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Abstract 
This paper proposed a nonlinear robust control for spacecraft attitude based on passivity and 

disturbance suppression vector. The spacecraft model was described using quaternion. The control law 
introduced the suppression vector of external disturbances and had no information related to the system 
parameters. The desired performance of spacecraft attitude control could be achieved using the designed 
control law. And stability conditions of the nonlinear robust control for spacecraft attitude were given. The 
stability could be proved by applying Lyapunov approach. The verification of the proposed attitude control 
method was performed through a series of simulations. The numerical results showed the effectiveness of 
the proposed control method in controlling the spacecraft attitude in the presence of external disturbances. 
The main benefit of the proposed attitude control method does not need angular velocity measurement 
and has its robustness against model uncertainties and external disturbances.  
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1. Introduction 
Attitude control is a particularly important component for spacecrafts. A spacecraft must 

maintain a certain attitude while in orbit. Nowadays, attitude control of spacecrafts demand 
better performance. The spacecraft attitude can be expressed by matrix, Euler angle, or 
quaternion. The method of matrix representation is complicated in calculation; Euler angle also 
exist some limitations. For example, the rotation matrix is not interchangeable, Euler angle 
rotation must be in a particular order, and equivalent to Euler angle change may not cause 
equal rotation, which leads to a rotating unevenness. When Euler angle is equal to 2/ , 
there will be a singular point, leading to the loss of degrees of freedom, which is called as the 
phenomenon of gimbal lock. But expressing 3D rotation with quaternion can avoid these 
limitations, and also has clear geometric meaning and simple calculation. In the past several 
decades, researchers have devoted to the problem of spacecraft attitude stabilization based on 
quaternion representation. Some control methods have been developed to treat this problem, 
such as robust control approach [1, 2], Lyapunov-based approach [3-5], adaptive control 
approach [6-9], variable structure control approach [10-14]. 

In general, angular velocity and quaternion, are used to deal with the stability of 
feedback control. However, the angular velocity measurement is not necessary in some of the 
previous works. For example, in [10], a design criterion for a class of proportional-derivative 
(PD) controllers was firstly proposed by using the Lyapunov-based approach, and then a design 
criterion of controller without angular velocity measurement was presented based on passivity. 
The approach proposed in [10] was further extended to the system described by the Rodrigues 
and modified Rodrigues parameters [11].  

However, the external disturbances, which inevitably affect the motion of the spacecraft 
in its attitude, are ignored in the above-mentioned literatures. In this paper, we focus on the 
stability of spacecraft attitude in the presence of the bounded external disturbances and 
propose a nonlinear robust control method for spacecraft attitude. The spacecraft attitude is 
represented by quaternion. The suppression vector of external disturbances, which is 
independent of angular velocity size, is introduced into the control law. In addtition, the control 
law has no information related to the system parameters so that the robustness is guaranteed. 
To demonstrate the performance of the proposed attitude control method in suppressing 
disturbances and maintaining stability, the numerical simulations are carried out using MATLAB.  
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2. Proposed Attitude Control Method 
2.1. Spacecraft Model 

The motion of spacecraft attitude can be described by kinematic and dynamic 
equations. 

We use the unit quaternion to represent spacecraft attitude in order to avoid singularity. 
Define the unit quaternion as in Eq. (1). 
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where 3ˆ Rn  is the rotation axis represented by unit vector,   is the rotation angular, 3Rq  

and Rq 0
are the components of the unit quaternion, which subject to the following constraint: 
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The kinematic equation represented by the unit quaternion is given by Eq. (3). 
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where  T321   is the spacecraft angular velocity vector with respect to the inertial 

reference frame, expressed in the spacecraft body-fixed reference frame, I is the 3×3 unit 

matrix, q  is the skew symmetric matrix which is defined by Eq. (4). 
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The dynamic model of the spacecraft attitude control system is described by the 

differential equation, as in Eq. (5). 
 

duJJ     (5) 
 
where 33T  RJJ  is the inertia matrix which is a symmetric and positive define matrix, 3Ru  
is the vector of control torque,  T321 dddd   is the vector of external disturbance which is 

bounded as 
iid || , where 

i  is a positive constant, for i=1, 2, 3. 

 
2.2. Passivity and Disturbance Suppression Based Attitude Control 

First, we consider attitude control with angular velocity measurment. The nonlinear 
control law is given in Eq. (6). 
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where k1 and k2 are positive constants. 

Consider the Lyapunov function candidate 
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Using Eqs. (3), (5) and (6), the time derivate of V can be computed to 
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When d=0, Eq. (8) can be simplified as 0T
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candidate V is positive definite and radially unbounded. By LaSalle invariance principle, all 
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equilibrium. 
When d≠0, we will present a controller for the system. 
First of all, we introduce a result about Input-to-State Stability [15]. 
Lemma 1  Let   RRV n ,0:  be a continuously differentiable function that satisfies 

the following properties: 
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Now Eq. (8) can be rewritten as follows 
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where 
10 k . By Lemma 1, the proposed controller can make the closed-loop system 

achieve input-to-state stable. 
Now we will provide an improved controller. In order to suppress the effect of external 

disturbances, we introduce the suppression vector v  of external disturbances into the control 

law. Let   qEkku T
21 , where T

321 ][ vvvv  , )sgn( iiiv   for i=1, 2, 3. The symbolic 

function )sgn(x  is defined by 
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Then the time derivative of Lyapunov function candidate V can be computed to 
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Therefore, when   satisfies  /ii d  for i=1,2,3, 
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1, we know that the proposed attitude controller can make the closed-loop system input-to-state 
stable. 

Second, we consider nonlinear attitude control without angular velocity measurment. In 
[10], a controller without angular velocity measurement was proposed using passivity-based 
approach. Along the line of [10], we construct a controller as follows. 
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where B is a full rank matrix. There exist positive definite matrices P and Q which can make 
matrix A satisfy the following Lyapunov equation. 
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It can be seen that the disturbance suppression vector v  is related to the angular 

velocity in the control law. The disturbance suppression vector can be determined only if the 
direction of the angular velocity is known. While the size of the angular velocity is not necessary. 

Consider the following Lyapunov function candidate 
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Using Eqs. (3), (5), (10) and (14), the time derivate of V is can be computed to  
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When d=0, Eq. (17) can be simplified as 0
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When d≠0, Eq. (17) can be rewritten as follows. 
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where min  is the minimum eigenvalue of Q. According to Lemma 1, we know that the 

proposed control method can make the closed-loop system described by Eqs.(3), (5) and (14) 
input-to-state stable. 

 
 

3. Research Method 
In order to demonstrate and verify the effectiveness and robustness of the proposed 

attitude control method for spacecraft, several numerical simulations are carried out using 
MATLAB. 
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4. Results and Analysis  

When there exists the external disturbance d1 and the control law does not include the 
disturbance suppression vector v  (Condition: Case 1), the performance of the attitude controller 
without angular velocity measurement is shown in Figure 1.  When the conditon is changed to 
Case 2, the performance of the proposed attitude controller without angular velocity 
measurement is given in Figure 2. By comparing Figure 1 with Figure 2, we can see that the 
controller without the disturbance suppression vector v  can not converge to the equilibrium 
point and be not any more stable. While the proposed controller with the disturbance 
suppression vector v  can make the closed-loop system which is described by Eqs. (3), (5) and 
(14) achieve the input state stability. It proves that the disturbance suppression vector can 
suppress the effect which external disturbances have on the closed-loop system.  
 
 

 
Figure 1. The angular velocity curve without 
angular velocity measurement (Condition: 

Case 1) 

 
Figure 2. The angular velocity curve without 
angular velocity measurement (Condition: 

Case 2) 
 

 
Figure 3 shows the convergence of the proposed controller without angular velocity 

measurement under the conditon of Case 2. Compared with the controller with angular velocity 
measurement under the same condition, whose quaternion curve is shown in Figure 4, the 
proposed controller in this paper can converge more fastly to the equilibrium point. It illustrates 
the effectiveness of the proposed attitude control method. 
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Figure 3. The quaternion curve without 

angular velocity measurement (Condition: 
Case 2) 

 
Figure 4. The quaternion curve with angular 
velocity measurement (Condition: Case 2) 

 
 
 

 
Figure 5. The angular velocity curve without 
angular velocity measurement (Condition: 

Case 3) 

 
Figure 6. The enlarged figure of 

2  in Figure 2 

and Figure 5 for ]100,35[ sst  

 
 
When the external distubance increases from d1 to d2, that is the condition of Case 3, 

the result is depicted in Figure 5. And Figure 6 gives the enlarged part of angular velocity curve 
shown in Figure 2 and Figure 5 for ]100,35[ sst . From Figure 2, Figure 5 and Figure 6, it can 

be observed that the area which the angular velocity converges to is related to the external 
disturbances; that is to say, the bigger the amplitude of external disturbance, the larger the 
convergence area of angular velocity and the less effective  the proposed attitude control 
method. 

When there exist model error and model parameter uncertainty, the performance of the 
closed-loop system under control torque is found in Figure 7. Obviously, the system can be still 
stable at equilibrium point. It shows that the proposed attitude control method is robust to model 
error and model parameter uncertainty. 
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Figure 7. The angular velocity curve with the existence of model error and model parameter 
uncertainty (Condition: Case 4) 

 
 
5. Conclusion 

We considered the stability of spacecraft attitude in the presnece of external 
disturbances and model uncertainties in this paper. A nonlinear robust controller is proposed by 
using passivity-based approach and introducing the suppression vector of external disturbance 
into the control law. The proposed controller does not need the angular velocity measurement 
and can suppress the effect of external disturbance to a certain extent. In addition, the control 
law doesn’t contain information related to the system parameters, which makes the spacecraft 
attitude control system robust to model error and model parameter uncertainty. The stability of 
the proposed controller is proved theoretically and the numerical simulation results illustrated 
the effectiveness and robustness of the spacecraft attitude control method. 
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