
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 31, No. 1, July 2023, pp. 406~416 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v31.i1.pp406-416      406 

 

Journal homepage: http://ijeecs.iaescore.com 

Efficient matrix key homomorphic encryption of medical 

images 
 

 

Prabhavathi Krishnegowda, Anandaraju M. Boregowda 
Department of Electronics and Communication Engineering, BGS Institute of Technology, Adichunchanagiri University,  

B. G Nagara, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Sep 20, 2022 

Revised Mar 2, 2023 

Accepted Mar 12, 2023 

 

 A sure way of providing privacy to sensitive images is to encrypt them, 

especially when they are stored in a public cloud server. Homomorphic 

encryption enables arithmetic operations over encrypted data without access 

to the secret key. This facility can be well harnessed for secure outsourced 

image processing by exploiting the available computational capabilities of 

modern cloud servers. This paper presents a new homomorphic image 

encryption scheme that uses integer matrix keys. The homomorphic 

operations are carried out in the finite field Zp to avail the advantages of 

integer arithmetic and to limit the cipher text sizes to reasonable levels. Our 

method does not use any error vector as in learning with errors (LWE) to 

improve the security. 
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1. INTRODUCTION 

Images are an eloquent representation of information beyond languages. Globally, a large number of 

images are generated and disbursed in all walks of life, as in the field of education, E-commerce, engineering 

and scientific diagrams, geographical maps, health services, and so on. In most cases, these images are stored 

in public cloud servers (CS) for low-cost storage and distribution. When sensitive images like medical images 

are stored in CS, privacy and security are the major concerns [1] of the image owners. The standard practice is 

to use steganography or encryption [2]. For homomorphic operations, encryption is well suited, and hence, in 

this work, we adopt image encryption for the privacy and security of the images at the CS. 

Homomorphic encryption (HE) enables mathematical computations in the cipher domain to return the 

correct results on decryption [3]. Here, the computational unit itself cannot decode or access the true data. 

Thus, using HE, privacy-preserving image processing tasks can be outsourced to the cloud servers, which can 

handle the heavy computational load. Therefore, with homomorphic encryption, the image storage, processing, 

and selective distribution tasks are delegated to the low-cost yet powerful cloud servers while maintaining 

adequate privacy. 

Let the HE functions be represented by E (…). Then, the encryption of a plaintext x, which is a 

number, gives the corresponding ciphertext, another number c as, 
 

𝑐 = 𝐸(𝑥) (1) 
 

let the matching decryption function be denoted by D (…). Then the plaintext is recovered by decrypting c as, 
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𝑥 =  𝐷(𝑐) = 𝐷(𝐸(𝑥)) (2) 

 

since D (…) is the inverse of E (…), they get cancelled, and we have,  

 

𝐷(𝐸(𝑥))  =  𝑥  

𝐿𝑒𝑡 𝑐1     = 𝐸(𝑥1) 𝑎𝑛𝑑 𝑐2 = 𝐸(𝑥2). 𝑇ℎ𝑒𝑛, 𝑐1 + 𝑐2 = 𝐸(𝑚1) + 𝐸(𝑚2)  (3) 

 

in homomorphic addition (HA), The encryption function E (…) is constructed such that, 

 

𝐸 (𝑚1) + 𝐸(𝑚2) = 𝐸 (𝑚1 + 𝑚2) (4) 

 

such E (…) is called Additive Homomorphic Encryption. Now, (c1+c2)=E(m1+m2) and the decryption of 

(c1+c2)=D (E (m1+m2)) gives the sum, (m1+m2) in plaintext domain. Subtraction and multiplication are similar. 

In the case of matrix operations, the operands M1 and M2 are matrices as, 
 

𝐸(𝑀1) 𝜙 𝐸(𝑀2)  = 𝐸 (𝑀1 𝜙 𝑀2) (5) 
 

here, ϕ stands for +(addition), -(subtraction), *(multiplication) and *(element-wise multiplication). 

The realization of (…) that satisfies (5) is the HE for matrices. Since images are represented by 

matrices, homomorphic encryption of matrices facilitates homomorphic image processing (HIP). Several well-

known techniques are available for image encryption [4] that provides the required security and privacy. 

However, in this paper, we briefly review only those works which provide homomorphic encryption to 

facilitate image processing in the cipher domain. Dowlin et al. [5], have introduced homomorphic encryption 

for biomedical calculations. An imaginative “manual” has been presented that uses the simple encrypted 

arithmetic library (SEAL) developed by microsoft research for homomorphic computations. Extensive usage 

of SEAL for common arithmetic and statistical operations is demonstrated. Fu et al. [6], have used SEAL for 

the homomorphic encryption of images. The authors have applied HE for image resizing using bilinear and 

bicubic methods. Additionally, privacy-preserving image compression and decompression are carried out using 

HE. Scale-invariant feature transform (SIFT) operation is outsourced using homomorphic encryption while 

keeping its key features intact [7]. Sift features are useful for image searching and matching. Here, the image 

is split into two shares and delegated to two separate cloud servers for implementing the SIFT. Then they are 

combined back to get the final result. Thus the process is inherently complex and time-consuming. Dowlin et al. [8], 

have presented a technique to transform previously trained neural networks into CryptoNets, which operate on 

encrypted data. The data owner can send queries and get back the predicted responses, both in encrypted form. 

Thus, the CS that hosts the CryptoNet does not access any real information about the data. However, the 

proposed method uses HE based on noise vectors and dual moduli, which results in reduced throughput due to 

the increased computational overhead when images are used as data inputs. 

Shortell and Shokoufandeh [9], have designed a convolutional neural network (CNN) based classifier 

in the cipher domain using fully homomorphic encryption (FHE). Thus the classifier operation is outsourced 

to the homo-classifier housed in powerful CS. The homomorphic operations are carried out using fixed point 

formats to represent real numbers. Therefore the proposed scheme is computationally expensive for large-sized 

images. Jiang et al. [10], have proposed a method for the homomorphic evaluation of scale-invariant feature 

transform (SIFT) for encrypted images. It uses NTRU (“N-th degree truncated polynomial ring units”) to 

implement a full homomorphic encryption that can be scaled up easily. This scheme provides homomorphic 

image matching apart from SIFT coefficients. However, the SIFT calculations are not exact due to the 

inaccuracy in the homomorphic division. Basic image morphological operations like erosion, dilation, opening 

are implemented in the cipher domain using homomorphic multiplication in the finite field Z2 [11]. For HE, 

the authors use monoid algebra which is not fully immune to chosen plaintext and ciphertext attacks. 

Jiang and Yang [12], have implemented privacy-preserving block truncation coding (BTC) of images 

after image encryption based on block permutation, diffusion, and bit plane shuffling. The resulting encryption 

does not alter the BTC parameters, and hence the image compression process is implemented in the cipher 

domain based on BTC. However, BTC-based compression incurs heavy information loss and may not be 

suitable for general medical images. Vengadapurvaja et al. [13], have implemented HE using dual moduli 

symmetric encryption scheme using two large prime numbers. When applied to images, this method 

encrypts/decrypts data element by element. Therefore, for large-sized images, it is computationally costly.  

Li et al. [14], have used the elgamal method based on elliptic curve cryptography (ECC) to provide 

homomorphic addition of images. The main disadvantage of this method is that it cannot implement 

homomorphic multiplication, and thus, its applications are limited. Additionally, ECC inherently involves 

extensive computations and is not suitable for large-sized data, as in the case of images. Biometric images (iris, 

fingerprints, and faces) are encrypted for homomorphic image recognition and matching [15]. Here biometric 
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tokens are generated in the cipher domain for the purpose of matching. Therefore, this method is suitable for 

matching only and not for other image processing operations. 

Fully homomorphic encryption based on LWE has been developed in [16]–[18]. But the plaintext 

message space is a bit in [16], [17], and an integer vector in [18]. Therefore, plaintext matrices cannot be 

encrypted directly. Additionally, noise vectors are to be added during encryption which limits the flexibility of 

these encryptions. Chao et al. [19], have used compact and resource-efficient CNN (CaRENets) for 

homomorphic inference on encrypted medical images. Vizitiu et al. [20], have used matrix operation for 

randomization or encryption (MORE) for secured data manipulation in the deep learning environment. 

However, in [19], [20], before encryption, the plaintext matrices must be packed column or row-wise, which 

leads to a higher computational cost. Dutil et al. [21], have used element-by-element encryption and then 

extended this to the whole matrix. This process consumes excessive time for encrypting large-sized matrices. 

Row and column shift operations must be carried out for homomorphic matrix encryption [22] which results 

in a higher computational cost. Zeriouh et al. [23], have adopted matrix exponentiation to generate the 

encryption matrix keys. matrix exponentiation is computationally very expensive for image matrices of large 

sizes. Additionally, the eigenvalues of the plaintext matrix can be derived from the cipher matrix, which is a 

significant security lapse. Kumar et al. [24], have used blockchain and homomorphic encryption to provide 

privacy while aggregating medical images. However, the ‘gradients encryption’ scheme employed here leads 

to a substantial computational cost when the image sizes are large. Jain et al. [25], have deployed Cheon-Kim-

Kim-Song (CKKS) homomorphic scheme for secured image encryption while the images are being used in the 

deep learning scenarios. The major disadvantage of this method is the complexity involved in converting the 

integer vectors to the corresponding cyclotomic polynomials and vice versa. 

The main objective of this work is to mitigate the limitations of the existing HE techniques by 

developing an efficient matrix-based homomorphic encryption scheme for image processing, especially 

medical images. The proposed method is designated as matrix encryption for homomorphic image processing 

(MEHIP). 

 

 

2. THEORETICAL BASIS 

Special matrices whose elements are integers in finite field Zp are used in MEHIP for encryption and 

decryption. The decryption matrix key is designated by 𝐻. It is an integer matrix of size m×n in finite field Zp 

with m>n. Thus, 𝐻 ∈ Zp𝑚×𝑛 and the elements of 𝐻 are in the range 0 𝑡𝑜 𝑝‒ 1. Matrix 𝐻 is generated such that, 

 

mod(𝐻𝑇 ∗ 𝐻, 𝑝) = 𝐼𝑛×𝑛 (6) 

 

in (6), p is the modulus of the finite field Zp, and the scalar n depends on the size of the plain matrix to be 

encrypted. 𝐻𝑇  is the Transpose of 𝐻 and 𝐼𝑛×𝑛 is the identity matrix of size n×𝑛. The generation of 𝐻 is given 

in (3.10.) 

 

2.1.  Encryption key matrices 

Let us denote 𝐻𝑇  by 𝐸 as,  
 

𝐸 = 𝐻T   (7) 
 

from (6) and (7), 
 

mod (𝐸 ∗ 𝐻, 𝑝) = 𝐼𝑛×𝑛 (8) 
 

when there is no ambiguity, (8) can be simply rewritten as, 
 

𝐸 ∗ 𝐻 = 𝐼𝑛×𝑛 (9) 

 

here, the multiplication is modular in the finite field Zp, and the size of 𝐸 is n×m. 

 

2.1.1. Left null space of H 

Since 𝐻 is a tall matrix (𝑚 > 𝑛), it has the left null space [26]. Let matrix 𝐹 be the modular left null 

space of 𝐻 (Determination of 𝐹 is given in 3.10.). Then, 
 

𝐹 ∗ 𝐻 = 0(𝑚−𝑛)×𝑛 (10) 
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here, the size of 𝐹 is (m‒n) * m. On pre-multiplying both sides of (10) by an arbitrary random integer matrix 

𝑊𝑛𝑥(𝑚−𝑛) that belongs to Zp, we have, 
 

𝑊𝑛𝑥(𝑚−𝑛) ∗ (𝐹 ∗ 𝐻)(𝑚−𝑛)𝑥𝑛 = 𝑊𝑛𝑥(𝑚−𝑛) ∗ 0(𝑚−𝑛)𝑥𝑛= 0𝑛𝑥𝑛 

 

on deleting the dimension subscripts, we have, 

 

𝑊 ∗ 𝐹 ∗ 𝐻 = 0 (11) 
 

let us denote the product 𝑊 ∗ 𝐹 by 𝑅 as, 
 

𝑅 =  𝑊 ∗ 𝐹 (12) 

 

2.1.2. Multiple versions of R 

In (12), 𝑊 is an arbitrary random matrix in Zp. Hence, it can take different values as 𝑊 {1}, 𝑊 {2},…, 

𝑊 {𝑖},…, and so on. Correspondingly, 𝑅 also can take different values as, 𝑅 {1} = 𝑊 {1} ∗ 𝐹, 𝑅 {2} = 𝑊 {2} ∗
𝐹, …, and so on as, 
 

𝑅 {𝑖} = 𝑊 {𝑖} ∗ 𝐹 (13) 
 

for i=1, 2, … and so on. 𝑅 {𝑖}’s are the multiple versions of 𝑅. In (13), the size of 𝑊 {𝑖} is n×(m‒n), that of 𝐹 

is (m‒n)×m, and that of 𝑅 is n×m. From (13) and (10) for i=1, 2, …, 
 

𝑅 {𝑖} ∗ 𝐻 = 0𝑛×𝑛 (14) 
 

in (14), the size of 𝑅 {𝑖} is n×m, and that of H is m×n. 

Encryption matrices 𝐺 {1}, 𝐺 {2}, … , 𝐺 {𝑖} are derived from 𝐸 as, 𝐺 {1} = 𝐸 + 𝑅 {1},   𝐺 {2} = 𝐸 +
𝑅 {2}, …, and so on. That is, 
 

𝐺 {𝑖} =  𝐸 + 𝑅{𝑖} (15) 
 

here, 𝐺{𝑖} is the ith version of the encryption matrix. The size of 𝐺 {𝑖} is n×m. On post multiplying both sides 

of (15) by 𝐻, we have 
 

𝐺 {𝑖} ∗ 𝐻 = 𝐸 ∗ 𝐻 + 𝑅{𝑖} ∗ 𝐻 (16) 
 

from (9), 𝐸 ∗ 𝐻 = 𝐼𝑛×𝑛 and from (10), 𝑅 {𝑖} ∗ 𝐻 = 0𝑛×𝑛. Therefore, for i=1, 2, …,  
 

𝐺 {𝑖} ∗ 𝐻 = 𝐼𝑛×𝑛 (17) 
 

multiple versions 𝐺 {1}, 𝐺 {2},…, are used for successive encryptions to prevent chosen plaintext attack (CPA) 

[27]. 
 

 

3. HOMOMORPHIC ENCRYPTION AND DESCRIPTION OF AN IMAGE MATRIX 

The homomorphic encryption of an image matrix generates an entirely different matrix whose pixel 

elements appear to be random. Therefore, the encrypted matrix does not reveal any information about the 

original image. The decryption process recovers the original image matrix. The homomorphic encryption and 

decryption methods used in MEHIP are described in the following sections. 

 

3.1.  Homomorphic encryption 

In MEHIP, an image matrix is homomorphically encrypted using 𝐺 {𝑖}’s and the 𝐻 matrix as the secret 

keys. The double-sided encryption of the image matrix is carried out as, 
 

𝐶 = mod (𝐻 ∗ 𝐴 ∗ 𝐺 {𝑖}, 𝑝) 
 

for convenient writing, the mod prefix and p are avoided, and 𝐶 is expressed as, 
 

𝐶 = 𝐻 ∗ 𝐴 ∗ 𝐺 {𝑖} (18) 
 

In (18), the multiplication operations are carried out in Zp, using modular algebra. Further, in (18), 𝐴 is the 

image matrix of size n×n. The elements of 𝐴 belong to type uint8 (8-bit unsigned integer). The size of 𝐻 is 
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m×n, and that of G {i} is n×m. Thus, the size of 𝐶 is m×m. The version index i of 𝐺 {𝑖} can be any suitable 

value for which 𝐺 {𝑖} has already been calculated and kept ready. Cipher matrix 𝐶 is sent to the CS for secured 

storage and consequent access by the authorized users. 

 

3.2.  Decryption of C 

On receiving matrix 𝐶 from the CS, the end-user decrypts it (using modular algebra) to get 𝐵 as, 

 

𝐵 = 𝐻𝑇 ∗ 𝐶 ∗ 𝐻 (19) 

 

substituting for 𝐶 from (18) gives, 

 

𝐵 = 𝐻𝑇 ∗  𝐻 ∗ 𝐴 ∗ 𝐺 {𝑖} ∗ 𝐻 (20) 

 

from (6), 𝐻𝑇 ∗ 𝐻 = 𝐼𝑛×𝑛 and from (17), {𝑖} ∗ 𝐻 = 𝐼𝑛×𝑛. Using these two properties in (20) yields, 𝐵 = 𝐴. Thus, 

the correctness of the decryption formula (19) is proved. 

 

3.3.  Homomorphic addition of images 

In general, images are added to alter the contents of the images. The purpose of image addition could 

be to, 

− Insert some text, timestamp, or an icon.  

− Blur a region of an image for privacy. 

− Modify the background or make image collages. 

− Overlay the contours or edges of an image on itself. 

With MEHIP, these operations can be carried out in the cipher domain with ensured privacy. Since 

matrix addition is used to add the respective images, the sizes of the images must be same for addition. 

Basically, it is pixel-wise addition. In MEHIP, the addition in the cipher domain takes place at the CS, and the 

cipher sum is accessed by the end user, who decrypts it to get the actual sum in the plaintext domain. 

Let 𝐴1 and 𝐴2 be two matrices to be added whose sizes are k×n. They are encrypted as, 

 
𝐶1 = 𝐴1 ∗ 𝐺 {1} 

𝐶2 = 𝐴2 ∗ 𝐺 {2}
}  (21) 

 

in (21), the multiplication is in the finite field Zp. Cipher matrices𝐶1 and 𝐶2 are sent to the CS. The CS adds 

(homomorphic addition) 𝐶1 and 𝐶2 (in finite field Zp) to get 𝐶3 as, 
 

𝐶3 = 𝐶1 + 𝐶2 (22) 
 

𝑪3 is sent to the end user, who owns the decryption key 𝐻, and 𝐶3 is decrypted as, 
 

𝐵3 = 𝐶3 ∗ 𝐻  (23) 
 

3.3.1. Correctness of decryption  

From (21)-(23), 
 

𝐵3 = (𝐴1 ∗ 𝐺{1} + 𝐴2 ∗ 𝐺 {2}) ∗ 𝐻 
 

using the property 𝐺 {𝑖} ∗ 𝐻 = 𝐼𝑛×𝑛, matrix 𝐵3 is given by, 
 

𝐵3 = 𝐴1 + 𝐴2 
 

thus, addition in cipher domain (22) results in getting the correct result in the plaintext domain. The maximum 

value of an element, when two uint8 image matrices are added, can go up to 255+255=510. Hence, for the 

correct result of addition (addition in Zp should give the same result), the modulus of the finite field p has to 

be greater than 510. Hence the immediately succeeding prime number 521 is chosen for p. 
 

3.3.2. Homomorphic subtraction 

Homomorphic subtraction (HS) uses 𝐶3 = 𝐶1‒𝐶2. In this case, assuming that the result of the 

subtraction (𝐴1‒𝐴2) is non-negative and within Zp, the resulting decrypted 𝐵3 would be correctly equal to 

(𝐴1‒𝐴2). The HS can be used to recover one of the addends from the sum or to erase the target regions from 

an image. 
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3.4.  Homomorphic transpose with double side encryption 

Homomorphic transpose (HT) is the transpose operation on a matrix in the cipher domain. HT is used 

as an intermediate operand in many image processing algorithms. Consider the encryption of the plain matrix 

𝐴 of size n×n as, 

 

𝐶 = 𝐻 ∗ 𝐴 ∗ 𝐺 {1} (24) 

 

let the transpose of 𝐶 (cipher domain) be carried out at the CS as, 

 

𝐶𝑇 = (𝐻 ∗ 𝐴 ∗ 𝐺 {1})𝑇 = 𝐺 {1}𝑇 ∗ 𝐴𝑇 ∗ 𝐻𝑇  (25) 

 

decrypt 𝐶𝑇 to get 𝐵 as, 

 

𝐵 =  𝐻𝑇 ∗ 𝐶𝑇 ∗ 𝐻 (26) 

 

from (25) and (26), 

 

𝐵 = 𝐻𝑇 ∗ (𝐺 {1}𝑇 ∗ 𝐴𝑇 ∗ 𝐻𝑇  ) ∗ 𝐻 = 𝐻𝑇 ∗ 𝐺 {1}𝑇 ∗ 𝐴𝑇 ∗ 𝐻𝑇 ∗ 𝐻 

= (𝐻𝑇 ∗  𝐺 {1}𝑇) ∗ 𝐴𝑇 ∗ (𝐻𝑇  ∗ 𝐻) (27) 

 

from (6), 𝐻𝑇 ∗ 𝐻 = 𝐼𝑛×𝑛 and from (17), 𝐺 {𝑖} ∗ 𝐻 = 𝐼𝑛×𝑛, which, on taking the transpose, is the same as 𝐻𝑇 ∗
𝐺 {1}𝑇 = 𝐼𝑛×𝑛. Substitution of these relations in (27) results in, 

 

𝐵 = 𝐴𝑇  (28) 

 

3.5.  Homomorphic multiplication  

Homomorphic multiplication (HM) of plaintext square matrices 𝐴1 and 𝐴2 whose sizes are n×n, is 

carried out in Zp as follows. Initially, 𝐴1 and 𝐴2 are encrypted to get their cipher matrices 𝐶1 and 𝐶2 as, 
 

𝐶1 = 𝐻 ∗ 𝐴1 ∗ 𝐺 {1} (29) 

 

𝐶2 =  𝐻 ∗ 𝐴2 ∗ 𝐺 {2} (30) 

 

sizes of 𝐶1 and 𝐶2 are (m×m). Now, 𝐶1 and 𝐶2 are sent to the CS, which calculates the product 𝐶3 as, 

 

𝐶3 = 𝐶1 ∗ 𝐶2 (31) 

 

3.5.1. Decryption of C3 

Matrix 𝐶3, whose size is (m×m), is decrypted by the user as, 

 

𝐵3 = 𝐻𝑇 ∗ 𝐶3 ∗ 𝐻 (32) 

 

on substituting for 𝐶3 from (31) and further substituting for 𝐶1 and 𝐶2  from (29) and (30), 

 

𝐵3 = 𝐻𝑇 ∗ (𝐻 ∗  𝐴1 ∗ 𝐺 {1}) ∗  (𝐻 ∗ 𝐴2 ∗ 𝐺 {2}) ∗ 𝐻 (33) 

 

that is, 

 

𝐵3 = 𝐻𝑇 ∗ 𝐻 ∗ 𝐴1 ∗ 𝐺 {1} ∗ 𝐻 ∗ 𝐴2 ∗ 𝐺 {2} ∗ 𝐻 

= (𝐻𝑇 ∗ 𝐻) ∗ 𝐴1 ∗ (𝐺 {1} ∗ 𝐻) ∗ 𝐴2 ∗ (𝐺 {2} ∗ 𝐻)  

 

from (6), 𝐻𝑇 ∗ 𝐻 = 𝐼𝑛×𝑛, from (17), 𝐺 {1} ∗ 𝐻 = 𝐺 {2} ∗ 𝐻 = 𝐼𝑛×𝑛. Therefore, in (33) reduces to,  

 

𝐵3 = 𝐴1 ∗ 𝐴2 (34) 

 

thus, homomorphic multiplication is achieved. All the above operations are carried out using modular 

arithmetic in Zp. 
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3.6.  Discussion on homomorphic multiplication 

Consider the matrix product: 𝐵3 = 𝐴1 ∗ 𝐴2, which is obtained after decrypting the cipher product 𝐶3 

as in (32). Since encryption, multiplication, and decryption are carried out in Zp, the result 𝐵3 is also in Zp. 

That is, 𝐵3 = mod(𝐴1 ∗ 𝐴2, 𝑝). Hence, if the maximum element of 𝐴1 ∗ 𝐴2 is less than p, then mod (𝐴1 ∗

𝐴2, 𝑝) is equal to the exact numerical product 𝐴1 ∗ 𝐴2. Thus, for the correct working of the homomorphic 

multiplication, the constraint to be satisfied is, 

 

𝑝 > max(𝐴1 ∗ 𝐴2) (35) 

 

In the case of normal images, the max(A1) is 255 = 28‒ 1 ≈ 28. Therefore, the maximum individual 

product of 2 elements≈216. Consider the product 𝐴1 ∗ 𝐴2, where the size of each matrix is n×n. Then, in matrix 

multiplication, each product element is formed by the summation of n individual product terms. Therefore, the 

maximum element of the product can go up to 𝑛 ∗ 216. Hence according to (35), for the correct result: 

 

𝑝 > 𝑛 ∗ 216 (36) 

 

Under this constraint, the computational complexity will be very large. Therefore, HM is not generally 

feasible for the product of two regular image matrices. However, HM is useful when one matrix is a binary 

matrix, and the other is a regular image matrix. Then, the product represents some elementary operations on 

the image matrix, like row swap, and column swap. Therefore, in these cases, the HM will provide privacy-

preserving image processing. Homomorphic multiplication can be used for flipping a matrix up-down or left-

right. 

 

3.7.  Homomorphic flip up-down 

Let matrix FI represent the flipud (In×n). Then FI is an anti-diagonal matrix. An example with n=5 

appears as, 

 

𝐹𝐼5×5 =

[
 
 
 
 
0 0 0 0 1
0 0 0 1 0
0
0
1

0
1
0

1 0 0
0 0 0
0 0 0]

 
 
 
 

  

 

the elementary operation 𝐹𝐼 ∗ 𝐴 gives flipud (𝐴) [28]. Homomorphic flip-up-down is realized using the HM as 

follows. Cipher matrices 𝐶1 and 𝐶2 are obtained as,  

 

𝐶1 = 𝐻 ∗ 𝐹𝐼 ∗ 𝐺{1} (37) 

 

𝐶2 = 𝐻 ∗ 𝐴 ∗ 𝐺{2} (38) 

 

the product 𝐶3 in the cipher domain is calculated as, 

 

𝐶3 = 𝐶1 ∗ 𝐶2 (39) 

 

the decryption of 𝐶3 is carried out as, 

 

𝐵3 = 𝐻𝑇 ∗ 𝐶3 ∗ 𝐻 (40) 

 

after substituting for 𝐶3 from (39), we have, 

 

𝐵3 = 𝐻𝑇 ∗ 𝐶1 ∗ 𝐶2 ∗ 𝐻 

 

further substitution for C1 and C2 from (37) and (38) gives, 

 

𝐵3 = 𝐻𝑇 ∗  𝐻 ∗ 𝐹𝐼 ∗ 𝐺 {1} ∗  𝐻 ∗ 𝐴 ∗ 𝐺 {2} ∗ 𝐻 
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using the properties 𝐻𝑇 ∗ 𝐻 = 𝐼𝑛×𝑛 , and 𝐺 {1} ∗ 𝐻 = 𝐺 {2} ∗ 𝐻 = 𝐼𝑛×𝑛 , we get 𝐵3  =  𝐹𝐼 ∗ 𝐴, which is same 

as flipud (𝐴), and thus, flip up-down is realized by the homomorphic multiplication. Similarly, it can be verified 

that 𝐶3 = 𝐶2 ∗ 𝐶1 realizes the homomorphic flip left-right operation. 

 

3.8.  Ciphertext expansion ratio 

Ciphertext expansion ratio, designated by CER is the ratio of the size of the cipher matrix to that of 

its plain matrix. A large CER means the size of the cipher matrix is large, so the communication and 

computational costs are relatively high. A lower CER indicates higher encryption efficiency. CER is expressed 

as, CER =
Size of Ciphermatrix in bits

Size of Plain matrix in bits
. In MEHIP, the maximum possible value of an element of the cipher matrix 

is (p‒1). Therefore, the number of bits required to represent an element of the cipher matrix is, ceil(log2(p‒1)) 

bits. With p=521, the value of log2(p‒1)=9.0224 and ceil(log2(p‒1))=very nearly 9 bits. Now, for the plain text, 

the bit depth is 8 bits. Therefore, for the double side encryption, from (19), the size of the cipher matrix is 

m×m, and that of the plain matrix is n×n. Hence,  

 

𝐶𝐸𝑅 =  (𝑚 ∗ 𝑚 ∗ 9)/(𝑛 ∗ 𝑛 ∗ 8)  =  (9/8)  ∗  (𝑚/𝑛)2 = 1.125 ∗ (𝑚/𝑛)2 ≈ 1.125  
 

since 𝑚 = 𝑛 + 2, for large values of n, the value of m can be approximated by n. Then, CER=1.125. Thus, in 

MEHIP, this low constant value of CER is a major advantage. 

 

3.9.  Security of MEHIP 

Some of the security aspects of MEHIP are discussed in this section. Brute force guessing of secret 

keys is almost impossible as each element of a secret key is a 9-bit integer in Zp. The probability of correct 

guessing it is 2‒9
. Additionally, the size of each key is m×n. Hence, the overall probability of correct guessing 

is 2‒9*m*n which is extremely low. The security level can be increased further by taking m>(n+2) at the cost of 

increased cipher matrix size. In MEHIP, successive encryptions use randomized encryption keys, namely 

𝐺 {𝑖}’s. Therefore, the knowledge of cipher matrices corresponding to the given plain matrices cannot reveal 

the encryption keys. Prevention of chosen ciphertext attack will be implemented in the next version of MEHIP. 

 

3.10.  Generation of decryption and encryption key matrices E, F and H 

Initially, an orthogonal integer matrix 𝑄 is generated in Zp, by house holder construction [29] as, 

 

𝑄 = 𝐼𝑚𝑥𝑚 −
2∗𝑉∗𝑉𝑇

𝑉𝑇∗𝑉
 (41) 

 

here, V is a non-zero column vector of size m×1. In the finite field Zp, division by the scalar (𝑉𝑇 ∗ 𝑉) is 

replaced by multiplication by its modular inverse with respect to p. Therefore, in (41) is expressed as, (all 

calculations in modular algebra),  
 

𝑄 = 𝐼𝑚𝑥𝑚 − 2 ∗ 𝑉 ∗ 𝑉𝑇 ∗ 𝑀𝑜𝑑𝐼𝑛𝑣 (𝑉𝑇 ∗ 𝑉, 𝑝) (42) 

 

here, the size of Q is m×m and it is orthogonal. Thus, 

 

𝑄T ∗ 𝑄 = 𝐼𝑚×𝑚 (43) 

 

now, matrix 𝑄T is partitioned row-wise into two sub-matrices, 𝐸𝑛×𝑚, 𝐹(𝑚−𝑛)×𝑚 and 𝑄 is partitioned column-

wise into two sub-matrices, 𝐻𝑚×𝑛 and 𝐻𝑚×(𝑚−𝑛) as shown in (44), 

 

(𝑄𝑚×𝑚)𝑇 = [

𝐸𝑛×𝑚

− −
𝐹(𝑚−𝑛)×𝑚

]  and 𝑄𝑚×𝑚 = [𝐻𝑚×𝑛 | 𝐻𝑚×(𝑚−𝑛)] (44) 

 

now (43), 𝑄T ∗ 𝑄 = 𝐼𝑚×𝑚  can be rewritten in terms of the sub-matrices as, 
 

[

𝐸𝑛×𝑚

− −
𝐹(𝑚−𝑛)×𝑚

] ∗ [𝐻𝑚×𝑛 | 𝐻𝑚×(𝑚−𝑛)] = [

𝐼𝑛×𝑛 | 0𝑛×(𝑚−𝑛)

− − | − −
0(𝑚−𝑛)×𝑛 | 𝐼(𝑚−𝑛)×(𝑚−𝑛

] (45) 

 

from (45), it can be seen that,  
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𝐸𝑛×𝑚 ∗ 𝐻𝑚𝑥𝑛 = 𝐼𝑛𝑥𝑛 = 𝐸 ∗ 𝐻 (46) 

 

𝐹(𝑚−𝑛)𝑥𝑚 ∗ 𝐻𝑚𝑥𝑛 = 0(𝑚−𝑛)𝑥𝑛 = 𝐹 ∗ 𝐻 (47) 

 

from the partition scheme of (44), it can be seen that 𝐸𝑛𝑥𝑚 = 𝐻𝑚𝑥𝑛
𝑇 . 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

4.1.  Homomorphic addition of a logo to an image 

In this example, the two images A1, an axial view of an MRI and a logo image (character ‘A’) 

represented by A2, are added after HE. Figure 1 shows the original images and resulting images after HE and 

addition. Figures 1(a) and 1(c) show A1 and A2 respectively. The corresponding encrypted images C1 and C2 are 

shown in Figures 1(b) and 1(d). With HE, the encrypted images are highly random and do not leak any 

information about the original images. The result of addition, C3 in the cipher domain, is shown in Figure 1(e) 

and its decrypted version B3 is shown in Figure 1(f). 

 

 

 
 

Figure 1. Homomorphic image addition show (a) A1, (b) C1, (c) A2, (d) C2, (e) C3, and (f) B3 

 

 

4.2.  Performance analysis 

In MEHIP, homomorphic encryption and decryption are carried out in Zp using integer matrix keys. 

The execution time of encryption is discussed in this section. In MEHIP, the double-side homomorphic 

encryption involves two matrix multiplications as 𝐻 ∗ 𝐴 ∗ 𝐺 {𝑖}. The sizes of 𝐻, 𝐴, and 𝐺 {𝑖} are (m×n), (n×n), 

and (n×m), respectively. Therefore, the number of byte multiplications is (m*n*n+n*n*m). Since 𝑚 = 𝑛 + 2, 

we can approximate m by n, and consequently, the number of byte multiplications would be (2 ∗ 𝑛3). 

Therefore, the execution time for HE is of the order O (𝑛3). Since the execution time is machine 

dependent, we compare the execution time (ET) of MEHIP with Brakerski and Vaikuntanathan (BV) [16] 

method and the modified gentry, sahai, waters (GSW) [17] method. These two methods also support 

homomorphic multiplication. Here, starting with an image of size 32×32, the size is progressively varied by 

increasing both the height and width by 32 each until the final size of 512×512 is reached. The square matrices 

are taken for easy calculation only. The execution times for encryption are experimentally determined for 

MEHIP, BV, and GSW methods. The result is shown in Figure 2. The BV method takes a slightly higher ET 

compared to MEHIP, as the former method must calculate the cipher text with two components. The modified 

GSW method takes relatively more time as the original GSW method uses messages in the form of bits, and 

additional manipulations and multiplications are required to handle integers, compared to MEHIP and BV 

methods. Since the MEHIP method directly operates on matrices, it uses the built-in matrix multiplication 

library so that the execution time is faster compared to the other two methods. 
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Figure 2. Comparison of execution times for homomorphic encryption of image matrices 

 

 

5. CONCLUSION 

A new method of homomorphic encryption based on integer matrix keys is developed for efficient 

image processing in the cipher domain. Apart from homomorphic addition and multiplication, the proposed 

method provides image flipping. The proposed method avoids the use of error vectors and re-linearization. 

Image addition, multiplication, flipping, and related operations are carried out in the cipher domain. It can take 

care of black and white, grayscale, and color images. Since the key size is relatively large (almost equal to that 

of the image to be encrypted, say 256×256 bytes for an image of the same size), it is immune to brute force 

attack. The adoption of randomized encryption for successive trials prevents chosen plaintext attacks. The 

ciphertext expansion ratio is slightly greater than one, which leads to lower communication overhead. The 

basic principle can be extended to high dynamic range images also. 
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