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Abstract 
Considering the problem for inverse system method in EMU AC induction traction motor linear 

decoupling, the zero dynamics subsystem will be separated from the original dynamic system through 
coordinate transformation. Firstly, a getting method for zero dynamics of the multiple input multiple output 

＜nonlinear system is discussed when γ n. Second, the zero dynamics analysis for five order nonlinear 
model of asynchronous traction motor which base on the stationary coordinate system is given by using 
inverse decoupling method. The analysis results show that if the stability of the zero dynamics can be 
ensured, then the entire linearization of original nonlinear system is not necessary, need only partial 
linearization which effect on the external dynamic portion. The inverse decoupling process of 
asynchronous traction motor can be simplified by this conclusion. 
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1. Introduction 
AC induction traction motor has been widely used in high-speed EMU of CRH series. 

Asynchronous traction motor is a very complex nonlinear control object [1]. Due to cross-
coupling between variables,the speed of the induction motor and the rotor flux must be dynamic 
decoupling to improve the control performance of  the AC traction motor [2]. Inverse decoupling 
control method [3] is a nonlinear feedback linearization method which has intuitive simple and 
easy-to-understand features.The inverse system control method has be introduced into the field 
of AC variable speed by some scholars to achieve the stator flux and electromagnetic torque 
dynamic decoupling control [4-6]. 

When the system relativeγis less than the number of system order n,the zero 
dynamics will be separated from the original dynamic system through the coordinate 
transformation in Linearized decoupling of asynchronous traction motor which use the inverse 
system method. The zero dynamic is a internal dynamic behavior of the system, which with 
close links to the stability of the system.If the zero dynamics equation is unstable,then the 
linearized system is also unstable. It is necessary to analyze its zero dynamics of γ＜n system 
when using inverse system method to linearization. 

The zero dynamics is discussed for the asynchronous motor direct feedback 
linearization in the literature [7,8].The first-order zero-dynamic stability is analyzed for the 
nonlinear system in the literature [9]. The zero dynamic characteristics is studied for the non-
linezero control of DC motorin the literature [10]. This paper deals with the problem of the zero 
dynamic analysis for asynchronous traction motor nonlinear model which established in the 
stationary reference frame.We particularly focus our study on getting method of the zero 
dynamic for the multi-input multi-output affine nonlinear systems when γ＜n. 
 
 
2. Zero Dynamic of Multi-input Multi-output Nonlinear Systems 

Consider the following nonlinear system 
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Where, x is a n dimensional state vector, f(x) and g(x) are n dimensional smooth vector field, ui 
for the i-th control amount, yi for i-th output, hi (x) for x scalar function. 

The system relative isγ=γ1+γ2+…+γm , where each output yi= hi (x) has a corresponding 

relativeγi. We assume system relative isγ=γ1+γ2+…+γm＜n and using the coordinates 
transformation z=φ(x) as follows 
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The system (1), (2) can be transformed into the following form by using the coordinates 

transformation z=φ(x). 
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Due to the system relativeγis less than the number of system order n, the remaining 
mapping relationship can be obtained by the coordinates transformation z=φ(x). The remaining 
mapping relationship is described by: 

 

   T T

1 2 1 2, , , , , ,r r n n rz z z        η  (4) 

 
where the Jacobian matrix of Vector functionφ(x) is non-singular at x= x0. 

Generally, it is possible to appropriately select the system output function hi (x) so that 
the equilibrium point x0 at the value zero. Considering the output yi= hi (x) is essentially the 
dynamic deviations for the actual output of the system dynamic response with respect to the 
output function of the equilibrium point. If the dynamic deviations of system output is forced to 
be zero at any time by the control method, this means that system output remains unchanged in 
any interference. The system is highly stable from the external dynamic view. Let the output of 
system (1) and (2) as 
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After the conversion, the former equations will disappear. The remaining dynamic 

equation are given by 
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The system's internal dynamic behavior can be described by the set of differential 

equations as formula (6). So the equations which decided within the system internal dynamic 
behavior are called the zero dynamics equations for the original system (1), (2), referred to as 
the zero dynamic. 

Finally,it is necessary to verify the stability of the zero dynamics equations by numerical 
analysis. If the zero dynamics equation is stable at x0, then the entire system is stable in the 
field of x0. 
 
 
3. Zero Dynamics Analysis  

In this section, we consider a five order nonlinear model of asynchronous traction motor 
which established in the stationary coordinate system (alpha-beta) .The speed and rotor flux of 
traction motor can be dynamic decoupled by using Inverse system method. 
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3.1. Asynchronous Traction Motor Inverse Decoupling 
In order to achieve high-performance control for asynchronous traction motor speed 

and rotor flux, we have defined a state variable x=[ ia,ib,ψa,ψb,ω]T= [x1,x2, x3,x4,x5]
T by using the 

following variables: stator current vector, rotor flux vector and rotational speed.u=[ua ,ub]
 T is 

defined with control variable by using the stator voltage vector.y=[h1(x),h2(x)] T=[ω,ψ2
a+ψ

2
b]

 T is 
defined with output variable by using the following variables: rotor flux and rotational speed. We 
obtain a 5-order nonlinear model of asynchronous traction motor [16], such as:  
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where k1=(L2m Rr /σLs L

2
r)+( Rs /σLs),k2= Rr / Lr,k3= Lm /σLs Lr,k4=np,k5= 1 /σLs,k6= np Lm /JLr,k7= Lm,k8=1 

/J. The rotor motor speed is given by ω; the rotor flux are ψa and ψb; ia and ib are the two-phase 
stator current;np denotes the number of pole pairs; J is the moment of inertia and TL is the load 
torque; Rs, Rr are the stator and rotor resistances; Ls, Lr are the stator and rotor self-inductances; 
and Lm is the s mutual inductance between the stator and rotor. Let σ denote an angle such that 
dσ/dt= npω. 
 
 

 
 

Figure 1. Dynamic decoupling structure of asynchronous traction motors based on inverse 
system method 

 
 
Our method uses the inverse system method to decouple the traction motor system. 

Dynamic decoupling structure of asynchronous traction motors based on inverse system 
method is shown in Figure 1. For the inverse system method, the algorithm need to determine 
the relative degree of the system to determine whether the system reversible. The formula (8) is 
calculated as follows 
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    The necessary and sufficient conditions of the system reversible are given in the 

literature [11] by 
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3), A(x,u) is non-singular when x∈Ω={ x∈R5 : x4≠0, 
x3≠0}. rank A(x,u)=2, so the system relative areγ={2，2}. Letγ-order integral inverse system 
input is v=[va, vb]

T,the equations of decoupled pseudo-linear system can be described as 
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where 2

a 1( )v L h x f(x,u) , 2
b 2 ( )v L h x f(x,u) . 

 
3.2. The Solving of Zero Dynamics Equation 

The relative summation of asynchronous traction motor system is less than the number 
of system order. 
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where the five state variables is selected as the angle of the rotor flux vector. 
The zero dynamic equation can be obtained by equation (6) 
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The above formula can be rewritten as 
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The state variable x in the above formula can be converted to z by coordinate 

transformation z=φ(x) 
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3.3. Analysis for Stability of The Zero Dynamics Equation 

It is necessary to analysis stability of the zero dynamics equation, in order to verify the 
inverse decoupling system stability. The zero dynamics equations must be stable to ensure that 
asynchronous traction motor Inverse decoupling is valid.Generally, a balance state of the 
system should be obtained first, and then combining with equation (15)γvariable of converted 
zero dynamics equation value is taken as zero based on the definition of zero dynamics. Finally, 
according to the characteristic roots which are obtained from the dynamic equation whether 
have negative real part to determine the system at equilibrium is asymptotically stable. 

Taking into account the control target of asynchronous traction motor is to meet the 
expectations of the motor rotor speed and rotor flux amplitude, , so take the rotor speed setpoint 
ωref and rotor flux amplitude setpoint ψref as a balance point to force the system to reach work- 
balance point. Zero dynamics equation becomes as 
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Although z5 is increasing with time and is divergent in the Lyapunov stability from the 

formula (16), but its actual physical meaning of state is amplitude angle of the rotor flux vector, 
which growing does not affect the actual system state stability. The state variables which is not 
directly related to energy storage aspects In the actual control system, such as the growing of 
the angle and displacement over time will not damage the stability of the system. The literature 
[7] shows that zero dynamics of the system is asymptotically stable, if the system external 
dynamic is asymptotically stable, then the entire system is asymptotically stable. 

 
 

4. Conclusion 
This paper analyzes the zero dynamics for inverse decoupling of asynchronous traction 

motor when ＜γ n. The zero dynamics subsystem will be separated from the original dynamic 
system through coordinate transformation in asynchronous traction motor linear decoupling by 
inverse system method. Thus, a getting method for zero dynamics of multi-input multi-output 
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nonlinear system is presented, and then the zero dynamics for linearization of a 5 order 
nonlinear model of asynchronous traction motor which established in the stationary coordinate 
system (alpha-beta) by using inverse system method were analyzed. 

For the practical point of view, we main interest in the external dynamics of the system 
which is need to not only stable but also have good quality, and the internal dynamics need to 
stable only. Therefore this approach will simplify the process based on inverse system method 
asynchronous traction motor linear decoupling, only necessary to design the control law to 
guarantee the stability of the zero dynamics.In this case,the original nonlinear system is not 
necessary entirety linearization , while only need to linearized a part whose effect on the 
external dynamic. 
 
 
References 
[1]  Long Z, Shiming G. Electrical Machinery and Apparatus of EMU. Cheng Du: Southwest Jiaotong 

University Press. 2009: 12-16. 
[2]  Leiming S, Zhongping Y. Transmission and Control of EMU. Bei Jing: China Railway Press. 2009: 24-

27. 
[3]  Qing L, Liyong Y, Zhengxi L, Huade L. Stator Flux and Torque Decoupling Control of Induction Motor 

Using Inverse System Method. Proceedings of the CSEE. 2006; 26(6): 146-150. 
[4]  Qinghui W. The Inverse Decoupling Control for the Stator Flux and Torque in Induction Motors and Its 

Existence. Control Theory & Applications. 2009; 26(9): 983-987. 
[5]  Qinghui W, Shuxian L. Research on Adaptive Inverse Decoupling Control of Induction Motor Based on 

Stator and Rotor Resistance Error Compensation. Acta Automatica Sinica. 2010; 36(2): 297-303. 
[6]  Qinghui W, Shuxian L, Xiaoheng C, Zuoyou Y. Inverse Decoupling Control of Induction Motor Based 

on PCA-NN Compensation. Transactions of China Electrotechnical Society. 2011; 26(1): 40-45. 
[7]  Chunpeng Z, Fei L, Wenchao S, Lianwei J. Nonlinear Control of Induction Motors Based on Direct 

Feedback Linearizationg. Proceedings of the CSEE. 2003; 23(2): 99-102. 
[8]  Chunpeng G, Ben W, Yueheng Z, Tai L. Decoupling Control of Asynchronous Motor Based on 

Feedback Linearization. Da Dianji Jishu. 2010; (4): 31-37. 
[9]  Xiaorong Z, Yonglong P, Heming L, Xinchun S. Nonlinear Control of Current-Source PWM Rectifier. 

Proceedings of the CSEE. 2007; 27(28): 96-101. 
[10]  Fang L, Meimei S, Lei Z. Research on Nonlinear Control of DC Motors. Modern Electronics 

Technique. 2011; 34(24): 202-205. 
[11]  Xinghua Z, Xianzhong D. Speed Control System of Induction Motor Based on Inverse System Method. 

Control and  Decision. 2000; 15(6): 708-711. 
 


