups of nematodes was required in the early diagnosis of the 

infectious plant and soil fertility level. The soil sample containing more parasitic nematodes indicates the plant 

was contaminated with plant-parasitic nematodes. In contrast, a more significant number of non-parasitic 

nematodes represent healthy and fertile soil. 

Deep learning could be an alternative to support nematode identification reliably and more quickly. 

Convolutional neural networks (CNNs) based methods were already implemented in previous studies for 

nematode identification. Abade et al. [18] proposed a new CNN model named NemaNet for Brazil's nematode 

soybean crop identification. The proposed method gave the accuracy up to 96.99%. A novel end-to-end deep 

convolutional selective autoencoder (DSCA) for identifying and counting soybeans ceast nematode egg was 

done by [19]. The method gave satisfactory results and made the identification process faster. Nemarec, a deep 

learning-based web application for the nematode identification process, was proposed by [20], [21]. They use 

their self-collected dataset for the research. The result showed that the model could adequately identify 94-

97% of the nematode when applied data augmentation. Uhlemann et al. [22] explored using CNN models for 

entomopathogenic nematode identification. This research discovered that optimal hyperparameters and fine-

tuning could help improve the performance of the identification process. Deep learning-based object detection 

models for juvenile stages nematode detection were demonstrated by [23]. This research proposed a faster 

region-based convolutional neural network (RCNN) with scale aware (SA) approach for detecting and 

identifying microscopic images of nematodes. 

CNN-based methods are already proven can help speed up nematode identification. However, the 

previous research may not be applicable in a different area as the species and characteristics of each nematode 

are not identic. This study will conduct detection and classification for plant-parasitic and non-parasitic 

nematodes commonly found in Indonesia, as the species frequently found in Indonesia are not covered in the 

previous study. We build an additional small image dataset for plant-parasitic and non-parasitic nematodes in 

Indonesia. The nematodes dataset represents the images captured from the real-world data and reflects the 

challenges faced by real-world constraints. Faster RCNN was implemented for this application as it is suitable 

for dealing with small datasets [24]. Data augmentation was also applied to increase the data variation and 

prevent overfitting [25]. 

 

 

2. METHOD 

Figure 1 shows the complete workflow for plant-parasitic and non-parasitic nematode detection. 

Initially, the data collection was performed by collecting the nematode pictures taken in Central Java, 

Indonesia. The collected dataset is then preprocessed using image resized by changing the image size to 416 x 

416 to fit the input size of the deep learning model. To increase the size of the datasets, augmentation methods, 

such as brightness, exposure, rotation, flip, and shear, were also applied in the image preprocessing steps. The 

Faster RCNN with ResNet101 backbone model was then built and trained using the processed datasets. The 

model’s performance result was then evaluated using several metrics, such as average precision, average recall, 

and accuracy. More detailed explanations are described in the following sub-sections. 

 

 

 
 

Figure 1. Research workflow 
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2.1.  Nematode datasets 

The datasets were collected in agricultural lands in Central Java, Indonesia. The soil was collected at 

a depth of 5-30 cm. The nematodes were then isolated and extracted from the soil sample using the Whitehead 

tray method with modification referred to [26]. Each soil sample was gently homogenized using a hand mixer, 

and stones were manually removed. Nematodes were placed on a tray and added with water until they covered 

all soil using 100 grams of soil. The nematode moving toward the water was gathered on the tubes for further 

morphological identification and classification. Each group of nematodes was observed using a light 

microscope Olympus CX31 with a magnification of 40-1,000 [27]. In detail, nematode identification was made 

based on the mouth part of the nematode, as explained and referred to [28]. The datasets represent the 

nematodes commonly found in Indonesia and are classified into two groups, non-parasitics, and plant-parasitic. 

Figure 2 shows the sample of the nematode dataset. Figures 2(a) and 2(b) show the microscopic image sample 

of non-parasitic and plant parasitic nematodes, respectively. As seen in the example, both classes' morphology 

is hard to distinguish using the unaided eye. Figure 2(c) shows the sample of mixed nematodes, consisting of 

non-parasitic and plant-parasitic extracted from the same soil sample. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 2. Sample of nematodes dataset (a) sample of non-parasitic nematode, (b) sample of plant-parasitic 

nematode, and (c) sample of mix nematodes 

 

 

2.2.  Data preprocessing 

The collected data were then preprocessed using resize to fit the model's input. Annotation and 

augmentation were then implemented using roboflow software [29] to enlarge the size of the datasets. The 

datasets applied augmentation, such as brightness, rotation, flip, exposure, and shear. There are 1,625 

augmented images of nematodes used in this study, divided into 1415 images for the training dataset and 210 

images for the testing dataset. The images were then annotated and labeled, resulting in 3,550 plant-parasitic 

nematodes and 3,733 non-parasitic nematodes. The sample of annotated and augmented nematodes image can 

be seen in Figure 3 and Figure 4, respectively. 

Figure 4(a) shows a comparison of brightness augmentation with the original image, where the 

augmentation results in a brighter image. Figure 4(b) presents the result of shear augmentation. The shear can 

affect the performance of the model because the shape of the nematodes can change, such as being cut off or 

causing the bounding boxes to overlap. Figure 4(c) presents a comparison of exposure augmentation with the 

original image. Where brightness affects the overall darkness of the image, exposure will only transform on 

the object's highlight. Figure 4(d) shows a comparison of the flip augmentation with the original image. Flips 

can be done both vertical and horizontal. Figure 4(e) presents the result of rotate augmentation, which is applied 

by rotating the image by 90 degrees. Both flip and rotate augmentation can affect model performance because 

it changes the positional characteristics of the nematodes. 
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Figure 3. Sample of annotated and labelled image 

 

 

 
(a) (b) 

(c) (d) 

 

(e) 

 

Figure 4. Sample of augmented image (a) brightness, (b) shear, (c) exposure, (d) flip, and (e) rotation 

 

 

2.3.  Faster RCNN architecture 

Nematode detection and classification are performed using faster RCNN with ResNet101 backbone. 

Faster RCNN was chosen based on its best performance in a small dataset, compared to single shot detection 

(SSD) and you only look once (YOLO) V3 [24]. Faster RCNN consists of two modules, to propose a region, 

called as a deep-fully convolutional network and the fast R-CNN detector [30] to detect the object using the 

proposed region [31]. Figure 5 and Figure 6 present the diagram of the faster RCNN with ResNet101 backbone 

applied in this study. Initially, in region proposal network (RPN), a feature extractor process an image using 

ResNet101. At a chosen intermediate level, the selected features are then used to forecast class box proposals. 
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These box proposals are used to crop features from the same intermediate feature map in the second stage, 

which is then supplied to the remaining feature extractor to predict a class and class-specific box refinement 

for each proposal. 

 

 

 
 

Figure 5. Faster R-CNN with ResNet101 as feature extractor 

 

 

 
 

Figure 6. Faster RCNN with ResNet 101 architecture 

 

 

Figure 6 shows the full architecture of faster RCNN with ResNet 101 backbobe. The features were extracted 

using a ResNet-101 that had been pre-trained on the ImageNet dataset. Then, a bounding box was created using a 

region proposal network. The suggestion box was also mapped to the feature map of the convolutional neural 

network's final layer. The region of interest pooling layer produces a fixed-size feature map. Finally, utilizing softmax 

loss, joint training of classification probabilities and border regressions was implemented. 

The model works when it receives an input image of a specific size. The image is then processed by 

four convolution layers with a kernel description of each layer and a total of 101 convolution layers. The feature 

map obtained is then used to find the region of interest (ROI) or object in the image. ROI is also obtained from 
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the network proposal region that accepts the feature map as input to predict the bounding box in the image. 

Then, both results will be pooled and given to a fully connected layer to get the bounding box prediction along 

with the classification results of each predicted bounding box.  

 

2.4.  Evaluation metric 

As the dataset is considered balanced, and the predicted class is equally important, instead of the 

predicted score, the accuracy metric was selected [32]. Accuracy is applied to measure the model's overall 

average accuracy through all images in the test set. Other metrics used in this study are average precision and 

average recall. Average precision is based on the region beneath a precision and recall curve after removing 

the zig-zag behavior during pre-processing. It provides an overview of the precision-recall trade-off generated 

by the confidence intervals for the expected bounding box [33]. The average recall is used to assess the 

assertiveness of object detectors for a specific class [34]. While calculating average precision and average 

recall, precision and recall concepts were used, defined as in (1) and (2). 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (2) 

 

Where TP – True Positive; FP – False Positive; TN – True Negative; FN – False Negative. The for accuracy is 

given in (3), and for Average Precision is presented in (4)-(5). 
 

𝑇𝑒𝑠𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (3) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

11
∑ 𝑃𝑖𝑛𝑡𝑒𝑟𝑝 (𝑅)𝐾

𝑅 𝜖{0.0,…1.0}    (4) 

 

𝑃𝑖𝑛𝑡𝑒𝑟𝑝 (𝑅) = 𝑚𝑎𝑥�̃�≥𝑟𝑃(𝑅)̃  (5) 
 

The average recall is the highest recall value at a set number of detections per image averaged over 

IOUs and classes, with the in (6). 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =  2 ∫ 𝑟𝑒𝑐𝑎𝑙𝑙 (𝐼𝑜𝑈) 𝑑𝐼𝑜𝑈
1

0.5
  (6) 

 

IoU is Intersection over Union, which measures the ratio between the area of overlap and the area of union 

between the predicted bounding box and the ground truth bounding box. 

 

2.5.  System implementation 

The model was trained using Google Colab Notebook (Free Version) [35], with specifications of 

Nvidia K80/T4 GPU, a memory of 12GB/16GB, CPU 2-core Xeon 2.2GHz, and 12 GB RAM, which can be 

used based on availability. TensorFlow and Keras library, with fully built and pre-trained Faster RCNN with 

ResNet101 backbone model, was used for code implementation. The model was then trained using the transfer 

learning method. SGD optimizer with momentum [36] was applied in this research. The configuration 

consisting of a batch size 64 and learning rate of 0.04 were carried out. 

 

 

3. RESULTS AND DISCUSSION 

The sample result of plant-parasitic and non-parasitic nematode detection using Faster RCNN ResNet 

101 are presented in Figure 7 and Figure 8. Figure 7 shows that the model can correctly detect 13 parasites 

from a total of 14 parasites in the picture, with the undetected nematode marked with the red box. The detection 

confidence score reached 100%, with the lowest confidence level being 75%. The undetected parasite nematode 

was due to the overlapping position of the bounding box, which caused a decrease in detection and 

classification performance. Figure 8 shows the detection result on an image with the plant-parasitic and non-

parasitic nematode. The model can detect all nematodes; however, there is one error misclassification of 

parasite nematode, which is marked with the red box. The misclassification may occur due to the similar 

features between plant-parasitic and non-parasitic nematodes. Nevertheless, the model's confidence score 

reached 100%, with the lowest confidence score of 86%. 
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Figure 7. Sample result of plant-parasitic nematode 

detection 

 
 

Figure 8. Sample result of plant-parasitic and non-

parasitic nematode detection 
 

 

The model was trained using single augmentation such as brightness, exposure, flip, shear, and 

rotation in the experimental setup. This training was carried out to find the three best augmentations that giving 

the best performance. The result in Table 1 shows that the nematode dataset augmented using brightness, rotate 

90, shear, and exposure was performing better than the original dataset. However, the flip resulted in worse 

performance with average precision and an average recall of 0.473 and 0.617, respectively. The model 

performance declined when there were more data with different orientations due to the relatively small dataset. 

Moreover, flip augmentation caused the model could not differentiate the data based on different orientations. 

The best performance occurred when the model applied brightness augmentation. The highest average 

precision and average recall were 0.53 and 0.678, respectively. Both highest versions were a result of the model 

trained using brightness augmentation. Based on the result in Table 1, the best three performances are model 

applied brightness, rotate 90, and shear augmentation. 

The best three augmentation method was combined to perform double and triple augmentation on the 

nematode dataset. In experimental results, the best augmentation is obtained from brightness augmentation. 

Therefore, the model will be applied brightness augmentation with two other augmentations. Brightness 

augmentation will also be combined in the triple combination, along with 90 degrees of rotation and shear. The 

result of the faster RCNN ResNet101 with various combinations of augmentation was given in Table 2. 
 

 

Table 1. Experimental setup results using single augmentation 
 Metric performance 

Dataset Average precision Average recall 

Original 0.501 0.644 

Brightness 0.530 0.678 

Exposure 0.510 0.623 

Flip 0.473 0.617 

Shear 0.514 0.629 

Rotate 90 0.517 0.665 

 

 

Table 2. Faster RCNN ResNet101 results with augmenattions 
 Metric performance 

Dataset Average precision Average recall Accuracy 

Original 0,611 0,733 0,68852 

Brightness 0,712 0,793 0,78947 

Brightness, Rotate 90 0,725 0,808 0,83930 

Brightness, Shear 0,619 0,709 0,84483 

Brightness, Rotate 90, Shear 0,613 0,685 0,87500 

 

 

The result in Table 2 shows that a combination of augmentation positively impacts model performance 

compared to performance on the original dataset and single augmentation. When trained using augmented 

nematode datasets, the faster RCNN ResNet101 results in 78.94% up to 87.5% accuracy. The minimum and 

maximum average precision are 0.613 and 0.725, respectively. The best average precision resulted from the 
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model trained using a combination of brightness and 90 degrees of rotation augmentations. The average recall 

of the model trained using data augmentation ranged from 0.685 up to 0.808. The highest average recall score 

also occurred when the model applied a combination of brightness and rotated 90 augmentations. With an 

accuracy of 87.5%, this research outperformed similar previous research in [23]. 

 

 

4. CONCLUSION 

The faster RCNN ResNet101 model is a promising method for detecting plant-parasitic and non-

parasitic nematodes. The model gives the highest accuracy reaching up to 87.5%. This work demonstrated the 

capability of using a deep learning-based object detection model to detect and classify plant-parasitic and non-

parasitic nematodes commonly found in Indonesian soil. The applied augmentation method improved model 

performance compared to the original nematode dataset. The dataset implemented with a combination of 

brightness, rotate 90, and shear augmentation resulted in the best accuracy of 87.5%. The best average precision 

and average recall score occurred when the model implemented a combination of brightness and rotated 90 

augmentations. Further work is still needed to improve model performance detecting and classifying plant-

parasitic and non-parasitic nematodes. Future work will focus on: a) Investigate other deep learning-based 

object detection models, such as YOLO, to improve the performance of detection systems for plant-parasitic 

and non-parasitic nematodes, b) Further development of the nematodes’ dataset. 
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