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Abstract 
The problem of robust adaptive stabilization of a class of multi-input multi-output nonlinear 

systems with constant linearly parameterized uncertainty and unknown structure of bounded variation have 
been considered. With the aid of direct adaptive technique and control Lyapunov function method, a robust 
adaptive controller is designed to complete the globally adaptive stability of the closed-loop system. By 
employing our results, a kind of nonlinear system is analyzed, the concrete form of the control law is given 
and the meaningful quadratic control Lyapunov function for the system is constructed. Simulation of 
parallel manipulator is provided to illustrate the effectiveness of the proposed method. 
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1. Introduction 
In the applications, dynamics of the plant are usually partially known, estimation is the 

key in designing a successful control. Adaptive control, represents the means of achieving 
online estimation, and the estimates are used to synthesize a stabilizing control. Robust control, 
focuses on the stability and performance under a fixed controller is guaranteed for a specific 
class of uncertainties (such as unknown parameter variations, unknown structures, 
disturbances, etc). 

Robust adaptive stabilization of the nonlinear uncertain system has widely been 
investigated ([1]-[6]). In [1], the purpose of this direct robust adaptive fuzzy controller was to 
deal with a class of nonlinear systems containing both unconstructed state-dependent unknown 
nonlinear uncertain and gain functions. Bartolini [2] suggested the second-order sliding mode 
controller to cope with the uncertain system non-affine in the control law and the presence of the 
unmodeled dynamic actuator. A solution for robust adaptive stabilization of non-minimum phase 
systems was proposed in [3], and an output feedback robust adaptive controller was designed 
in [4] by the internal model design method. Neural network is also a useful method to identify 
unknown nonlinearities [5]-[6]. 

Lyapunov-based direct adaptive control framework was developed to guarantee globally 
adaptive stability of the closed-loop system by Lyapunov method. In [7], the robust adaptive 
controller for SISO nonlinear uncertain system was presented by the input/output linearization 
approach. In the case where the nonlinear uncertain systems include constant linearly 
parameterized uncertainty and nonlinear state-dependent parametric uncertainty, the direct 
robust adaptive control framework was developed in [8] where the Hamilton-Jacobi- 
Bellman(HJB) equation had to be solved to find the Lyapunov function, however, to find the 
solution of the HJB equation is not a feasible task. [9] tried to construct a controller for the 
system in [8] without solve the HJB equation by control Lyapunov function method, but the 
structural uncertainty was not considered. The structural uncertainty was further considered in 
[10] to make the conclusion in [9] more perfect.  

In this note, we continue to explore the benefits of adaptive and robust controls by 
Lyapunov method. The technical problem addressed in the note is how to design a stabilizing 
control for a class of multi-input nonlinear systems own arbitrary unknown parameter matrix and 
unknown structure with bounded variation. Adaptive robust controller can be designed to 
guarantee globally adaptive stability  of the system. Furthermore, to further illustrate our result, 
we give a concrete adaptive controller realization method to a kind of nonlinear system, in which 
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the control Lyapunov function is also constructed. Some of our results are related to the work of 
direct adaptive control in [10], which controller relays on the input function. 
 
 
2. The Proposed Algorithm  
2.1. Preliminary knowledge 

Definition 1 [11] [12]  Consider the following system 
 

( ) ( ) ( )x f x g x u x   (1)  
 

where nx R , mu R , and (0) 0f  . A 1C  function ( )V x  is called a control Lyapunov function 
(CLF)  of (1) if the following hold:  

1) ( )V x is a smooth, positive definite, and radially unbounded function.  
2) For all 0x  , it satisfies 
 

0 0g fL V L V    (2) 

 

where f
V

L V f
x





 and g
V

L V g
x





 are the lie derivative of ( )g x  and ( )f x  

respectively. We see that the set where 0gL V   is significant, because in this set the 

uncontrolled system has the property 0VL f When a CLF is known, the asymptotically stable 

control law for the certain system can be obtained directly. [13] [14] 
 
 
2.2. Nonlinear Robust Adaptive Control  

Consider the following nonlinear uncertain system: 
 

( ) ( ) ( ) ( )x f x F x f x g x u      (3) 

 

where, nx R  and mu R are the states and the inputs of the system, respectively. The 
mappings: 

: n nf R R , : n pF R R , : n n mg R R   

with (0) 0f  , (0) 0F  . 
11 1

1

p

n np

 

 

 
    
  







 is an uncertain parameter matrix. : n nf R R   

represents structural uncertainty with (0) 0f  , and characterized by 

( ) ( ) ( )f x e x x  , 

where ( ) : n n ne x R R  , and ( ) : n nx R R   is an unknown function. It is assumed that ( )x  is 

constrained to a given function ( ) : n nn x R R with (0) 0n  , i.e. 

 

 ( ) : ( ) ( ) ( ) ( )T TS x x x n x n x     (4) 

 
( ), ( ), ( ), ( ), ( )f x F x g x e x n x  are all smooth. 

Assumption 1 According to system (3), there exist  
1) Function matrixes ( ), ( ), ( )n sg x h x f x  and matrix K  which satisfied 

1( ) ( ) : n n
ng x K h x R R

 ,  K  is a constant matrix which include the whole knowledge of the 

uncertain parameters ( 1, , , 1, , )ij i n j p    . 

2) A positive definite and proper  1C  function ( )V x , such that for all x , 
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( ) 0s
V

f x
x





 (5) 

 
holds, where 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )s nf x f x F x e x n x g x K h x     (6) 

 
with the properties: 

 
( ) ( )e eL V x L Vn x   (7) 

 
and 

 
0 0

ng gL V L VK h    (8) 

 
Theorem 1  Let ( )V x be a control Lyapunov function of the system  

 
( ) ( ) ( ) ( ) ( )x f x F x e x n x g x u    ,                            (9) 

 
for all ( ), ( ),ng x h x K  which satisfy Assumption 1, there always exists a feedback law 

 ˆ, ( )u x K t which is smooth on  / 0n n pR R  , 

 

( )
T

s gu p x L V      (10) 

 

2 2

0 0

( )
( ) ( ) ( )

0( )

sp x
a x a x x

x






 

 

 
 

 (11) 

 
and update law  
 

 ˆK ( ) ( )
n

T

gt h x L V   (12) 

 
guarantees that all the states of the close system (3), (10)-(12) globally stable and ( ) 0x t  as 

t  . Where   ( )
T

g gx L V L V  ,  ˆ( )K ( ) ( )n
V

a g x t h x
x 





, ˆK ( )t is the parameter estimation 

matrix of constant matrix  K .  

Proof： Construct the following candidate Lyapunov function 
 

   ˆ ˆ ˆ
1

( , ) ( ) K ( ) K ( )
2

T
W x K V x tr t K t K        (13) 

 
The derivative of W along the system (3) is given by 

   ˆ ˆ( ) ( ) ( ) ( ) K ( ) K ( )TV
W f x F x f x g x u tr t K t

x  
         

  . 

Substitute (12) into W , we have 

   ˆ( ) ( ) ( ) ( ) K ( ) ( )
ng

V
W f x F x f x g x u tr t K h x L V

x 
         

 . 
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It can easily deduce that    ( ) ) ( ) K( ) ) ( )
n ng gtr K t K h x L V L V t K h x      .Furthermore, with (6) 

and property (7) we have  

   

   

ˆ

ˆ

ˆ

( ) ( ) ( ) ( ) ( ) K ( ) ) ( )

( ) ( ) ( ) ( ) K ( ) ) ( )

K ( ) ( )

n

n

n

g

s n g

g g

V
W f x F x e x n x g x u L V t K h x

x
V

f x g x K h x g x u L V t K h x
x

L Vu L V t h x



 




     



    


 



. 

1) if 0x  , 0gL V  , we can obtain 0u   from (10). According to Assumption 1, it holds 

0 0
ng gL V L VK h   . Furthermore, gL V doesn’t contain any information of the uncertain 

parameters ( 1, , , 1, , )ij i n j p     and ij  can take any value, thus, when take ˆ
ij ij  , (8) 

can also be expressed as  
 

ˆ0 ( ) ( ) 0
ng gL V L VK t h x    (14) 

 
Thus, we can conclude that 0W   as 0x  , 0gL V  . 

2) if 0x  , 0gL V  ,then, according with the control law(10) and (11),  

2 2 2 2
ˆ ˆK ( ) ( ) K ( ) ( ) 0

n ng g gW L Vu L V t h x a a L V t h x a              

3 ) if 0x  , 0W  . 
Thus, the equilibrium 0x  , ˆK ( )t K   is globally stable, and by LaSalle’s theorem, we 

can obtain lim ( ) 0
t

x t


 . 

Remark 1  It is important to note that the adaptive control law (12) does not require 
explicit knowledge of the gain matrix K , even though Theorem 1 requires the existence of 

( ), ( ),ng x h x K to satisfy the assumption 1. 

Remark 2 No specific structure on the nonlinear dynamics ( ), ( ),ng x h x K  is required 

only with 1( ) ( ) ( ) : n n
ng x K t h x R R

 . 

Remark 3 Even if ( )sf x  includes some information of the uncertain parameters, the 

result of the theorem 1 will not be influenced. 
Proposition 1  Let ( )V x be a CLF of (9), then there must be a feedback law (15) and 

adaptive law (16) smooth on  / 0n n pR R   guarantee the system (3) globally adaptive stable. 

 

   2 2
ˆ ˆ

0

0

( ) ( )
0

T f e f eF F
g

u L V L V L Vn x L V L V L Vn x
L V







 





            

   

 (15)       

 

ˆ ( )
T

V
F x

x

     
  (16) 

 

where   ( )
T

g gx L V L V  . 

proof: Make  

 
( )

T

g
n

L V V
g x g

x





,  ( ) ( ) ( ) ( ) ( )
T

h x f x F x e x n x ,  n n n nK I I    ,   
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then we have ( ) 0s

V
f x

x





. Furthermore, ( )V x be the control Lyapuov function for system (9), 

which implies that  

 0 ( ) ( ) ( ) ( ) 0g

V
L V f x F x e x n x

x


    


. 

With ( ) 0s

V
f x

x





, we have  

0 0
ng gL V L VK h   . 

Thus, Assumption 1 is satisfied.  Substitute the above variable into (10), (11),（ 12） ，  the 
formula (15) and (16) can be obtained directly. 

 
 

3. Research Method  
 Sometimes it is difficult to find the CLF for a given system. By employing our result, we 

will analysis some control systems, give the concrete form of the control law, and at the same 
time, find the meaningful quadratic control Lyapunov function for the systems. 

We assume the uncertain of the construction ( ) ( ) ( )f x e x x   have the form as follows: 

 
( ) ee x E ， ( )x x   (17) 

 

where n n
eE R   is a positive-definite diagonal matrix ,  1 2 ndiag      is a diagonal 

matrix, and  1,2, ,i in i n    , where  1 2 nN diag n n n   is a known diagonal 

matrix. 
Consider ( ), ( ),f x F x   and ( )g x  in (3) have the form as the follows: 

 

2* ( )
( )

( )

C x X
f x A x

f x

 
   

 
, 

 0 n m p

m p

 



 
     


 ,

( )0
( )

n m m

m m

g x
g

 



 
   
 

 , *
eA A E N   (18) 

 
Then, we rewrite the system as 
 

* *
21 2 11

* *
22 3 4

( ) 00

( )( )

C x XA A XX
u

X gF xX f xA A

         
                      



  
 (19) 

 

where  1 1, n mX x x   ,  2 1, ,
T

n m nX x x   , and  ( ) n m mC x R    are function matrixes. 

Proposition 2 Assume the variables in system (3) have the form in (17) and (18) with 

det ( ) 0g x  , if *
1 1 1X A X  is asymptotically stable, there always exists a positive-definite matrix P 

and a feedback law  ˆ,u x   which is smooth on  / 0n n pR R   

 
*( ) ( )T

su p x g x P x   (20) 

 

*

42 *

*
2*

0
( ) 0

( )
( )

( ) 0
( )

T

Ts

T

T

x P g x

p x
a a x P g x

x P g x
x P g x


 
   




        *ˆ ( )
TTF x x P   (21) 
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guarantees that all the states of the close system (3),(20)-(21) globally stable and lim ( ) 0
t

x t


 , 

where  * * ˆ( ) ( )Ta x P f x F x  , * 0

0

P
P

I

 
  
 

. 

Proof:  With the stability of *
1 1 1X A X , for a given positive-definite  Q , we can find a 

positive-definite P , such that 
 

 * *
1 1

T
A P PA Q    (22) 

 
 Write  
 

* *
21 2 1*

* *
23 4

( )
( )

( )

C x XA A X
f x

X f xA A B

    
           


 (23) 

 
where m mB R   is an arbitrary positive-definite matrix. When take  
 

n n ng I  ,  n nK I   ,   *( ) ( ) ( )
TT Th x f x F x  (24) 

 
and the following positive-definite  

 
0

( )
0

T P
V x x x

I

 
  

 
 (25) 

 
we get 
 

  2 2

0 0 0
( ) ( ) ( ) ( ) ( ) ( ) 2 2 0

0 0
T T

n

PV
f x F x e x n x g x K h x x x x Bx

I Bx 
  

           
 (26) 

 
Furthermore, with det ( ) 0g x   we can conclude that 

 

2 1 10, 0 0 0
n

T
g gX L V X L K h X QX         (27) 

 
It is easy to verify that 
 

( ) ( )e eL V x L Vn x   (28) 

 
With (26)-(28), assumption 1 is satisfied. Moreover, we can also conclude that 
 

 2 1 10, 0 0 ( ) ( ) ( ) ( ) 0T
g

V
X L V X f x F x e x n x X QX

x


         


 (29) 

 
which means ( )V x  in (25) is the control Lyapunov function of system (9). Substitute the above 

variable (23) - (25) into (10)- (12)，  the formula (20) and (21) can be obtained directly. 
 
 
4. Results and Analysis 

The dynamic model of the parallel manipulator is shown as follows [15] 
 

( )T TMq Cq J f J q        (30) 
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Where,  Tq x y  is the position coordinates of the end-effecter;  1 2    is the 

actuator torque vector of the active joints; f is the friction torque vector of the active joints; J  is 

the velocity Jacobian matrix between the end-effecter and the three active joints of the parallel 
manipulator;  1 2,M diag m m is the inertia matrix in the task space, and C is the coriolis and 

centrifugal force matrix in the task space.  1 2( )q diag q     is structural uncertainty with 

1 1 2 2,N N    The detailed definition of the above symbols can be found in [15 ]. 

 When choose 1 2,X q X q   , (30) can be rewriten as 

 

1 2

1 1 1 1
2 2 2( )T T

X X

X M CX M J f M J M X    



    




 (31) 

 
We assume C  is an uncertain constant matrix here. 

In this system, we can write 12 2
1

2

00
( )

0 0 T

XI
f X

X M J f




   
           

,
1

0 0

0 M C

 
   

 
, 

( )F X X , 1 2(0 0 )f diag X   ,  1 0
TTg M J , u  . 

Construct  * 1
1 2( ) ( ) (0 0 )f X f X M diag N N X BX   ,note that  1det 0TM J  , let

2 2
1

2 2 2 2

0 00

0 0

I
K

I M C





 

 
   
 

,  *( ) (
TT Th X f X X   

 
, 4 4( )ng X I  ,thus, 

( ) ( ) ( ) ( ) ( ) ( )nf x F x e x n x g x K h x BX      

when choose 
3

2

I I
B

I I

 
   

, X BX   is global asymptotically stable, and with 

10 0

0 10

I
Q

I

 
  
 

 , we can get a positive-definite  
2

3

I I
P

I I

 
  
 

 satisfies the Lyapunov function 

( ) ( )TB P P B Q     , furthermore, we have 

1 2 1 1( ) 0 3 0 ( ) 3 0T T T
nX Pg X X X X Pg X K h X X        . 

and 

 1 2 1 1( ) 0 3 0 ( ) ( ) ( ) ( ) 5 0T T TX Pg X X X X P f x F x e x n x X X           

Thus, TV X PX is the control Lyapunov function for (31), and the control laws 
according to (11) - (13) are the following 

 

   
 

2 2* 1 * 1 1
2 2 2 2 21

1 2 1
1 2

ˆ ˆ( ) ( )
3

3

T T T T T T

T T T

X f X X M CX X f X X M CX X M J
JM X X

X X M J


  




 
    

   
  
 

 (32) 

 

 2 1 2
ˆ 3TC X X X 

 (33) 

For simulation uses, we make initial conditions as    , , , 5, 2,0,0x yX x y u v   , and 

pick the parameters of the manipulator as the following: 1 2 1m m  , 1 0.5N  . 2 1N  , 

0.5 0.2

0.3 0.5
J

 
  
 

. the initial parameter estimation is   2 2
ˆ 0C


 . 

1） Take the different parameter matrix: a) 1

1 2

3 4
C

 
  
 

,  b) 2

5 10

15 20
C

 
  
 

. The 

simulation results under the different parameter matrix are shown in Figure1 and Figure 2 
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respectively, each results include system states of the position and the velocity and the 
parameter estiamation values. 

  We can conclud from Figure1 and Figure 2 that the system states are all converge to 
the expected values, that is the system states are asymptotic stable even though the constant 
matrix C  is uncertain. The parameter estimation values can not converge to the real values, 
they are Lyapunov stable. It is obviously that the convergence rate in Figure 1 is faster than the 
rate in Figure 2 because of the initial estiamation errors in a) is smaller than the errors in b). 
      

 

 
 

Figure 1. Simulation result of the system with 
the parameter matrix 1C  

 
 

Figure 2. Simulation result of the system with 
the parameter matrix 2C  

 
 
2) For further comparison, we construct another controller introduced in [10] with  the 

same initial conditions and parameters, and take 
1 2

3 4
C

 
  
 

, 1 1

1
2 1 3 2 2

0
n

X
g ( X )

X X M X

 
       

, 

1h( X )  , 2 2
1

2 2 2 2

0 00

0 0

I
K

I M C





 

 
   
 

, 
14 5

5 3

I I
P

I I

 
  
 

 .  

The simulation is shown in figure 3, Clearly, the controller can also make the system 
adaptive stable. However, this controller relays on the input function and a bit more complex 
than the controller in (31), the convergence rate in Figure 1 is faster than the rate in Figure 3.  

  
 

  
 

Figure 3. Simulation result of the system with controller in 2) 
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5. Conclusion 
According to a class of parameter and structural uncertainty nonlinear system, an 

adaptive robust control scheme is development with the aid of control Lyapunov function, the 
controller can guarantee globally adaptive stability of the close-loop system. 

Future research will address the extension of this design method to the output feedback 
adaptive control system.  
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