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 The nonlinear conjugate gradient algorithm is one of the effective algorithms 

for optimization since it has low storage and simple structure properties. The 

coefficient conjugate is the basis of conjugate gradient algorithms with the 

desirable conjugate property. In this manuscript, we have derived a new 

second order information for the Hessian from objective function, which can 

give a new search direction. Based on new search direction, we have proposed 

the update formula interesting and nonlinear conjugate gradient method. 

Under wolfe line search and mild assumptions on objective function, the 

method possess sufficient descent property and are always globally 

convergent. Numerical results show that the method is effective and 

competitive to recover the original image from an image corrupted by impulse 

noise. 
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1. INTRODUCTION  

Images are often corrupted by impulse noise. Salt-and-pepper and random-valued impulse noise are 

removed using two-phase techniques. The first phase employs decision-based median filters to identify pixels 

that are prone to noise corruption (noise candidates). These noise candidates are restored in the second phase 

using a detail-preserving regularization approach that preserves edges and noise-free pixels. Let 𝑋 be the 

genuine image and 𝛢 = {1,2,3, . . . . . 𝑀} × {1,2,3, . . . . . 𝑁} be the index set of 𝑋. The collection of indices of the 

noise pixels observed in the first phase is denoted by 𝛮 ⊂ 𝛢. The noise pixels are then recovered in the second 

phase by (1): 

 

𝐹𝛼(𝑢) = ∑ [|𝑢𝑖,𝑗 − 𝑦𝑖,𝑗| +
𝛽

2
(2 × 𝑆𝑖,𝑗

1 + 𝑆𝑖,𝑗
2 )](𝑖,𝑗)∈𝛮  (1) 

 

where 𝜷 is the regularization parameter,𝑆𝑖,𝑗
1 = 2 ∑ 𝜙𝛼(𝑢𝑖,𝑗 − 𝑦𝑚,𝑛(𝑚,𝑛)∈𝛲𝑖,𝑗∩𝛮𝑐 ), 𝑆𝑖,𝑗

2 = ∑ 𝜙𝛼(𝑢𝑖,𝑗 −(𝑚,𝑛)∈𝛲𝑖,𝑗∩𝛮

𝑦𝑚,𝑛)  and edge-preserving potential function is 𝜙𝛼 = √𝛼 + 𝑥2, 𝛼 > 0 . Let 𝑃𝑖,𝑗  be the set of four closest 

neighbors of the pixel at location (𝑖, 𝑗) ∈ 𝛢, 𝑦𝑖,𝑗 the image's observed pixel value at position (𝒊, 𝒋), , and 𝑢𝑖,𝑗 =

[𝑢𝑖,𝑗]
(𝑖,𝑗)∈𝛮

 a lexicographically ordered column vector of length 𝒄. The number of elements in 𝛮 is represented 

by the letter 𝒄. In actuality, the smooth data-fitting term is eliminated from the minimization, and only noisy 

pixels are restored. The smooth functional that results is as shown in (2). 

 

𝐹𝛼(𝑢) = ∑ [(2 × 𝑆𝑖,𝑗
1 + 𝑆𝑖,𝑗

2 ](𝑖,𝑗)∈𝛮  (2) 

https://creativecommons.org/licenses/by-sa/4.0/
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For more details see Xue et al. [1] and Yu et al. [2]. Our aim is to minimize a function of n  variables by using 

iteration methods: 

 

𝑀𝑖𝑛𝑓(𝑢)  ,  u ∈ 𝑅𝛮 (3) 

 

where 𝑓  is smooth and its gradient 𝑔𝑘+1  is available. Many practical problems can be translated into the 

problems, see Dai and Wen [3] and Hajmohammadi [4].  

One of the most widely remarkable and powerful used minimization functions is conjugate gradient 

methods. Begins the minimization process with an initial estimate 𝑥0 and an initial search direction 𝑑0 = −𝑔0. 

As we noted that the iterative formula given by (4): 

 

𝑢𝑘+1 = 𝑢𝑘 + 𝛼𝑘𝑑𝑘 (4) 

 

where 𝛼𝑘 is a step length generated by a suitable line search and 𝑑𝑘 is the search direction, see [5]. Obviously, 

the approximate adequate step size associated to quadratic function 𝑓𝑘 is (5). 

 

𝛼𝑘 =
−𝑔𝑘

𝑇𝑑𝑘

𝑑𝑘
𝑇𝑄𝑑𝑘

  (5) 

 

For general nonlinear functions, it is necessary to use an iterative procedure [6]. We use the typical Wolfe 

criteria to determine the step length throughout our operation, as shown in (6) and (7): 

 

𝑓(𝑢𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑢𝑘) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 (6) 

 

𝑑𝑘
𝑇𝑔(𝑢𝑘 + 𝛼𝑘𝑑𝑘) ≥ 𝜎 𝑑𝑘

𝑇𝑔𝑘 (7) 

 

where 0 < 𝛿 < 𝜎 < 1, Moghrabi [7]. In conjugate gradient methods, the search directions can be defined 

recursively: 

 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑠𝑘 (8) 

 

where the coefficient 𝛽𝑘  is so chosen that 𝑑𝑘  and 𝑑𝑘+1  must fulfill the conjugacy property. In practical 

computations promising, the CG methods include suggested by Fletcher and Reeves (FR) [8] and Dai and Yuan 

(DY) [9] is believed of the efficient methods, respectively given by: 

 

𝛽𝑘
𝐹𝑅 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

, 𝛽𝑘
𝐷𝑌 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑑𝑘
𝑇𝑦𝑘

 (9) 

 

or via other formulaes (e.g. see [4], [10]-[12]). Some of conjugate gradient (CG) approaches are numerically 

successful, while the others are conceptually successful. 

Later, if the point 𝒙𝒌+𝟏 is close enough to a local minimizer 𝒖∗ in pure Newton's technique, the search 

direction of good to follow, that is, 𝑑𝑘+1 = −𝑄𝑘+1
−1 𝑔𝑘+1, is determined. Nazareth [13], inspired by this, rewrites 

in (5). 

 

−𝑄𝑘+1
−1 𝑔𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑠𝑘 (10) 

 

On this guideline, this work is improved to investigate ideas from Newton updates, in order to build definite 

new method for conjugate gradient methods. They proved to be really effective in practice and showed mature 

convergence properties. This idea was presented as a technical method in some manuscripts, for example, to 

maximize in the advantages of the original respective conjugate gradient methods [7], [14]-[16]. To introduce 

a new method, we will find the Hessian approximation of the minimum of a function f(u), which give a new 

search direction and choose the coefficient conjugate satisfies above relation.  

 

 

2. OUR NEW COEFFICIENT CONJUGATE 

A very important coefficient conjugate in minimization is that for conjugate gradient method. In order 

to deriving a new coefficient conjugate, we exposed a second order Taylor series as: 

 

𝑓(𝑥) = 𝑓(𝑥𝑘+1) + 𝑔𝑘+1
𝑇 (𝑥 − 𝑥𝑘+1) +

1

2
(𝑥 − 𝑥𝑘+1)𝑇𝑄(𝑥𝑘+1)(𝑥 − 𝑥𝑘+1) (11) 
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can see derivative as (12). 

 

𝑔𝑘+1 = 𝑔𝑘 + 𝑄(𝑥𝑘+1)𝑠𝑘 (12) 

 

A good second order curvature information, we obtained (13). 

 

𝑠𝑘
𝑇𝑄(𝑥𝑘+1)𝑠𝑘 = (𝑓𝑘+1 − 𝑓𝑘) − 3/2𝑠𝑘

𝑇𝑔𝑘 (13) 

 

The yielded matrix 𝑄(𝑥𝑘+1) can be as (14). 

 

𝑄(𝑥𝑘+1) =
(𝑓𝑘+1−𝑓𝑘)−3/2𝑠𝑘

𝑇𝑔𝑘

𝑠𝑘
𝑇𝑠𝑘

 (14) 

 

Putting 𝑄(𝑥𝑘+1) in )10( we get (15). 

 

𝛽𝑘 = (1 −
𝑠𝑘

𝑇𝑠𝑘

(𝑓𝑘+1−𝑓𝑘)−3/2𝑠𝑘
𝑇𝑔𝑘

)
𝑔𝑘+1

𝑇 𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

 (15) 

 

In addition by (14) is gained (16). 

 

𝛽𝑘 = (1 −
𝑠𝑘

𝑇𝑠𝑘

(𝑓𝑘+1−𝑓𝑘)+3/2𝑠𝑘
𝑇𝑦𝑘

)
𝑔𝑘+1

𝑇 𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

 (16) 

 

To ensure the sufficient descent condition, we will do some algebra manipulations on above formula, we get: 

 

𝛽𝑘 =
1

𝑠𝑘
𝑇𝑦𝑘

(𝑦𝑘 − 𝜛
‖𝑦𝑘‖2

𝑠𝑘
𝑇𝑦𝑘

𝑠𝑘)
𝑇

𝑔𝑘+1 (17) 

 

where: 

 

𝜛 =
(𝑠𝑘

𝑇𝑦𝑘)

‖𝑦𝑘‖2 [
𝑠𝑘

𝑇𝑦𝑘

𝑠𝑘
𝑇𝑠𝑘

∗
𝑠𝑘

𝑇𝑠𝑘

(𝑓𝑘+1−𝑓𝑘)−3/2𝑠𝑘
𝑇𝑔𝑘

] (18a) 

 

𝜛 =
(𝑠𝑘

𝑇𝑦𝑘)

‖𝑦𝑘‖2 [
𝑠𝑘

𝑇𝑦𝑘

𝑠𝑘
𝑇𝑠𝑘

∗
𝑠𝑘

𝑇𝑠𝑘

(𝑓𝑘+1−𝑓𝑘)+3/2𝑠𝑘
𝑇𝑦𝑘

] (18b) 

 

this formulas will assist us to proving that the direction is satisfied the sufficient descent property. We denote 

by binarized neural networks (BNN) and block truncated-Newton (BTN) the methods defined by (17). We 

introduced the BNN and BTN methods by the following algorithm, which would be used for its convergence 

analysis. New algorithm (BNN and BTN Algorithms): 

- Stage 1. Give initial point 𝑢1. Set 𝑘 = 1 and 𝑑1 = −𝑔1. If ‖𝑔1‖ ≤ 10−6, then stop. 

- Stage 2. Evaluate 𝛼𝑘 satisfying the Wolfe conditions (6) and (7). 

- Stage 3. Let 𝑢𝑘+1 = 𝑢𝑘 + 𝛼𝑘𝑑𝑘. If ‖𝑔𝑘+1‖ ≤ 10−6, then stop.  

- Stage 4. Evaluate 𝛽𝑘 by the formulae (17) then generate 𝑑𝑘+1 by (8). 

- Stage 5. Set 𝑘 = 𝑘 + 1 and continue with step 2. 

Theorem 1. 

Let 𝑠𝑘, 𝑦𝑘 , 𝑔𝑘+1 ∈ 𝑅𝑛, 𝛽𝑘 ∈ 𝑅 and 𝛽𝑘
𝐵𝑁𝑁 =

1

𝑠𝑘
𝑇𝑦𝑘

(𝑦𝑘 − 𝜛
‖𝑦𝑘‖2

𝑠𝑘
𝑇𝑦𝑘

𝑠𝑘)
𝑇

𝑔𝑘+1. If 𝑠𝑘
𝑇𝑦𝑘 ≠ 0, then 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ − [1 −

1

4𝜛
] ‖𝑔𝑘+1‖2 

Proof : 

Since 𝑑0 = −𝑔0, we have 𝑔0
𝑇𝑑0 = −‖𝑔0‖2, which satisfy (17). Multiplying (8) by 𝑔𝑘+1, we have: 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖2 + (

𝑔𝑘+1
𝑇 𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

− 𝜛
‖𝑦𝑘‖2

(𝑠𝑘
𝑇𝑦𝑘)2 𝑔𝑘+1

𝑇 𝑠𝑘) 𝑠𝑘
𝑇𝑔𝑘+1 (19) 

 

Yielding: 
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𝑑𝑘+1
𝑇 𝑔𝑘+1 =

(𝑔𝑘+1
𝑇 𝑦𝑘)(𝑠𝑘

𝑇𝑔𝑘+1)(𝑠𝑘
𝑇𝑦𝑘)−‖𝑔𝑘+1‖2(𝑠𝑘

𝑇𝑦𝑘)2−𝜛‖𝑦𝑘‖2(𝑔𝑘+1
𝑇 𝑠𝑘)2

(𝑠𝑘
𝑇𝑦𝑘)2  (20) 

 

now, by applying: 

 

𝑤 =
1

√2𝜛
(𝑠𝑘

𝑇𝑦𝑘)𝑔𝑘+1 and 𝑣 = √2𝜛(𝑔𝑘+1
𝑇 𝑠𝑘)𝑦𝑘 (21) 

 

into the inequality: 

 

𝑤𝑇𝑣 ≤
1

2
(‖𝑤‖2 + ‖𝑣‖2) (22) 

 

we can obtain: 

 

(𝑔𝑘+1
𝑇 𝑦𝑘)(𝑠𝑘

𝑇𝑔𝑘+1)(𝑠𝑘
𝑇𝑦𝑘) ≤

1

2
[

1

2𝜛
(𝑠𝑘

𝑇𝑦𝑘)2‖𝑔𝑘+1‖2 + 2𝜛(𝑠𝑘
𝑇𝑔𝑘+1)2‖𝑦𝑘‖2] (23) 

 

therefore by (23) and (20), we have that: 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤

[
1

4𝜛
−1](𝑠𝑘

𝑇𝑦𝑘)2‖𝑔𝑘+1‖2+[𝜛−𝜛](𝑠𝑘
𝑇𝑔𝑘+1)2‖𝑦𝑘‖2

(𝑠𝑘
𝑇𝑦𝑘)2  (24) 

 

therefore, we get: 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ − [1 −

1

4𝜛
] ‖𝑔𝑘+1‖2 (25) 

 

which completes our proof. In BTN method similar to the proof done in BNN. 

 

 

3. CONVERGENCE ANALYSIS 

To understand the global convergence theorem of the BNN technique, we must first understand the 

assumptions listed below. 1. The 𝛺 = {𝑥 ∈ 𝑅𝑛/𝑓(𝑥) ≤ 𝑓(𝑥1)} is a bounded level set. 2. In some neighborhood 

𝛬 of 𝛺, the gradient of function g is Lipschitz continuous, namely, there exists a constant L > 0 such that: 

 
‖𝑔(𝜊) − 𝑔(𝜏)‖ ≤ 𝐿 ‖𝑜 − 𝜏‖, ∀𝜏, 𝜊 ∈ 𝛬 (26) 

 

We demonstrate the Dai et al. [17] theorem it is very important for deducing global convergence. 

Lemma 1. 

Let 𝑥𝑘 be generated by (4), 𝑑𝑘 satisfy descent property and 𝛼𝑘 be satisfy (6)-(7). If: 

 

∑
1

‖𝑑𝑘+1‖2 = ∞,𝑘≥0  (27) 

 

then: 

 

lim𝑘→∞ inf‖𝑔𝑘+1‖ (28) 

 

We introduced our main theorem of this paper.  

Therorem 2. 

Consider the method formed by (8), (17) and 𝑓(𝑥) satisfies Assumption 1 and 2. If step size 𝛼𝑘 

satisfies wolfe conditions (6) and (7), then we obtain: 

 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0  (29) 

 

Proof: 

We may deduce the following from (8) and the definition of 𝛽𝑘 given by (17) 

 

‖𝑑𝑘+1‖ = ‖−𝑔𝑘+1 + 𝛽𝑘
𝐵𝑁𝑁𝑑𝑘‖ ≤ ‖𝑔𝑘+1‖ +  
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‖𝑦𝑘‖‖𝑔𝑘+1‖+𝜛
‖𝑔𝑘+1‖‖𝑦𝑘‖

2
‖𝑠𝑘‖

‖𝑠𝑘‖‖𝑦𝑘‖

𝛼𝑘‖𝑑𝑘‖‖𝑦𝑘‖
‖𝑑𝑘‖  

≤ ‖𝑔𝑘+1‖ +
‖𝑦𝑘‖‖𝑔𝑘+1‖+𝜛‖𝑔𝑘+1‖‖𝑦𝑘‖

𝛼𝑘‖𝑑𝑘‖‖𝑦𝑘‖
‖𝑑𝑘‖  

≤ [1 +
1

𝛼𝑘
+

𝜛

𝛼𝑘
] ‖𝑔𝑘+1‖ ≤ [

𝛼𝑘+1+𝜛

𝛼𝑘
] ‖𝑔𝑘+1‖ (30) 

 

This relationship demonstrates that: 

 

∑
1

‖𝑑𝑘‖2𝑘≥1 ≥ (
𝛼𝑘

𝛼𝑘+1+𝜛
)

1

𝛤
∑ 1𝑘≥1 = ∞ (31) 

 

we obtain 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0 from Lemma 1, which is identical to 𝑙𝑖𝑚
𝑘→∞

‖𝑔𝑘‖ = 0for a uniformly convex 

function. In BTN way, one can find its proof similar to the proof done in BNN.  

 

 

4. NUMERICAL RESULT 

The goal of the results of applying the proposed BNN and FR methods to test images (Lena, House, 

Cameraman and Elaine), will be reported in the Table 1. is to analyze the practical performance of Algorithms. 

The method was implemented in MATLAB on a PC-type computer with the stoping criterion: 

 
|𝑓(𝑢𝑘)−𝑓(𝑢𝑘−1)|

|𝑓(𝑢𝑘)|
≤ 10−4 and ‖𝑓(𝑢𝑘)‖ ≤ 10−4(1 + |𝑓(𝑢𝑘)|) (32) 

 

more details can be found in [18]-[24]. The examined pictures are presented in Table 1, and the comprehensive 

numerical results of our testing are reported in Table 1, where NI, NF, peak signal to noise ratio (PSNR) denotes 

the number of iterations, function evaluations, and PSNR, which is defined as: 

 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
2552

1

𝑀𝑁
∑ (𝑢𝑖,𝑗

𝑟 −𝑢𝑖,𝑗
∗ )2

𝑖,𝑗
 (33) 

 

where pixel values for the restored and original images are denoted by 𝑢𝑖,𝑗
𝑟  and 𝑢𝑖,𝑗

∗ , respectively.  

 

 

Table1. Performance of FR, BNN and BTN algorithms 
Image Noise level r (%) FR-Method BNN-Method BTN-Method 

NI NF PSNR (dB) NI NF PSNR (dB) NI NF PSNR (dB) 

Le 50 

70 

90 

82 

81 

108 

153 

155 

211 

30.5529 

27.4824 

22.8583 

2 

2 

9 

8 

8 

29 

37.7683 

36.6362 

29.5153 

2 

2 

2 

8 

8 

8 

37.8792 

36.5749 

35.6453 

ho 50 

70 

90 

52 

63 

111 

53 

116 

214 

30.6845 

31.2564 

25.287 

10 

12 

12 

34 

33 

33 

38.0645 

34.9569 

31.6781 

3 

4 

4 

14 

14 

14 

40.588 

40.2693 

38.94 

El 

 

50 

70 

90 

35 

38 

65 

36 

39 

114 

33.9129 

31.864 

28.2019 

10 

12 

14 

35 

41 

47 

34.6177 

33.32 

32.1012 

3 

3 

4 

17 

17 

21 

36.4966 

35.667 

33.935 

c512 

 

50 

70 

90 

59 

78 

121 

87 

142 

236 

35.5359 

30.6259 

24.3962 

10 

12 

12 

31 

39 

42 

39.1136 

35.7245 

33.333 

3 

3 

4 

12 

14 

19 

42.176 

39.7155 

37.3434 

 

 

Figures 1-4 show the obtained results by denoised images. Figure 1(a), Figure 2(a), Figure 3(a), and Figure 

4(a) are the images corrupted with 70% salt-and-pepper noise; Figure 1(b), Figure 2(b), Figure 3(b) and Figure 

4(b) are results of FR method; Figure 1(c), Figure 2(c) and Figure 3(c), and Figure 4(c) are results of the BNN 

method; Figure 1(d), Figure 2(d), Figure 3(d) and Figure 4(d) are results of the BTN method. Take everything 

together, the numerical experiments show that the proposed method performs well for removing impulse noise 

images. The field of research work in optimization is wider as in [25]-[30]. 
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Lena Image 

    
(a) (b) (c) (d) 

 

Figure 1. Comparing images results of algorithms: (a) denoised images with 70% salt-and-pepper noise,  

(b) recovered images through FR, (c) and (d) restored images using BNN and BTN of 256 * 256 

 

 

House image 

    

(a) (b) (c) (d) 

 

Figure 2. Comparing images results of algorithms: (a) denoised images with 70% salt-and-pepper noise,  

(b) recovered images through FR, (c) and (d) restored images using BNN and BTN of 256 * 256 

 

 

Elaine image 

    
(a) (b) (c) (d) 

 

Figure 3. Comparing images results of algorithms: (a) denoised images with 70% salt-and-pepper noise,  

(b) recovered images through FR, (c) and (d) restored images using BNN and BTN of 256 * 256 

 

 

Cameraman picture image 

    
(a) (b) (c) (d) 

 

Figure 4. Comparing images results of algorithms: (a) denoised images with 70% salt-and-pepper noise,  

(b) recovered images through FR, (c) and (d) restored images using BNN and BTN of 256*256 
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5. CONCLUSION 

Using the second order Taylor series to deriving a new coefficient conjugate for conjugate gradient 

method for image restoration problems. The algorithms exhibit global convergence and the necessary descent 

property holds. In numerical tests, the new method has made significant progress. It demonstrates that the novel 

conjugate gradient approach outperforms the conventional FR conjugate gradient method.  
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