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Abstract 
In this paper, a three-dimensional chaotic autonomous system is presented. The stability of the 

equilibrium and the conditions of the Hopf bifurcation are studied by means of nonlinear dynamics theory. 
Then, the circuit of chaotic system is structured out in Multisim platform by the unit circuit. The chaotic 
system is applied to secure communications by linear feedback synchronization control. All simulations 
results performed on three-dimensional chaotic autonomous system are verified the applicable of secure 
communication. 
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1. Introduction 
Since Lorenz find the first chaotic systems-Lorenz system in 1963, many new chaotic 

systems have been presented and studied widely, and these attractors of systems have been 
also verified by the experimental circuit [1-5]. There are many example, such as Chen, and Liu 
systems that have been widely studied. Literature [6] report a new Lorenz-like chaotic system 
that there are six terms on the right-hand side but only relies on two quadratic nonlinearities xz
and xy . Its nonlinear characteristic and basic dynamic properties are studied, and nonlinear 

circuit is also structured out. Stouboulos study a chaotic dynamics of a fourth-order autonomous 
nonlinear electric circuit that consists of one linear negative conductance and one symmetrical 
piecewiselinear v i  characteristic and two capacitances 1C and 2C [7]. Mada designed and 

simulate a non-autonomous fourth order chaotic oscillator circuit that is addressed suitable for 
chactic masking communication circuit using Matlab and Multisim programs [8]. 

Literature [9-12] achieves the effective control of different nonlinear circuit through 
adding electronic components and external incentive. In recent years，secure communication 
that base on chaos and chaotic synchronization has always been a hot spot of the study, 
however, information effective masking that is realized by physical method is a difficulty. 

The stability of the equilibrium and the conditions of the Hopf bifurcation are studied by 
means of nonlinear dynamics theory. Then, the new system is controlled through linear 
feedback synchronization control, and secure communication circuit based on chaotic system is 
structured out. 

 
 

2. Mathematical Model of the Chaotic Attractor 
The chaotic system is given by: 
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where T 3( , , ) Rx x y z  is the state variables of the system, , ,a b c R  are constants. There 

are six terms on the right-hand side but only relies on two quadratic nonlinearities xz  and xy . 
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The system exits a chaotic attractor for the parameter value 5, 4, 4a b c    , as shown in 

Figure 1. Figure 1 (a) shows the trajectory of the system plotted in 3R , and Figure 1(b)-(d) show 
the projections of the phase space orbit onto the x-y plane, the x-z plane and the y-z plane, 
respectively. Figure 1 (e) shows three Lyapunov exponents of the chaotic attractor for the 
parameter value 5, 4, 4a b c    . It is hard to fully appreciate the intricacy of this three-

dimensional trajectory from Figure 1. A movie of these figures would be much better. 
 
 

 
(a) Phase trajectory in 3-D space       

 

 
(b) x-y plane 

 
(c) x-z plane 

 

 
(d) y-z plane 

 
(e) Lyapunov exponent 

 
Figure 1. Numerical simulation for a chaotic attractor of system (1) 

 
 

3. The Stability and the Bifurcation of the Equilibrium 
We now turn to analyzing the fixed points of the new system. The equilibrium satisfy 
 

( ) 0
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Therefore, system (1) has three equilibrium if ( ) 0b a c  : 

 

1(0,0,0)S , 2 ( ( ), ( ), )S b a c b a c b  , 3 ( ( ), ( ), )S b a c b a c b    . 

 

Proposition 1 If 2 22 0, 0a c a ac a b      or 2 ( ) 0ba a c   , then the equilibrium 1S is 

unstable. 

Proof The Jacobian matrix of system (1) at 1S is 

 

0

0 0

0 0 ( )

a a

A ab

a c

 
   
   

 (2) 

 
and the characteristic equation is 
 

3 2 2 2 2( ) (2 ) ( ) ( )p a c a a b ac ba a c            (3) 

 
According to Routh-Hurwitz criterion, if and only if 
 

2 22 0, 0a c a ac a b     or 2 ( ) 0ba a c   . (4) 

 

Then the equilibrium 1S is unstable. 

Proposition 2 Eq.(3) has a negative real 3 (2 )a c    together with a pair of conjugate purely 

imaginary roots 2
1,2

2 1
( )( )
3 3

i a a c a c ac       , and

0

Re
0

b b

d

db





 , therefore system 

(1) displays a Hopf bifurcation at the point 1S if 2 2 1
0,2 0, ( )( ) 0.

3 3
a a c a a c a c ac         

Proof Let 0 0( 0)i    be a root of (3), we have 
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and the three characteristic roots are as follows 
 

1,2 0 3,    (2 )i a c        (6) 

 
Differentiating both sides of Eq. (3) with respect to b , we obtain 
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4. Bifurcation and Chaotic Analysis of the System 

For this system, bifurcation can easily be detected by examining graphs of z versus 
each of the control parameters , ,a b c  respectively if we fix the other two. 
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When the parameters 4, 4b c   , while a  is varied on the closed interval [4.1, 4.5] . 

Fig.2 shows the bifurcation diagram of state y and the Lyapunov-exponent spectrum versus 

increasing a , respectively. It can be observed that the bifurcation diagram well coincides with 
the Lyapunov-exponent spectrum. Along with the increase of parameters a , the system (1) 
comes into chaos after the period-doubling bifurcation has occurred many times, and the 
periodic windows also contain the period-doubling bifurcation in chaotic areas. 
 

 

 
(a) Bifurcation diagram of y

 
(b) Lyapunov-exponent spectrum 

 
Figure 2. Bifurcation diagram and Lyapunov-exponent spectrum for specific values set 

( 4, 4b c   ) vs the control parameter a . 

 

(a) Bifurcation diagram of y (b) Lyapunov-exponent spectrum 
 

Figure 3. Bifurcation diagram and Lyapunov-exponent spectrum for specific values set  
( 5, 4a c   ) vs. the control parameterb . 

 
 
When the parameters 5, 4a c    are fixed, while b  is varied on the closed interval

[8, 14] . Figure 3 shows the bifurcation diagram of the state y and the corresponding Lyapunov-

exponent spectrum versus increasingb , respectively. While b  increasing, the system is 
undergoing some representative dynamical routes. The system (1) come into chaos that contain 
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multiple periodic windows versus increasingb , and inverse period-doubling bifurcation 
phenomenon emerge from every periodic window. 

 
 

5. Circuit Simulation of System (1) 
Through the above analysis, system (1) has abundant dynamic behavior, which has 

great application value in the information transmission, detection and treatment. In order to get 
the chaotic signal, electronic circuit of system (1) is designed by the principle of electronic circuit 
design for the parameter value 5, 4, 4a b c    , as shown in Figure 4. Figure 5 also shows 

Multisim simulation results of this circuit. The operational amplifiers and associated circuitry 
perform the basic operations of addition, subtraction, and integration. The nonlinear terms in the 
equation are implemented with the analog multipliers AD633. The occurrence of the chaotic 
attractor can be clearly seen from Figure 5(a)-(c). By compared with Figure 1(b)-(d), it can be 
concluded that a good qualitative agreement between the numerical simulation and the 
experimental realization is obtained. 

 
 

 
 

Figure 4. Circuit diagram for realizing the chaotic attractor of system and the values of electronic 
elements 

 
 

 
(a)Phase portrait x-y 

 
(b)Phase portrait x-z 

 
(c)Phase portrait y-z 

 
Figure 5. Experimental observations of the chaotic attractor in different planes 
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6. Linear Feedback Synchronization and Application for Secure Communication 
Synchronization between chaotic systems has received considerable attention and led 

to communication applications. Synchronization of chaotic motions among coupled dynamical 
systems is an important generalization from the phenomenon of the synchronization of linear 
system, which is useful and indispensable in communications. However, some other important 
factors need to be considered in order to build secure communications system.  

The new system is controlled through linear feedback synchronization control, and 
linear coupling constant 1.5k  . The controlled system that base on linear feedback 
synchronization can be described by: 
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 (8) 

 
where k is linear coupling constant. 

The corresponding circuit equation can be described by 
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The circuit parameters of system (8) are 
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Figure 6. Synchronization of chaotic attractor circuit 

 
 

 

1 2x x  
 

1 2y y  

 

 

1 2z z  
 

Figure 7. Output trajectories of the circuit simulation for synchronization of system (8) 



                ISSN: 2302-4046        

TELKOMNIKA Vol. 12, No. 1, January 2014:  361 – 370 

368

Due to the fact that output signal can recover input signal, it indicates that it is possible 
to create secure communication for a chaotic system. It is necessary to make sure the 
parameters of transmitter and receiver are identical for implementing the chaotic masking 
communication. In this paper, secure communication circuit based on chaotic system is 
structured out, as shown in Fig 8. We use TL084CN operational amplifiers, appropriate valued 
resistors, inductor and capacitors for Multisim simulations. Useful signal is sinusoidal signal that 
is added to the synchronizing driving chaotic signal in order to regenerate a clean driving signal 
at the receiver. Thus, the message has been perfectly recovered by using the signal masking 
approach through synchronization in the chaotic autonomous attractor. 

The sinusoidal signal is added to the generated chaotic x signal, and 1( ) ( )s t m t x  is 

feed into the receiver. The chaotic x  signal is regenerated allowing a single addition to retrieve 

the transmitted signal, 2 1 2( ) ( ) ( ) ( )m t s t x m t x x m t       , if 1 2x x . Fig. 9 shows 

Multisim simulation results of this chaotic masking circuit. 
The launch system can be described by: 
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The receiving system can be described by: 
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Figure 8. Circuit diagram for realizing secure communication 
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The circuit parameters of Figure 8 are 
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Information signal ( )m t  

 
chaotic signal x  

  

 
chaotic masking transmitted signal ( )S t  

 
retrieved signal ( )m t  

 
Figure 9. Transmission of a sinusoidal signal through chaotic secure communication systems 

 
 
7. Conclusion 

In this paper, a new chaotic system is proposed and studied. Dynamical behaviors of 
the new system are analyzed, both theoretically and numerically. The system has rich chaotic 
dynamics behaviors. We have demonstrated in simulations that chaos can be synchronized and 
applied to secure communications. Chaos synchronization and chaos masking were realized 
using Multisim programs. 
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