
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 30, No. 1, April 2023, pp. 229~236

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v30.i1.pp229-236  229

Journal homepage: http://ijeecs.iaescore.com

Edge device for movement pattern classification using neural

network algorithms

Ricardo Yauri1, Rafael Espino2
1Faculty of Systems and Informatic Engineering, Universidad Nacional Mayor de San Marcos, Lima, Perú

2Department of Electronic Engineering, Faculty of Engineering, Universidad Tecnológica del Perú, Lima, Perú

Article Info ABSTRACT

Article history:

Received Sep 12, 2022

Revised Nov 9, 2022

Accepted Nov 19, 2022

 Portable electronic systems allow the analysis and monitoring of continuous

time signals, such as human activity, integrating deep learning techniques with

cloud computing, causing network traffic and high energy consumption. In

addition, the use of algorithms based on neural networks are a very widespread

solution in these applications, but they have a high computational cost, not

suitable for edge devices. In this context, solutions are created that bring data

analysis closer to the edge of the network, so in this paper models adapted to

an edge device for the recognition of human activity are evaluated,

considering characteristics such as inference time, memory, and precision.

Two categories of models based on deep and convolutional neural networks

are developed by implementing them in C language and comparing with the

TensorFlow Lite platform. The results show that the implementations with

libraries have a better accuracy result of 76% using principal component

analysis inputs, obtaining an execution time of 9ms. Therefore, when

evaluating the models, we must not only consider their accuracy but also the

execution time and memory on the device.

Keywords:

Edge computing

Edge device

Embedded intelligence

Internet of things

Neural network

Tiny machine learning

This is an open access article under the CC BY-SA license.

Corresponding Author:

Ricardo Yauri

Faculty of Systems and Informatic Engineering, Universidad Nacional Mayor de San Marcos

Germán Amézaga 375, Lima, Perú

Email: ryaurir@unmsm.edu.pe

1. INTRODUCTION

The advancement of new technology has produced portable electronic systems with communication

and processing capabilities, energy consumption, size and reduced cost which allows the analysis and

continuous monitoring of human activity (HAR) [1], [2] but its operating approach is still in a cloud solutions

scheme [3]. On the other hand, deep learning has achieved significant performance in applications such as

temporal signal recognition and data analysis using wearable sensors, demonstrating its potential when deep

neural networks are used [4]. This has allowed developing solutions that drive inference on edge devices

(TinyML) [5] and analyzing characteristics such as processing response delay, memory usage, algorithm

accuracy and data privacy Figure 1 [6], [7] in areas such as health monitoring [8], home or office [9].

Performing the integration of machine learning algorithms in edge devices requires the study of the

characteristics mentioned above [1]. In this sense, the use of neural networks (NN) represents a very widespread

solution, but it brings with it the problem of the computational load involved in training and inference activities

[3], which makes it difficult to integrate it into edge devices (usually built with microcontrollers) [2], [10]. In

the case of critical applications related to information privacy assurance, there is a loss of time in decision

making when data analysis is performed in the cloud, generating delays and network traffic [11].

Due to the use of algorithms based on neural networks in edge devices, some works such as [1]

investigate the efficiency of two models of neural networks such as the multilayer perceptron (MLP) and a

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 1, April 2023: 229-236

230

convolutional neural network (CNN), which are characterized in terms of CPU cycles, memory used, and

power consumption of an Arm Cortex-M4 device. On the other hand, the research carried out in [2] focuses on

proposing a high-speed CNN algorithm for activity data classification using a Raspberry Pi3 and STM32. In

addition, in [12], [13] the implementation of classification models in smartphones for activity detection based

on data extracted from these devices is carried out. In this research, frameworks from different manufacturers

are evaluated, but a comparison is not made with manual implementations and in devices with lesser

computational resources and low cost.

Figure 1. Considerations for implementing TinyML in embedded systems

In this context, solutions can be created to bring computational capacity closer to the edge of the

network to avoid data transmission to the cloud for processing and alleviate critical problems related to latency

[14], energy consumption [15], bandwidth and scalability [16]. Furthermore, the integration with artificial

intelligence empowers machines with human-like intelligence and includes knowledge-based perception and

decision-making capabilities [17]. Therefore, in this research we focus on evaluating algorithms based on

neural networks adapted to an edge device in the context of a human activity recognition application [18].

The main contributions of the study are: i) an experimental work is shown to analyze the behavior of

different machine learning models in an edge device with and without the use of a quantization framework, in

the context of human activity recognition [19]-[21] using an own dataset; ii) the edge device is evaluated by

analyzing inference time, memory usage and classification accuracy for two types of neural network-based

learning models. In addition, the results of the paper allow to obtain indications to contribute to future research

with machine learning solutions integrated in edge devices.

Section 2 describes the neural networks to be evaluated, section 3 describes the TensorFlow Lite

framework. Sections 4 and 5 present the edge device, discussion and results, respectively. Finally, section 6

shows the conclusions.

2. CONVOLUTIONAL AND DEEP NEURAL NETWORKS

Results obtained by the neural networks are calculated using the values of the weights and the biases

in a process called forward propagation as shown in Figure 2. This procedure has a much lower computational

cost than that required during the training stage, therefore it can be implemented manually or using specialized

libraries in hardware devices with reduced characteristics. This consists of four fundamental elements: input

neurons with scaling, operations on the neurons of the hidden layers together with the weights and ways, and

the output layer. Within each neuron, the weights are multiplied by each of the inputs, adding a bias, as shown

in (1). Each neuron adds these weights to the input signal and then applies an activation function to calculate

the output signal (2). The hidden layer sends the resulting signal to all units in the next layer (output units).

𝑣𝑗 = ∑ 𝑤𝑖,𝑗 ∗ 𝑥𝑗 + 𝑏𝑗
𝑛
𝑖=1 (1)

𝑌𝑗 = 𝑓(𝑣𝑗) (2)

For a classifier based on neural networks, such as CNN and/or deep multilayer networks (DNN) [22],

𝑦 = 𝑓 ∗ (𝑥) assigns an input “x” to a category “y”. A feedforward network defines a mapping 𝑦 = 𝑓 (𝑥; 𝜃)

and learns the value of the parameters θ that result in the best function approximation. CNN are biologically

inspired networks used in computer vision for image classification and pattern detection. It usually consists of

a convolutional layer followed by a max-pooling layer [23]. In the case of the development of this paper, only

the implementation of the calculation stage of the outputs in the edge device will be used. The types of networks

evaluated in this research are:

− NNM: neural network using dimensionally reduced inputs (PCA) without TensorFlow Lite (TFlite).

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Edge device for movement pattern classification using neural network algorithms (Ricardo Yauri)

231

− NNT: neural network using dimensionally reduced inputs (PCA) with TensorFlow lite.

− DNNSP: deep neural networks with TensorFlow Lite without dimension reduction.

− CNN1: convolutional networks with TensorFlow Lite without dimension reduction.

− CNN2: structure like the previous one but with the MaxPool technique.

Figure 2. Feedforward neural network stages

3. TENSORFLOW LITE AND DEPLOYMENT ON AN EDGE DEVICE

TensorFlow is used to train machine learning models on computational devices with high hardware

resources, while TensorFlow Lite is applied to the evaluation and deployment of models that support the

required optimizations on a microcontroller edge device. TensorFlow Lite is platform dependent, turning a

large and robust model into something light and small. It also allows you to convert and optimize a model

considering three main goals:

− Reduce model size and RAM usage.

− Reduce the number of calculations required for each prediction, latency, and battery usage.

− Adapt the model to the specific limitations of the device.

Edge devices implement machine learning processes for pattern detection in input data [24]. Figure 3

shows a schematic of the application of edge intelligence in combination with machine learning for scenarios

based on smart internet of things (IoT) sensors which allows alleviating critical problems of latency, energy

consumption, bandwidth, and scalability. This technique is known as TinyML and provides a unique solution

by summarizing and analyzing data at the edge, providing intelligent summary statistics that take into account

patterns, anomalies, and analysis [25], [26].

Figure 1. Edge device usage scenario

4. DESCRIPTION AND CHARACTERISTICS OF THE EDGE DEVICE

Figure 4 shows the processes implemented in the edge device for the detection of the class of

movement of the person, preparation and cleaning of data. Data captures related to the running (co), walking

(ca) and static (es) classes are made and based on this procedure, an own dataset is created to carry out the

training of the models. An inertial sensor is used capturing data from the three axes using a sampling time of

10 milliseconds for 10 seconds and they are recorded in text files corresponding to each type of movement

creating the dataset to train the models. Edge devices use the communication block for the transmission of

online classification results and a data monitoring stage is implemented to display the results of the

classification process. The edge device can be integrated into a system for detecting an event, sending an alert

to database servers and/or applications so that interested people can be informed. This allows access to

information at any time of the day as shown in Figure 5 [26], [27].

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 1, April 2023: 229-236

232

4.1. ESP32 IoT device and training data generation

An edge device based on the ESP32 module is used, which is manufactured by the company Ai

Thinker based on a system on chip (SoC) with 520 KB of internal memory and 4 MB external [28]. The module

contains serial transmit and receive pins and general-purpose input-output (GPIO) pins as shown in Figure 6.

The edge computing IoT device is composed of four subsystems powered by a 2,200 mAh battery, an inertial

sensor with accelerometer, and the Wi-Fi communication module.

4.2. Multilayer neural network with PCA

A stage based on reduction component analysis (PCA) is used as input to this model, using three

variations of the multilayer neural network model with four neurons in the hidden layer and outputs

corresponding to each of the three classes. To perform the training, the categorical output is transformed

generating dummy variables. Considering the numerical data of classes (0, 1,2), the outputs are generated using

three variables for each label: Walking (1 0 0), Running (0 1 0) and Static (0 0 1). The "hidden layer" and

"output" processes are implemented through loops to automate the computation of each neuron's output as

shown in Figure 7. A section of the program with the flowchart that performs the hidden layer Figure 7(a)

shows the neural networks (NNM) model and output layer Figure 7(b) output computation using iteration statements.

Figure 4. Interaction of firmware processes on the edge device

Figure 5. Usage environment for edge device

Figure 6. Sensor node hardware

(a)

(b)

Figure 7. NNM model flowchart for (a) hidden layer process and (b) output layer process

PROTOCOLS

I2C, UART
ADC

MICROCONTROLLER

Control and Processing Subsystem

Energy Subsystem

Communication

subsystem
Sensor

Subsystem

i=0; i<I, i++

Wo1[0][j] = tanh1(sum);

sum = 0;

sum += X[0][i]*W1[i][j];

sum += hb[0][j]

j=0; j<J, j++

j=0; j<J; j++

YY[0][k]= sigmoid(Y);

 Y=0;

Y += Wo1[0][j]*W2[j][k]

Y += ob[0][k];

k=0;k <K; k++

Weights

and inputs

Activation

function

bias bias

Weights

and inputs

Activation

function

Hidden

Layer

Output

layer

i=0; i<I, i++

Wo1[0][j] = tanh1(sum);

sum = 0;

sum += X[0][i]*W1[i][j];

sum += hb[0][j]

j=0; j<J, j++

j=0; j<J; j++

YY[0][k]= sigmoid(Y);

 Y=0;

Y += Wo1[0][j]*W2[j][k]

Y += ob[0][k];

k=0;k <K; k++

Weights

and inputs

Activation

function

bias bias

Weights

and inputs

Activation

function

Hidden

Layer

Output

layer

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Edge device for movement pattern classification using neural network algorithms (Ricardo Yauri)

233

4.3. Multilayer neural network with TensorFlow Lite and principal component analysis

Unlike the previous neural network implementation, this model (NNT) is created using TensorFlow

Lite by obtaining a C language file with the model information, which is imported from the edge device along

with the necessary firmware libraries as shown in Figure 8. Neural network prediction and configuration

functions are encapsulated within TensorFlow Lite libraries to be imported from the edge device programming

IDE. In addition, the original file is in binary format and is converted to hexadecimal using the "xxd" function

for integration into the edge device program.

Figure 8. Model file generated by TensorFlow Lite

5. RESULTS AND DISCUSSION

5.1. Evaluation of neural network models with principal component analysis

Evaluations on the accuracy of the models with data obtained from a principal component analysis

process are evaluated in the embedded system for different neural network algorithm configurations as shown

in Figure 9.

a) Manually generated neural networks (NNM). The accuracy results without implementing the neural

networks with TensorFlow Lite are greater than 85%. In the case of the test results, these do not exceed

75% for the three types of neural networks, as shown in Figure 9(a). The execution time of processes can

reach up to 41 ms when the models are implemented in the edge device, considering that the critical time

is used by the PCA process.

b) Automatically generated neural networks with TFLite (NNT). Figure 9(b) shows the accuracy when making

the prediction of the neural network generated with TFLite using inputs resulting from the PCA model with

3, 7 and 16 principal components with the ESP32 module (edge device). The training results are above 95%.

The model using 16 components outperforms the others during its implementation on the edge device.

The times used by the embedded system for the execution of the classification processes are shown in

Figure 10. Where in the worst case it can reach 10ms in transformation time and class prediction (for 16

components of the PCA process). Specifically, the PCA data transformation process is the one that uses the

most processing time compared to the prediction time in NNT model, as shown in Figure 11.

(a)

(b)

Figure 9. Evaluation of accuracy of (a) the model NNM and (b) NNT generated by the edge device

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 1, April 2023: 229-236

234

Figure 10. NNT model classification times and component analysis (PCA) in the edge device

Figure 11. Process execution times on the edge device

5.2. Deep and convolutional neural networks without PCA

In this case, the results of the implementation of models CNN1, CNN2 and DNNSP considering the

300 samples of the inertial sensor readings are shown. In the case of the DNNSP, a layer with 300 scaled inputs,

20 neurons in the hidden layer and three outputs are considered. For the CNN1 network, the Maxpool process

(to reduce the size of the generated model) and the 2D convolution process are used, because the TensorFlow

Lite libraries are not compatible with one-dimensional data evaluations. For the CNN1 and CNN2 models, the

absence and presence of the “MaxPool” process are considered Figure 12. Figure 13 shows that the DNNSP

model is slightly better than CNN1 considering that the size of the generated file has a much lower weight in

the CNN2 model when "Maxpool" is used Table 1. The prediction in the model generated by hardware is

superior for the CNN2 model compared to the other models.

Figure 12. CNN1 neural network generated on the edge device

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Edge device for movement pattern classification using neural network algorithms (Ricardo Yauri)

235

Table 1. Parameters of neural network models without PCA
Size NNTF Kbytes % Program memory % Dynamic Memory

CNN1 102 040 32 12

CNN2 20 091 31 12

DNNSP 160 966 33 14

Figure 13. Accuracy values obtained edge device

6. CONCLUSION

The deployment of classification algorithms using neural networks directly on the edge device is

evaluated by comparing their accuracy and execution times in hardware. Two categories of neural networks

have been developed. The first one consists of algorithms with (NNM and NNT) and without (CNN1, CNN2

DNNSP) PCA type inputs. In addition, within each category, its implementation must be conducted considering

its construction directly in C language from the definition of the feedforward process and using the

functionalities of TensorFlow Lite libraries. The experimental results show that the implementations with

TFLite (NNT) have a better result in the precision obtained with PCA inputs with 76% and an execution time

of 9ms, so its use is recommended in the case presented in this paper.

In the case of the implementation of convolutional and deep networks with TFLite, the best results are

obtained by the convolutional network model (CNN2) with an accuracy of 97%. As a conclusion, when

evaluating an algorithm, we should not only consider its accuracy, but also the execution time (latency) and

memory usage on the edge device. As future research, integration with other types of health monitoring sensors

can be evaluated, obtaining power consumption and lifetime of edge devices.

ACKNOWLEDGEMENTS

This paper was developed in the doctoral studies at the Faculty Systems and Informatic Engineering,

in the laboratories of the Faculty of Electronic and Electrical Engineering of the Universidad Nacional Mayor

de San Marcos.

REFERENCES
[1] E. Lattanzi, M. Donati, and V. Freschi, “Exploring artificial neural networks efficiency in tiny wearable devices for human activity

recognition,” Sensors, vol. 22, no. 7, Apr. 2022, doi: 10.3390/S22072637.

[2] J. Chang, M. Kang, and D. Park, “Low-power on-chip implementation of enhanced SVM algorithm for sensors fusion-based activity

classification in lightweighted edge devices,” Electronics, vol. 11, no. 1, Jan. 2022, doi: 10.3390/ELECTRONICS11010139.

[3] N. Rashid, B. U. Demirel, and M. Abdullah Al Faruque, “AHAR: Adaptive CNN for energy-efficient human activity recognition

in low-power edge devices,” >IEEE Internet of Things Journal, vol. 9, no. 15, pp. 13041–13051, Aug. 2022, doi:

10.1109/JIOT.2022.3140465.

[4] E. S. Jeon, A. Som, A. Shukla, K. Hasanaj, M. P. Buman, and P. Turaga, “Role of data augmentation strategies in knowledge

distillation for wearable sensor data,” >IEEE Internet of Things Journal, vol. 9, no. 14, pp. 12848–12860, Jul. 2022, doi:

10.1109/JIOT.2021.3139038.

[5] M. E. Ghmary, Y. Hmimz, T. Chanyour, and M. O. C. Malki, “Time and resource constrained offloading with multi-task in a mobile

edge computing node,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 4, pp. 3757–3766, 2020,

doi: 10.11591/IJECE.V10I4.PP3757-3766.

[6] N. N. alajlan and D. M. Ibrahim, “TinyML: Enabling of inference deep learning models on ultra-low-power iot edge devices for AI

Applications,” Micromachines, vol. 13, no. 6, p. 851, May 2022, doi: 10.3390/MI13060851.

[7] R. Yauri, J. Lezama, and M. Rios, “Evaluation of a wireless low-energy mote with fuzzy algorithms and neural networks for remote

environmental monitoring,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 23, no. 2, pp. 717–724, 2021,

doi: 10.11591/IJEECS.V23.I2.PP717-724.

[8] Y. A. Qadri, A. Nauman, Y. Bin Zikria, A. V. Vasilakos, and S. W. Kim, “The future of healthcare internet of things: A survey of

emerging technologies,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 1121–1167, 2020, doi:

10.1109/COMST.2020.2973314.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 30, No. 1, April 2023: 229-236

236

[9] Z. Sharif, L. T. Jung, M. Ayaz, M. Yahya, and D. Khan, “Smart home automation by internet-of-things edge computing platform,”

International Journal of Advanced Computer Science and Applications(IJACSA), vol. 13, no. 4, pp. 474–484, 2022, doi:

10.14569/IJACSA.2022.0130455.

[10] P. E. Novac, G. B. Hacene, A. Pegatoquet, B. Miramond, and V. Gripon, “Quantization and deployment of deep neural networks

on microcontrollers,” Sensors, vol. 21, no. 9, May 2021, doi: 10.3390/S21092984.

[11] A. M. Ghosh and K. Grolinger, “Edge-cloud computing for internet of things data analytics: embedding intelligence in the edge

with deep learning,” IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 2191–2200, Mar. 2021, doi:

10.1109/TII.2020.3008711.

[12] A. Albeshri, “SVSL: A human activity recognition method using soft-voting and self-learning,” Algorithms, vol. 14, no. 8, Aug.

2021, doi: 10.3390/A14080245.

[13] M. K, A. Ramesh, R. G, S. Prem, R. A A, and D. M. P. Gopinath, “1D convolution approach to human activity recognition using

sensor data and comparison with machine learning algorithms,” International Journal of Cognitive Computing in Engineering, vol.

2, pp. 130–143, Jun. 2021, doi: 10.1016/J.IJCCE.2021.09.001.

[14] P. Mahadevappa and R. K. Murugesan, “A data quarantine model to secure data in edge computing,” International Journal of

Electrical and Computer Engineering (IJECE), vol. 12, no. 3, pp. 3309–3319, 2022, doi: 10.11591/IJECE.V12I3.PP3309-3319.

[15] R. Yauri, S. Rubiños, J. Grados, and M. Chauca, “Characterization of a low consumption wireless sensor node for the intensive

transmission of physiological signals,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 2, p. 957,

May 2019, doi: 10.11591/ijeecs.v14.i2.pp957-965.

[16] V. Hayyolalam, M. Aloqaily, O. Ozkasap, and M. Guizani, “Edge intelligence for empowering iot-based healthcare systems,” IEEE

Wireless Communications, vol. 28, no. 3, pp. 6–14, Mar. 2021, doi: 10.1109/MWC.001.2000345.

[17] A. Bakhtiarnia, N. Milošević, Q. Zhang, D. Bajović, and A. Iosifidis, “Dynamic split computing for efficient deep edge

intelligence,” arXiv preprint arXiv:2205.11269, vol. 23, May 2022.

[18] Z. Shen, N. Howard, and J. Nunez-Yanez, “Big–little adaptive neural networks on low-power near-subthreshold processors,”

Journal of Low Power Electronics and Applications, vol. 12, no. 2, Jun. 2022, doi: 10.3390/JLPEA12020028.

[19] D. M. R. Martín and D. Rodríguez-Martín, “Contribución al análisis del movimiento humano aplicado a la identificación de posturas

y bloqueos de la marcha en pacientes con Parkinson,” Universitat Politècnica de Catalunya, 2014. Accessed: Nov. 09, 2021.

[Online]. Available: https://dialnet.unirioja.es/servlet/tesis?codigo=97427&info=resumen&idioma=SPA

[20] P. K. D. Pramanik, S. Pal, and P. Choudhury, “Beyond automation: The cognitive IoT. artificial intelligence brings sense to the

internet of things,” in Lecture Notes on Data Engineering and Communications Technologies, vol. 14, Springer, Cham, 2018, pp.

1–37, doi: 10.1007/978-3-319-70688-71.

[21] R. Shrivastava and M. Pandey, “Adaptive window based fall detection using anomaly identification in fog computing scenario,”

Multiagent Grid Syst., vol. 17, no. 1, pp. 15–37, 2021, doi: 10.3233/MGS-210341.

[22] W. Ertel, Introduction to Artificial Intelligence. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-58487-4.

[23] P. Fabian, “Scikit-learn: machine learning in python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[24] M. T. Yazici, S. Basurra, and M. M. Gaber, “Edge machine learning: enabling smart internet of things applications,” Big Data

Cogn. Comput., vol. 2, no. 3, pp. 1–17, Sep. 2018, doi: 10.3390/bdcc2030026.

[25] S. Salerno, “GitHub - eloquentarduino/tinymlgen: Generate C code for microcontrollers from Tensorflow models,” 2021.

https://github.com/eloquentarduino/tinymlgen (accessed Nov. 10, 2021).

[26] S. Raschka and V. Mirjalili, Python machine learning : machine learning and deep learning with python, scikit-learn, and

tensorflow 2, 1st ed. Birmingham: Packt Publishing Ltd, 2019.

[27] R. Jenatton, G. Obozinski, and F. Bach, “Structured sparse principal component analysis,” in Journal of Machine Learning

Research, Mar. 2010, vol. 9, pp. 366–373.

[28] N. Cameron, Electronics Projects with the ESP8266 and ESP32. Apress, 2021. doi: 10.1007/978-1-4842-6336-5.

BIOGRAPHIES OF AUTHORS

Ricardo Yauri received the B.Eng. degree in electronic engineering from

Universidad Nacional Mayor de San Marcos, Perú and the M.S. in biomedical engineering and

Ph.D. student in Systems Engineering. Currently, he is an Associate Professor at the Department

of Electronical Engineering at Universidad Nacional Mayor de San Marcos. He is professor at

Universidad Tecnológica del Perú and Universidad Privada del Norte. He has participated as a

teacher in courses oriented to the Internet of things and applications in home automation and the

Cisco academy for IoT. He was researcher at INICTEL-UNI in the Embedded Systems and

Internet of Things research group. His research interests include implementation of low

consumption IoT devices, inference techniques, machine learning algorithms and computational

intelligence. He can be contacted at email: ryaurir@unmsm.edu.pe.

Rafael Espino He is a graduate of the Faculty of Electronics of the National

Universidad Nacional de Ingeniería, Perú. He is Specialist in the development of electronic

systems with solid knowledge in photovoltaic systems and experience in implementing

embedded firmware in electronic systems. He is currently a professor at the Universidad

Tecnológica del Perú and at the Universidad de Ingeniería y Tecnología. He was researcher at

INICTEL-UNI in the Embedded Systems research group. With aptitudes for teaching, research,

and project management. He can be contacted at rafalloelo@gmail.com.

https://orcid.org/0000-0001-9884-9317
https://scholar.google.com/citations?user=g9ZAPZgAAAAJ&hl=es
https://www.scopus.com/authid/detail.uri?authorId=57202855362
https://orcid.org/0000-0002-3042-0917
https://scholar.google.com/citations?hl=es&authuser=1&user=KxXHCCwAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57207455739

