
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol.12, No.1, January 2014, pp. 304 ~ 313
DOI: http://dx.doi.org/10.11591/telkomnika.v12i1.3996 304

Received June 24, 2013; Revised August 18, 2013; Accepted September 17, 2013

Design and Realization of Dynamic Obstacle on
URWPSSim2D

Shuqin Li*1, Xiaohua Yuan2, Xiao Chen3
1College of Computer, Beijing Information Science & Technology University, Beijing 100101, China

2College of Information, Shanghai Oceanic University, Shanghai 201306, China
3College of Computer, Beijing Information Science & Technology University, Beijing 100101, China

*Corresponding author, e-mail: Lishuqin_de@126.com1, xhyuan@shou.edu.cn2, 763219676@126.com3

Abstract
Simulation system is charged with the strategy validation and dual team meets, and as the 2-

dimensional simulation platform for underwater robotic fish game, URWPGSim2D is the assigned platform
for Chinese underwater robot contest and Robot cup underwater program. By now on URWPGSim2D,
there is only static obstacles， thus short of changeableness. In order to improve the changeableness and
innovation of robotic fish contest, to extend the space for the programming of contest strategy, and to
increase the interest, this paper study the design of dynamic obstacles on URWPGSim2D, and design and
implement two kinds of dynamic obstacles, which are the evadible dynamic obstacle and the forcing
dribbling obstacle.

Keywords: Robotic fish, URWPGSim2D, Dynamic obstacle, robot game

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
Chinese robot contest is a new competition program. Similar with land football which

taking the intelligent and bionic robot fish as the members, robot contest carry on some intense
against competition. Since in robot contest there are both strong technical challenge and high
esthetics, thus it is the perfect combination of research and popular science. In the underwater
robot contest, there are competition of global vision teams, autonomic vision teams, and 2-
dimensional simulation teams. In the simulation competition, the main programs include the 2
vs. 2 grab the ball, the Synchronized Swimming, the Sri Lanka water ball, 2-dimensional
simulation of collaboratively passing through the hole, 2-dimensional simulated polo, 2-
dimensional relay with the ball, and et al. [1].

In Chinese underwater robot contest, the assigned platform is URWPGSim2D
(Underwater Robot Water Polo Game Simulator 2 Dimension Edition [2], developed by the
intelligent control laboratory of Peking university), which can truly simulate the bionic robot fish,
in respect of the pose change of all robot joints, the motion changes, and the contest process.
By URWPGSim2D, we not only can well conduct the researches on the kinematics theory,
collision theory, and on moving strategy algorithm for bionic robot fish, but also more
researchers and students can take part in the platform development and in the contest, thus to
make their further contributions for the technology of Chinese underwater robot.

Obstacle avoidance is an important content for robot self-protection [3], formation
controlling and task fulfillment [4, 5]. In robot simulation, obstackes can be modeled dynamically
or statically. By now, in URWPGSim2D, the obstacles are only static ones, that is to say, the
color, size and location of the obstacles are fixed. In order to highlight the stereo effect of
obstacles, the color of the obstacles is set to linearly gradual change from the obstacle center to
its top, where at the start the color is white, at the end that is grey. This is shown in Figure 1.
The modeling of static obstacle is relatively simple, which only need to set the coordinate and
color of the given vertices. In collision process, the mass of static obstacle is infinite by default,
thus if collide with a robot fish or the ball, the location of obstacle will not change [2, 6]. Static
obstacles mainly provide regular material, and act as the goal or the bounds, so are
indispensability. In order to improve the alterability and innovativeness, and at the same time
increase the interest of the contest, this paper designs and implements dynamic obstacles on
the original URWPGSim2D.

 ISSN: 2302-4046 TELKOMNIKA

TELKOMNIKA Vol. 12, No. 1, January 2014: 304 – 313

305

Figure 1. Static obstacle

2. Design Mentality of Dynamic Obstacle

Dynamic obstacles can move around, and their color, size, location, and velocity can be
changed. According to their velocity and move track, the obstacles can be divided into random
ones and fixed ones. To random dynamic obstacle, we can set its velocity and track, thus
obstacle will lack of predict, and thus induce more uncontrollability into contest strategy
programming, which will finally make contest more depend on luck. With the fixed dynamic
obstacle, the player can correctly control the move parameters of obstacle in order to avoid
obstacle, and even take advantage of the obstacle to start an attack, thus can further extend the
programming space of contest strategy. Both the size and velocity of dynamic obstacles can be
set by the player, thus to increase the variability and portability of obstacles in different contests.
In the view of programmers, the dynamic obstacles can be set as evadable ones or forcibly
dribbling ones, thus these obstacles can holdback certain behaviors at one hand, and can
protect certain target at the other hand. Therefore, this paper studies the designing dynamic
obstacles of fixed track and velocity, and designs two kinds of dynamics, which are evadable
ones and strong transport ones respectively. We will introduce the relative design as follow.

2.1. Design of Evadable Dynamic Obstacle

Evadible dynamic obstacle is obstacle that robot fish need to avoid from. The distinct
characteristic of the evadable dynamic obstacle is that, both the offense and the defense side
should avoid the obstacle. Taking the 2v2 ball fight (shown in Figure 2) as the example, in front
of the gate, we can set one rectangular obstacle, thus if the offense side want to goal, they must
fully study the moving rule of the obstacle, and take advantage of a good chance, thus lest the
going ball be push away by the long margin of the obstacle. And similarly, once the goal
success, the defense side must fish out the ball and at same time avoid the rectangle obstacles,
otherwise, the ball will be push back by the short margin of the obstacle.

Relatively, the defense side has more advantage, since it only need to avoid the short
side of margin, and it can push the ball in the scope of obstacle’s long margin, then wait the
obstacle to push away the ball, thus to fulfill the defense successfully.

Figure 2. Dynamic obstacle in the ball fight

ISSN: 2302-4046

Design and Realization of Dynamic Obstacle on URWPSSim2D (Shuqin Li)

306

2.2. Design of Forcibly Dribbling Obstacle
Forcibly dribbling obstacle are those that can be used in the dribbling, and its distinct

characteristic is that, between dynamic obstacles there exist some angle, thus it is easy to
dribble the ball away, and the direction of dribbling is favor to one side of the contest. As shown
in Figure 5, in the contest field of 5vs5 polo, near the top and bottom bounds, some dynamic
obstacles with V-like shape are added in. these obstacles periodically and horizontally move
from the back to the former field. And taking the V-like obstacles near the top bound, when the
obstacle move from the left to the right, the shape of V make that in case the ball move into its
moving scope, the ball will get into the corner of V, and be pushed from the back of the left
player to the former field of the right player, thus give some convenience for the left player to
start a further attack. Similarly, the obstacles near the bottom bound are favor for the right
player to start its attack. Besides this, it is worth to mention that of the obstacles, the attack
characteristic is higher than the defense. Because of the V-like corner, whenever one ball is
clipped, it is difficult to fish it off the inner angle of the obstacle, so it is easy to hold the ball. On
the other hand, contrarily, at the back of the V-like obstacle, it is very difficult to hold the ball,
and at most only can pop the ball to the direction of defense. So, the left player must do the best
to make use of the inner angle of the upper obstacles, thus to start an attack, but not to make
use the back of the bottom obstacles for defense.

Figure 3. Dynamic obstacles in the 5vs5 Polo

3. Implementation of Dynamic Obstacle

Adding dynamic obstacles will affect many platform modules, such as the collision
process module, the game designing module, and the environment painting module.

 3.1. Modeling Ideas and Implementation of Dynamic Obstacle

Compared with static obstacle, besides color, quality, coordinate and Vertex, for
supporting dynamic movement, in the model of dynamic obstacle there should add in some new
properties, for example, indication of moving status, angular velocity, line velocity, circulation
period. And at the same time, for the dynamic obstacle we should define constructor method
and the dynamic Assignment method related to properties such as velocity, quality, thus for
code reusing, object of dynamic obstacle can inherit its farther class, the static dynamic.

We can take two kinds of method to implement the circular movement of dynamic
obstacles. The first kind of method is according to the critical values of time, such as simulation
period, the angular velocity of switching, and the direction of line velocity. The other kind of
method is according to the critical values of coordinate, when obstacle enter into the scope of
certain coordinates, the line velocity and angular velocity will be switched at once. When the
acceleration is 0, the first kind of method is more convenient and accuracy for motion
controlling.

Using the object-orientation technology, we encapsulate dynamic obstacle as class

 ISSN: 2302-4046 TELKOMNIKA

TELKOMNIKA Vol. 12, No. 1, January 2014: 304 – 313

307

Rectangular Dynamic, in which we implement two interfaces, which are IC loneable and Idss
Serializable, thus to support the serialized communication between objects. In Rectangular
Dynamic, properties include the Name, the Indication byte which shows if allow to delete, the
Vertex, and Color of one obstacle object. The constructor of Rectangular Dynamic is given
below, and for all the parameters, we give detail introduction.

In the implementation of the circular movement, we use one period count function, and
use variable CircleTimes to store the period number of one cycle, use TimesCouter as the
counter, which is added 1 after one cycle. When it is equal to the predefined CircleTimes, the
moving direction of dynamic obstacle will be changed, and Times Couter will be reset to zero,
and the next move cycle will be started.

 /// <summary>

 /// the base class of rectangle obstacle in the simulated field

 /// </summary>

 public class RectangularDynamic : ICloneable, IDssSerializable

 {

 /// the name of obstacle

 public string Name;

 /// if the object allow to be deleted

 /// in the initiation, value of IsDeletionAllowed is assigned as false

 public bool IsDeletionAllowed;

 /// the non-parameter constructor of obstacle

 public RectangularDynamic()

 {

 SetRectangularDynamic();

 for (int i = 0; i < 4; i++)

 {// for initializing the four vertex of the rectangle

 PolygonVertices.Add(new xna.Vector3(0, 0, 0));

 }

 }

 /// the constructor with parameter

 /// </summary>

 /// <param name="strName">name of the rectangle obstacle </param>

 /// <param name="positionMm">location of rectangle obstacle（in the field coordinate, the

unit is mm）</param>

 /// <param name="colorBorder">color of rectangle obstacle </param>

 /// <param name="colorFilled">color used to fill the rectangle</param>

 /// <param name="borderWithPix">width of rectangle obstacle(pixel) </param>

 /// <param name="lengthMm">lengthe rectangle obstacle（mm）</param>

 /// <param name="widthMm"> width of rectangle obstacle(mm)</param>

 /// <param name="directionDeg">direction of width of rectangle obstacle（unit is

rad）</param>

 /// <param name="velocityMmPs">current velocity (mm/s)</param>

 /// <param name="velocityDirectionRad"> current backup direction(rad [,] </param>

 /// <param name="angularVelocityRadPs">current angular velocity(rad/s)</param>

 /// <param name="circleTimes">period number in one cycle</param>

 public RectangularDynamic(string strName, xna.Vector3 positionMm, Color colorBorder,

 Color colorFilled, int borderWithPix, int lengthMm, int widthMm, float directionDeg, float

velocityMmPs, float velocityDirectionRad, float angularVelocityRadPs,int circleTimes)

ISSN: 2302-4046

Design and Realization of Dynamic Obstacle on URWPSSim2D (Shuqin Li)

308

 {

 Name = strName;

 PositionMm = positionMm;

 ColorBorder = colorBorder;

 ColorFilled = colorFilled;

 BorderWidthPix = borderWithPix;

 LengthMm = lengthMm;

 WidthMm = widthMm;

 DirectionRad = xna.MathHelper.ToRadians(directionDeg);

 IsDeletionAllowed = true; // allowing delete by default

 VelocityMmPs = velocityMmPs;

 VelocityDirectionRad = velocityDirectionRad;

 AngularVelocityRadPs = angularVelocityRadPs;

 CircleTimes = circleTimes;

 TimesCouter = CircleTimes;//initialized value of the counter

 }

3.2. Realization of Collision Process Module

Collision process is more common in 2-dimensional and 2-dimensional games, nearly
all the current popular network game can not do without collision detect. In the virtual world,
when reach at a wall or obstacle, the person must stop, not pass through. When two light
objects collide with each other, both of the two will be popped away, not pass through each
other, and when Deformable objects collide with each other, the result will be different with the
collision strength.

For example, the efforts of collision with iron sheet and with sponge sheet are different.
And collision at different angle the effect will also be different two. From this we can see that,
only after adding collision process, the game can be more really.

The key task in Collision detect is to prevent the pass through between object. Based
on computer graphics, combing reasonable time and special detecting algorithm, we can
prevent the collision and passing through.

There are many kinds of collision modeling methods we can adopt, of which the main
parameters are the shape, material, and accuracy of the modeled object. By now, the always
used collision modeling methods are that of spatial decomposition [7], of layered Bounding
Volume [8], of bintree [9], and that of quality-spring [10]. In the early year of collision detect, the
most usually used method is of spatial decomposition, which represent the object by many cell
of equivalent volume [11], which is valid only when the object is equably distributed. When there
are more than one object in the field and distances between the object are short, there need to
iteratively partition the field into smaller cells, thus will induce more consume of computation
time and storage. Lately, along with the development of computer graphics, collision modeling
method of layered Bounding Volume obtained broad application, since by this method, no
matter the objects are rigid, or with complicated boundaries, using method of layered Bounding
Volume both can well enwrap the detected object, and according to requirement of the detection
accuracy, it can modify the model compactness to meet platform requirement. Compared with
method of spatial decomposition, method of layered Bounding Volume can be implemented
more validly, with more less consume of computation resources. Since on the current 2-
dimensional robot fish simulation platforms, the environmental information and simulated object
include border environment, obstacles, simulation polo, simulated robot fish, and et al. In which,
all the first three are regular and ametabolic object, so, using the simple Bounding Volume can
not only simulate the collision completely, but improve platform efficiency also.

Bounding Volume takes certain space in the 2-dimensional plane, and can enwrap one
or more than one object of irregular shape. The main idea of Bounding Volume is to describe
the more complicated object by Bounding Volumes, which of some simple geometrical shape,
so, we only need to detect Bounding Volumes. The basic kinds of Bounding Volumes are
Sphere(S), AABB (Axis-aligned Bounding Box), OBB (Oriented Bounding Box), K-Dop (K-

 ISSN: 2302-4046 TELKOMNIKA

TELKOMNIKA Vol. 12, No. 1, January 2014: 304 – 313

309

direction Discrete Orientation Polytope), Convex Shell (CS) and et al., which are shown in
Figure 4.

According to different requirements of modeled object, and by synthetically comparing
the expected characteristics of Bounding Volume, we can select one from different Bounding
Volume. Here the expected characteristics of Bounding Volume include the following five.

(1) Resources consumption in intersectant test
(2) Simulation compactness
(3) Computational complex
(4) Complicated degree of circumrotation and shape transformation
(5) Occupancy rate of EMS memory

Figure 4. Sketch map of Bounding Volumes [12]

Among Bounding Volumes in the above figure, the complicated degree increases from
the left to the right, and there is the same of modeling accuracy. In the five Bounding Volumes,
the simplest is Sphere, of which, the stored information is least, the detection and condition is
simplest, and thus for fast collision detection. Except Sphere, all the others have certain
complication and construction condition, below give further analysis as to the expectation
characteristics of other 4 Bounding Volumes.

(1) AABB
In research history of collision detection, usage of AABB is the longest and widest. The

definition of AABB is the smallest rectangle, which encloses one given object, and parallel the
coordinate axes. It is very easy to construct AABB, in which we only need to record the corner
coordinates, thus, to an AABB Bounding Volume, only 6 float data need to be stored, so the
computation and diction of this kind of Bounding Volume is easier. Of course, its demerits are
clearer as well as, since the compactness of AABB is relatively worse, especially when AABB
enclosing one long and narrow object which is located along with the anti-diagonal direction of
AABB, at this case, the redundant space is very large, and will lead to a mass of redundant
Bounding Volume detection.

(2) OBB
OBB is proposed based on AABB. The main difference between OBB and AABB is

whether the axis direction of Bounding Volume can be changed. OBB is the smallest rectangle
enclosing object whose relative coordinate axis is at arbitrary direction. Construction of OBB is
relative difficult, in which it needs to find out the optimal direction of OBB axis, besides needs to
store coordinate extremum, it also needs to record the floor coordinates of axis direction, thus
both storage and detection complication are higher. The merit of OBB is that model
compactness is improved by sacrificing storage, especially, when model rigid object whose axis
is transformable, we only need to modify the axis direction.

(3) K-Dop
K-Dop of one object is a convex wrap which enclose the object, and normal vectors of

K-Dop’s surfaces are all from one fixed direction. This make the construction difficulty and
detection complication is medial, and modeling compactness is better, and the storage increase
with K. When object take place rotation, by method of K-Dop it need to update the corner
coordinates, just this will induce some computations, but if using some kinds of optimization, the
efficiency of K-Dop can be improved largely.

For summary, Table 1 shows the validation of all the basic models by comparing their
five expectation characteristics.

Sphere AABB OBB K-Dop CS

ISSN: 2302-4046

Design and Realization of Dynamic Obstacle on URWPSSim2D (Shuqin Li)

310

Table 1. Comparison of basic Bounding Volumes
Expectation characteristics Comparison result

Resources consumption in intersect test
K-Dop>OBB>
AABB>Sphere

Simulation compactness
K-Dop>OBB>
AABB>Sphere

Computational complex
OBB>K-Dop>
AABB>Sphere

Complicated degree of rotation and shape
transformation

OBB>K-Dop>
AABB>Sphere

Occupancy rate of EMS memory
K-Dop>OBB>
AABB>Sphere

Abiding by the above analysis, we can model all the objects on the URWPGSim2D, the
relative modeling modes are listed in Table 2.

Table 2. Modeling types for object on URWPGSim2D (not including robot fish)
 Polo Pool border gate Circle obstacle Rectangle obstacle

model Sphere Line AABB Sphere OBB
characteristic dynamic static static static/dynamic static/dynamic

Since the border of URWPGSim2D is a closed rectangle, and all the object are included
in the rectangle, so the border is modeled as 4 lines, which parallel the x and y coordinate axes
respectively, thus to make convenience for the later collision detection. By now, on
URWPGSim2D, obstacles have shape of circle of rectangle, and are divided into dynamic ones
and static ones. To circle obstacles, whether dynamic or static, by Sphere model already can
meeting the requirement of collision detection. To dynamic rectangle obstacles, since their axes
direction and shape will not change, so by OBB model can perform more accurate collision
detection.

On URWPGSim2D, the simulation period is set as 100ms(10-1s), in each period, all the
collisions of all the objects must be detected. Since even under ideal condition, there are at
least 7 to 8 objects, and besides this, the algorithm is always complicated, thus will induce more
loads in URWPGSim2D running.

On the 2-dimensional simulation platform of robotic fish, main objects are included in.
Although in actual scene, main collisions can take place at the same time. But in computer
processing, the collisions are processed serially, that is to say, at each time slice, only one
collision is detected, so, when more than one objects have taken place collision, there need to
given the priority order to each collision according to visional effect and platform requirement
[13-14]. On URWPGSim2D, in the increasing order of collision priority, the first one is the
collision of obstacle with robotic fish of the polo, then the collision between robotic fishes, the
one between robot fish and the polo, and at last the one between field boundary and robotic fish
and the polo. Concretely, from the view of vision effect, all the objects should locate within the
pool, thus the collision between the dynamic object and the pool boundary has the highest
priority, so we need to detect it firstly, and contrarily, collision between the dynamic obstacle and
other dynamic object has the lowest priority, so we only need to detect it at last. Since adding
dynamic obstacle will induce some influence on the collision process module, so the dynamic
obstacle should provide some essential parameters to the process module, which describe the
current collision status, the circumcircle model (which is the smallest circle that can enwrap the
dynamic obstacle), and all the corner of dynamic obstacle.

We define all the parameters as follow.
 /// the current collision status public CollisionType Collision;
 /// the backup of current collision status public CollisionType PreCollision;
 /// the parameters of collision detect
 /// radius of the circumcircle(the unit is mm) public int CircumcircleRadiusMm;

 ISSN: 2302-4046 TELKOMNIKA

TELKOMNIKA Vol. 12, No. 1, January 2014: 304 – 313

311

 /// corner list of obstacle rectangle, in which the order is the top-left, top-right,left-bottom, right-
bottom, and all the unit is mm
 public List<xna.Vector3> PolygonVertices = new List<xna.Vector3>(4);

the length, width, direction, and border thickness are defaultly given out by method Set
Rectangular Dynamic (), as an example, the following Set Rectangular Dynamic () constructs a
dynamic obstacle of 100 mm length and width, at horizon direction, and of 0 border thickness.

 /// set default parameters to the dynamic parameter
 public void SetRectangularDynamic()
 {
 LengthMm = 100; // default lengthe
 WidthMm = 100; // default width
 DirectionRad = 0; // default direciton
 BorderWidthPix = 0; // default border thickness
 }

Afer setting the parameters as above, method Calculate Collision Detection Paras ()

can be called to compute the current circumcircle radius and 4 corners of the dynamic
obstacle’s rectangle. The detailed code of Calculate Collision Detection Paras () is listed below,
in which variable PositionMmis the center of obstacle.

/// can compute the collision parameter and is called by constructor of derived class.
 public void CalculateCollisionDetectionParas()
 {
///to calculate circumcircle radius CircumcircleRadiusMm = (int)Math.Sqrt(LengthMm *
LengthMm + WidthMm * WidthMm) / 2;
 float sine = (float)Math.Sin(DirectionRad);
 float cosine = (float)Math.Cos(DirectionRad);
/// to calculate all the corner of obstacle’s rectangle
 PolygonVertices[0] = new xna.Vector3(PositionMm.X - LengthMm * cosine / 2 + WidthMm
* sine / 2, 0, PositionMm.Z - LengthMm * sine / 2 - WidthMm * cosine / 2);
 PolygonVertices[1] = new xna.Vector3(PositionMm.X + LengthMm * cosine / 2 +
WidthMm * sine / 2, 0, PositionMm.Z + LengthMm * sine / 2 - WidthMm * cosine / 2);
 PolygonVertices[2] = new xna.Vector3(PositionMm.X + LengthMm * cosine / 2 -
WidthMm * sine / 2, 0, PositionMm.Z + LengthMm * sine / 2 + WidthMm * cosine / 2);
 PolygonVertices[3] = new xna.Vector3(PositionMm.X - LengthMm * cosine / 2 -
WidthMm * sine / 2, 0, PositionMm.Z - LengthMm * sine / 2 + WidthMm * cosine / 2);
 }

 3.3. Realization of Obstacle Painting Module

Since dynamic obstacle is always in movement, its location and shape should be
updated in each period. The conditions under which all the obstacles related to current
simulation mission should be reset to the default location are listed as below:

The current program is restarted;
The simulation mission is changed（the program is switched）; And
The button to reset the contest environment is clicked.
The total painting flow is show in Figure 5.
Where Draw（）is the painting method for dynamic obstacle. In the definition of class

dynamic obstacle, different instance can override this method, using different parameter. Draw()
is defined as.
public void Draw(ref Graphics g)
 {

DrawHelper.DrawRectangle(ref g, PositionMm, DirectionRad, LengthMm, WidthMm,
BorderWidthPix, ColorBorder, ColorFilled);

 }

ISSN: 2302-4046

Design and Realization of Dynamic Obstacle on URWPSSim2D (Shuqin Li)

312

Figure 5. Painting flow of one simulation period

According to the number of simulation period, method Update Rectangular Dynamic

Locomotion Para () update the movement parameters of one dynamic obstacle, which include
the coordinate of center, the velocity, direction of the velocity, the angular velocity.

The move track screenshot sequence of the dynamic obstacle before the left goat in the
ball fight is shown in Figure 6.

Figure 6. Movement track Screenshot of dynamic obstacle

4. Conlusion
Simulation program of robot fish is one platform for study and validate control theory. In

order to increase the programmable space, we need to improve the program and make some
innovation. This paper firstly discussed the design ideas for avoid dynamic obstacle and for
forcibly dribbling obstacle. Then by the object-oriented ideas, described the modeling process of
dynamic obstacles, including the inheritance from static obstacle. Then give and analyze the
key code. And at last the realization results are provided to show the validation of the described

 ISSN: 2302-4046 TELKOMNIKA

TELKOMNIKA Vol. 12, No. 1, January 2014: 304 – 313

313

design. In the platform test, static obstacle has provides the indispensable environmental
materials, and dynamic obstacle has successively increase contest interest and variability.

In order to further increase the variability of obstacle, the future work is to set the shape
of obstacle changeable, for example, to take the shape of acaleph, whose size can grow up and
shrink. Whether the shape need be changed depends on the requirement, for example, in order
to dribble, we can change the shape of obstacle from a 1-like to a C-like one. We can also
assign some special effect to the obstacle, for example, when robot fish touch the obstacle, it
will slow down, stun, be fouled out or et al. thus to impel robot fish voluntarily avoid the obstacle.
And further, we can also set the velocity and track randomly.

Acknowledgment

This paper is jointly sponsored by the Project of Construction of Innovative Teams and
Teacher Career Development for Universities and Colleges under Beijing Municipality
(IDHT20130519), and by the Funding Project for Graduate Quality Courses Construction of
Beijing Information & Science Technology University, and by the Funding Project for Graduate
Science and Technology Innovation Projects of Beijing Information & Science Technology
University.

References
[1] Youbing Li, Qiong Cai, Penghui Chen, and et al. Design and implementation of the simulation system

for underwater bionic robots. Journal of Central South University (Science and Technology). 2011; 42:
551-554.

[2] Youbing Li. Underwater Robot Water Polo Game introduction. Beijing: College of Engineering, Peking
University. 2011.

[3] TQiuhong Gao. Application of Multi-Sensors Information Fusion for Self-protection System of Robot.
TELKOMNIKA Indonesian Journal of Electrical Engineering. 11(3): 1619-1625.

[4] Li Yan-dong, Zhu Ling, Sun Ming. Adaptive RBFNN Formation Control of Multi-mobile Robots with
Actuator Dynamics. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013; 11(4): 1797-
1806.

[5] Yuli Zhang, Xiaoping Ma, Yanzi Miao. Chemical Source Localization using Mobile Robots in Indoor
Arena. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013; 11(7): 3718-3727.

[6] Jing Ren, Guangming Xie. Collision Detection on Robot Fish 2D Simulation Platform. Ordnance
Industry Automation. 2011; 12: 87-90.

[7] ZHOU Yun-bo, YAN Qing-dong, LI Hong-cai. Collision Detection Algorithms Analysis in Virtual
Environment. 2006: 103-107.

[8] SUN Xiao-guang, WANG Ming-qiang. Research on collision detection algorithm based on bounding
box. Modern Manufacturing Engineering. 2009; 4: 122-124.

[9] WC Thibault. Set Operations on Polyhedral Using Binary Space Partitioning Trees. Computer
Graphics. 1987; (21): 153-162.

[10] X Provot. Deformation Constraints in a Mass-spring Model to Describe Rigid Cloth Behavior.
Proceedings of Graphics Interface. 1995: 147-154.

[11] MA Deng-wu, YE Wen, LI Ying Survey of Box-based Algorithms for Collision Detection. Journal of
System Simulation. 2006; (18): 1058-1064.

[12] C Ericson. Real-Time Collision Detection. Morgan Kaufmann Publishing. 2005.
[13] Hua Bao, Shu-qin Li, Qin-qin Guo. Design and realization of synchronized swimming of

URWPGSim2D. Journal of Beijing Information Science and Technology University. 2011; (05): 84-88
[14] Shu-qin Li, Xia-hua Yuan, Hua Bao. Research on formation control of multi-robotic fish. Journal of

Software. 2013; 5(3): 349-357

