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 Portable electronic systems allow the analysis and monitoring of continuous 

time signals, such as human activity, integrating deep learning techniques with 

cloud computing, causing network traffic and high energy consumption. In 

addition, the use of algorithms based on neural networks are a very widespread 

solution in these applications, but they have a high computational cost, not 

suitable for edge devices. In this context, solutions are created that bring data 

analysis closer to the edge of the network, so in this paper models adapted to 

an edge device for the recognition of human activity are evaluated, 

considering characteristics such as inference time, memory, and precision. 

Two categories of models based on deep and convolutional neural networks 

are developed by implementing them in C language and comparing with the 

TensorFlow Lite platform. The results show that the implementations with 

libraries have a better accuracy result of 76% using principal component 

analysis inputs, obtaining an execution time of 9ms. Therefore, when 

evaluating the models, we must not only consider their accuracy but also the 

execution time and memory on the device. 
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1. INTRODUCTION  

The advancement of new technology has produced portable electronic systems with communication 

and processing capabilities, energy consumption, size and reduced cost which allows the analysis and 

continuous monitoring of human activity (HAR) [1], [2] but its operating approach is still in a cloud solutions 

scheme [3]. On the other hand, deep learning has achieved significant performance in applications such as 

temporal signal recognition and data analysis using wearable sensors, demonstrating its potential when deep 

neural networks are used [4]. This has allowed developing solutions that drive inference on edge devices 

(TinyML) [5] and analyzing characteristics such as processing response delay, memory usage, algorithm 

accuracy and data privacy Figure 1 [6], [7] in areas such as health monitoring [8], home or office [9]. 

Performing the integration of machine learning algorithms in edge devices requires the study of the 

characteristics mentioned above [1]. In this sense, the use of neural networks (NN) represents a very widespread 

solution, but it brings with it the problem of the computational load involved in training and inference activities 

[3], which makes it difficult to integrate it into edge devices (usually built with microcontrollers) [2], [10]. In 

the case of critical applications related to information privacy assurance, there is a loss of time in decision 

making when data analysis is performed in the cloud, generating delays and network traffic [11]. 

Due to the use of algorithms based on neural networks in edge devices, some works such as [1] 

investigate the efficiency of two models of neural networks such as the multilayer perceptron (MLP) and a 
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convolutional neural network (CNN), which are characterized in terms of CPU cycles, memory used, and 

power consumption of an Arm Cortex-M4 device. On the other hand, the research carried out in [2] focuses on 

proposing a high-speed CNN algorithm for activity data classification using a Raspberry Pi3 and STM32. In 

addition, in [12], [13] the implementation of classification models in smartphones for activity detection based 

on data extracted from these devices is carried out. In this research, frameworks from different manufacturers 

are evaluated, but a comparison is not made with manual implementations and in devices with lesser 

computational resources and low cost. 
 

 

 
 

Figure 1. Considerations for implementing TinyML in embedded systems 
 

 

In this context, solutions can be created to bring computational capacity closer to the edge of the 

network to avoid data transmission to the cloud for processing and alleviate critical problems related to latency 

[14], energy consumption [15], bandwidth and scalability [16]. Furthermore, the integration with artificial 

intelligence empowers machines with human-like intelligence and includes knowledge-based perception and 

decision-making capabilities [17]. Therefore, in this research we focus on evaluating algorithms based on 

neural networks adapted to an edge device in the context of a human activity recognition application [18]. 

The main contributions of the study are: i) an experimental work is shown to analyze the behavior of 

different machine learning models in an edge device with and without the use of a quantization framework, in 

the context of human activity recognition [19]-[21] using an own dataset; ii) the edge device is evaluated by 

analyzing inference time, memory usage and classification accuracy for two types of neural network-based 

learning models. In addition, the results of the paper allow to obtain indications to contribute to future research 

with machine learning solutions integrated in edge devices.  

Section 2 describes the neural networks to be evaluated, section 3 describes the TensorFlow Lite 

framework. Sections 4 and 5 present the edge device, discussion and results, respectively. Finally, section 6 

shows the conclusions. 

 

 

2. CONVOLUTIONAL AND DEEP NEURAL NETWORKS 

Results obtained by the neural networks are calculated using the values of the weights and the biases 

in a process called forward propagation as shown in Figure 2. This procedure has a much lower computational 

cost than that required during the training stage, therefore it can be implemented manually or using specialized 

libraries in hardware devices with reduced characteristics. This consists of four fundamental elements: input 

neurons with scaling, operations on the neurons of the hidden layers together with the weights and ways, and 

the output layer. Within each neuron, the weights are multiplied by each of the inputs, adding a bias, as shown 

in (1). Each neuron adds these weights to the input signal and then applies an activation function to calculate 

the output signal (2). The hidden layer sends the resulting signal to all units in the next layer (output units). 

 

𝑣𝑗 = ∑ 𝑤𝑖,𝑗 ∗ 𝑥𝑗 + 𝑏𝑗
𝑛
𝑖=1  (1) 

 

𝑌𝑗 = 𝑓(𝑣𝑗) (2) 

 

For a classifier based on neural networks, such as CNN and/or deep multilayer networks (DNN) [22], 

𝑦 =  𝑓 ∗  (𝑥) assigns an input “x” to a category “y”. A feedforward network defines a mapping 𝑦 =  𝑓 (𝑥;  𝜃) 

and learns the value of the parameters θ that result in the best function approximation. CNN are biologically 

inspired networks used in computer vision for image classification and pattern detection. It usually consists of 

a convolutional layer followed by a max-pooling layer [23]. In the case of the development of this paper, only 

the implementation of the calculation stage of the outputs in the edge device will be used. The types of networks 

evaluated in this research are: 

− NNM: neural network using dimensionally reduced inputs (PCA) without TensorFlow Lite (TFlite). 
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− NNT: neural network using dimensionally reduced inputs (PCA) with TensorFlow lite. 

− DNNSP: deep neural networks with TensorFlow Lite without dimension reduction. 

− CNN1: convolutional networks with TensorFlow Lite without dimension reduction. 

− CNN2: structure like the previous one but with the MaxPool technique. 
 

 

 
 

Figure 2. Feedforward neural network stages 

 

 

3. TENSORFLOW LITE AND DEPLOYMENT ON AN EDGE DEVICE 

TensorFlow is used to train machine learning models on computational devices with high hardware 

resources, while TensorFlow Lite is applied to the evaluation and deployment of models that support the 

required optimizations on a microcontroller edge device. TensorFlow Lite is platform dependent, turning a 

large and robust model into something light and small. It also allows you to convert and optimize a model 

considering three main goals: 

− Reduce model size and RAM usage. 

− Reduce the number of calculations required for each prediction, latency, and battery usage. 

− Adapt the model to the specific limitations of the device. 

Edge devices implement machine learning processes for pattern detection in input data [24]. Figure 3 

shows a schematic of the application of edge intelligence in combination with machine learning for scenarios 

based on smart internet of things (IoT) sensors which allows alleviating critical problems of latency, energy 

consumption, bandwidth, and scalability. This technique is known as TinyML and provides a unique solution 

by summarizing and analyzing data at the edge, providing intelligent summary statistics that take into account 

patterns, anomalies, and analysis [25], [26]. 

 

 

 
 

Figure 1. Edge device usage scenario 

 

 

4. DESCRIPTION AND CHARACTERISTICS OF THE EDGE DEVICE 

Figure 4 shows the processes implemented in the edge device for the detection of the class of 

movement of the person, preparation and cleaning of data. Data captures related to the running (co), walking 

(ca) and static (es) classes are made and based on this procedure, an own dataset is created to carry out the 

training of the models. An inertial sensor is used capturing data from the three axes using a sampling time of 

10 milliseconds for 10 seconds and they are recorded in text files corresponding to each type of movement 

creating the dataset to train the models. Edge devices use the communication block for the transmission of 

online classification results and a data monitoring stage is implemented to display the results of the 

classification process. The edge device can be integrated into a system for detecting an event, sending an alert 

to database servers and/or applications so that interested people can be informed. This allows access to 

information at any time of the day as shown in Figure 5 [26], [27]. 
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4.1.  ESP32 IoT device and training data generation 

An edge device based on the ESP32 module is used, which is manufactured by the company Ai 

Thinker based on a system on chip (SoC) with 520 KB of internal memory and 4 MB external [28]. The module 

contains serial transmit and receive pins and general-purpose input-output (GPIO) pins as shown in Figure 6. 

The edge computing IoT device is composed of four subsystems powered by a 2,200 mAh battery, an inertial 

sensor with accelerometer, and the Wi-Fi communication module. 

 

4.2.  Multilayer neural network with PCA 

A stage based on reduction component analysis (PCA) is used as input to this model, using three 

variations of the multilayer neural network model with four neurons in the hidden layer and outputs 

corresponding to each of the three classes. To perform the training, the categorical output is transformed 

generating dummy variables. Considering the numerical data of classes (0, 1,2), the outputs are generated using 

three variables for each label: Walking (1 0 0), Running (0 1 0) and Static (0 0 1). The "hidden layer" and 

"output" processes are implemented through loops to automate the computation of each neuron's output as 

shown in Figure 7. A section of the program with the flowchart that performs the hidden layer Figure 7(a) 

shows the neural networks (NNM) model and output layer Figure 7(b) output computation using iteration statements. 

 

 

 
 

Figure 4. Interaction of firmware processes on the edge device 

 

 

 
 

Figure 5. Usage environment for edge device 

 
 

Figure 6. Sensor node hardware 

 

 

 
(a) 

 
(b) 

 

Figure 7. NNM model flowchart for (a) hidden layer process and (b) output layer process 
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4.3.  Multilayer neural network with TensorFlow Lite and principal component analysis 

Unlike the previous neural network implementation, this model (NNT) is created using TensorFlow 

Lite by obtaining a C language file with the model information, which is imported from the edge device along 

with the necessary firmware libraries as shown in Figure 8. Neural network prediction and configuration 

functions are encapsulated within TensorFlow Lite libraries to be imported from the edge device programming 

IDE. In addition, the original file is in binary format and is converted to hexadecimal using the "xxd" function 

for integration into the edge device program. 

 

 

 
 

Figure 8. Model file generated by TensorFlow Lite 

 

 

5. RESULTS AND DISCUSSION 

5.1.  Evaluation of neural network models with principal component analysis 

Evaluations on the accuracy of the models with data obtained from a principal component analysis 

process are evaluated in the embedded system for different neural network algorithm configurations as shown 

in Figure 9. 

a) Manually generated neural networks (NNM). The accuracy results without implementing the neural 

networks with TensorFlow Lite are greater than 85%. In the case of the test results, these do not exceed 

75% for the three types of neural networks, as shown in Figure 9(a). The execution time of processes can 

reach up to 41 ms when the models are implemented in the edge device, considering that the critical time 

is used by the PCA process. 

b) Automatically generated neural networks with TFLite (NNT). Figure 9(b) shows the accuracy when making 

the prediction of the neural network generated with TFLite using inputs resulting from the PCA model with 

3, 7 and 16 principal components with the ESP32 module (edge device). The training results are above 95%. 

The model using 16 components outperforms the others during its implementation on the edge device. 

The times used by the embedded system for the execution of the classification processes are shown in 

Figure 10. Where in the worst case it can reach 10ms in transformation time and class prediction (for 16 

components of the PCA process). Specifically, the PCA data transformation process is the one that uses the 

most processing time compared to the prediction time in NNT model, as shown in Figure 11. 

 

 

 
(a) 

 
(b) 

 

Figure 9. Evaluation of accuracy of (a) the model NNM and (b) NNT generated by the edge device 
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Figure 10. NNT model classification times and component analysis (PCA) in the edge device 
 

 

 
 

Figure 11. Process execution times on the edge device 
 

 

5.2.  Deep and convolutional neural networks without PCA 

In this case, the results of the implementation of models CNN1, CNN2 and DNNSP considering the 

300 samples of the inertial sensor readings are shown. In the case of the DNNSP, a layer with 300 scaled inputs, 

20 neurons in the hidden layer and three outputs are considered. For the CNN1 network, the Maxpool process 

(to reduce the size of the generated model) and the 2D convolution process are used, because the TensorFlow 

Lite libraries are not compatible with one-dimensional data evaluations. For the CNN1 and CNN2 models, the 

absence and presence of the “MaxPool” process are considered Figure 12. Figure 13 shows that the DNNSP 

model is slightly better than CNN1 considering that the size of the generated file has a much lower weight in 

the CNN2 model when "Maxpool" is used Table 1. The prediction in the model generated by hardware is 

superior for the CNN2 model compared to the other models. 
 

 

 
 

Figure 12. CNN1 neural network generated on the edge device 
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Table 1. Parameters of neural network models without PCA  
Size NNTF Kbytes % Program memory % Dynamic Memory 

CNN1 102 040 32 12 

CNN2 20 091 31 12 

DNNSP 160 966 33 14 

 

 

 
 

Figure 13. Accuracy values obtained edge device 

 

 

6. CONCLUSION  

The deployment of classification algorithms using neural networks directly on the edge device is 

evaluated by comparing their accuracy and execution times in hardware. Two categories of neural networks 

have been developed. The first one consists of algorithms with (NNM and NNT) and without (CNN1, CNN2 

DNNSP) PCA type inputs. In addition, within each category, its implementation must be conducted considering 

its construction directly in C language from the definition of the feedforward process and using the 

functionalities of TensorFlow Lite libraries. The experimental results show that the implementations with 

TFLite (NNT) have a better result in the precision obtained with PCA inputs with 76% and an execution time 

of 9ms, so its use is recommended in the case presented in this paper. 

In the case of the implementation of convolutional and deep networks with TFLite, the best results are 

obtained by the convolutional network model (CNN2) with an accuracy of 97%. As a conclusion, when 

evaluating an algorithm, we should not only consider its accuracy, but also the execution time (latency) and 

memory usage on the edge device. As future research, integration with other types of health monitoring sensors 

can be evaluated, obtaining power consumption and lifetime of edge devices. 
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