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 One alternative to improve feed quality is to combine the main feed with 

forages which are more economical in cost but contain high protein sources, 

such as sorghum. Production estimation is essential because it will determine 

the sustainability of the feed. This study aimed to estimate the amount of 

sorghum production using support vector regression (SVR). Several stages of 

this research are collecting data, preprocessing, modelling, and evaluation. 

The dataset used and the input for this SVR algorithm model is field 

observation data. The kernels used in the SVR algorithm modelling are linear, 

Polynomial, and RBF. Sorghum production estimation using SVR has a 

performance evaluation value that refers to the root mean square error 

(RMSE). The result of this research is that the model obtained from the SVR 

algorithm can estimate sorghum production with performance evaluation 

values using R2, mean absolute error (MAE), mean absolute percentage error 

(MAPE), and RMSE. The best results on the Polynomial kernel are 

R2=0.7841, MAE=0.0681, MAPE=0.46641, and RMSE=0.1006. This study 

shows that the classification model obtained from the SVR algorithm with 

Kernel Polynomial is the best model for estimating sorghum production.  
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1. INTRODUCTION  

In the livestock industry, a significant concern is the availability of land, livestock and feed. The main 

feed for the livestock industry is grass, but the grass has high fibre and low protein content for livestock. The 

grass needs to be mixed with concentrates such as dregs, corn, and other similar foods to add nutritional value 

to the feed. It will cause production costs to increase. Abdullah and Suharlina [1], an alternative source of high 

forage protein but at an economical cost is to combine the main feed with types of legumes such as sorghum. 

Sorghum has been introduced and cultivated in Indonesia, particularly in dry and marginal areas [2], and it is 

a universal multipurpose crop for food, fodder, and potential biofuel feedstock [3]. 

The problem in this study is that to estimate the production of feed biomass for ruminants is sufficient 

or more or less as a feed production material to combine forage with the main feed. Therefore it is necessary 

to estimate the biomass of sorghum yields. In the industrial era 4.0, information technology has become 

necessary in various fields, including agriculture and animal husbandry. One of the uses of this information 

technology is the application of machine learning algorithm models, namely computer programming to 

optimize performance using history data [4]. Liakos et al. [5], in general, the machine learning methodology 

involves a learning process to learn from training data in carrying out tasks. It is stated by Ghosal et al. [6] in 

the national strategy for artificial intelligence in Indonesia that increasing forecasting accuracy with machine 
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learning will help farmers plan agricultural cycle activities. Several previous studies by BPPT [7] and  

Masjedi et al. [8] used machine learning algorithms for research on sorghum plants. Several studies related to 

predictions in agriculture and animal husbandry are wheat yield prediction [9], crop disease prediction [10] 

and [11]. One widely used algorithm for forecasting or predicting target values is the support vector machine 

(SVM), for example, in the medical field [12], analogue circuit [13], education [14], face recognition [15] and 

also in the agriculture [16]. For solving the SVM regression case, it is modified to the support vector regression 

(SVR) algorithm [17]. SVR aims to find a hyperplane to predict the training data set and the optimal value of 

the parameters obtained through the GridSearch method. The grid search method tests a model to find the error 

value in the classification [18]. The parameters determined by the optimal value are epsilon (ε), cost (C), and 

gamma (γ). In the SVR method, several choices of kernel functions can be used, such as linear, Gaussian, 

Polynomial, and several other kernels. SVR builds a hyperplane in high dimensional space in linear or nonlinear 

data and can overcome overfitting [19]. Several studies using SVR in agriculture and animal husbandry, such 

as soil erosion susceptibility prediction [20], predicting forage quality of warm-season legumes [21], crop 

model of rice production [22], Water stress detection [23] and also Rumex and Urtica detection in grasslands 

[24]. In this study, it is hoped that the machine learning SVR algorithm models will be widely used to predict 

or estimate the amount of sorghum biomass production. This study will look for the best kernel function of the 

three kernels and the best parameters using the GridSearch method from the SVR model to estimate the biomass 

of animal feed sorghum production. 

 

 

2. METHOD 

This research methodology has five stages: a preliminary study, data collection, preprocessing, 

modelling, and model evaluation. Each step in this research flow cycle diagram is as shown in the research 

flow chart Figure 1. The explanation of each stage of this research carried out is as: 

− Data collection: This study uses the sample data taken from direct observations in the sorghum field in the 

sorghum bicolor block cv. Samurai-2. The research area is Jonggol Animal Science Teaching and Research 

Unit (JASTRU), Singasari Village, Jonggol District, Bogor City. The dataset was taken at harvest time on 

March 8, 2021, with as many as 88 plant data with attributes shown in Table 1 and sample data from the 

field shown in Table 2. 
 
 

 
 

Figure 1. Research steps 
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Table 1. Dataset sorghum of bicolor cv Samurai-2 
No 

sample 

Latitude Longitude Stem 

height 

Stem 

diameter 

Leaves Seed 

height 

Seed 

width 

Biomass 

6 -6.46875233 107.01083981 170 14 9 19 4 204 

12 -6.46885800 107.01121700 224 25 15 24 5 677 

18 -6.46867571 107.01117843 125 11 10 22 4 147 
27 -6.46846183 107.01120257 219 16 10 27 7 291 

38 -6.46855311 107.01108322 219 23 11 32 9 574 

39 -6.46838988 107.01111775 217 20 12 25 5 381 
42 -6.46840753 107.01109931 177 19 11 19 4 341 

43 -6.46847116 107.01105975 219 20 10 28 6 480 

44 -6.46856444 107.01105069 150 15 10 18 3 156 
47 -6.46861375 107.01098096 232 19 11 29 6 306 

48 -6.46849082 107.01104090 234 22 12 30 8 554 

50 -6.46826595 107.01107886 164 15 9 26 5 231 
52 -6.46839654 107.01091088 215 16 13 26 5 271 

... ... ... ... ... ... ... ... ... 

 

 

Table 2. Attribute dataset sorghum of bicolor cv Samurai-2 
No Attribute Description 

1 NO_SAMPLE No samples, A and B indicate growing two plant stems in one plant location 

2 LATITUDE Latitude 
3 LONGITUDE Longitude 

4 STEM_HEIGHT Plant stem height in meters 

5 STEM_DIAMETER Plant stem diameter in millimeters 
6 LEAVE Number of leaves 

7 SEED_HEIGHT Sorghum seed length in centimeters 

8 SEED_WIDTH Sorghum seed width in centimeters 
9 BIOMASS Overall weight in grams (target class) 

 

 

- Preprocess: The attributes of the dataset from field obtained recording as shown in Table 1. The target 

attribute is WEIGHT, which is the plant's total weight (gram). All selected features are normalized 

between 0 and 1 before input into the SVR algorithm model. 

- Modeling: At this stage, the preprocessed dataset will be input into each SVR algorithm with a different 

kernel function, namely the SVR algorithm with a linear kernel function, the SVR algorithm with a 

gaussian kernel function, and the SVR algorithm with a polynomial kernel function. Several parameter 

values are identified to produce the best results from each kernel function in the modelling and evaluation 

process. The model validation process uses k-fold cross validation. 

- Evaluation: This stage is the output of the modelling process using the validation process. That is to 

compare actual and predicted values with a low error rate from every kernel function of the SVR. That 

model selected will be recommended for the prediction of sorghum production. Validation of all kernel 

functions is using R-Squared, mean absolute error (MAE), mean absolute percentage error (MAPE), and 

root mean squared error (RMSE). The achievement of this final stage indicator is that the resulting model 

has a minimum error value. 

 

 

3. RESULTS AND DISCUSSION 

Data correlation analysis on dataset attributes from collecting selected sorghum research sample data 

at harvest time, namely STEM_HEIGHT, STEM_DIAMETER, LEAVE, SEED_HEIGHT, SEED_WIDTH, 

and BIOMASS, there is very high correlation data. Also, data with weak correlation and visually correlation 

data between these attributes are shown in Figure 2. The highest data correlation was on the seed or panicle 

width attribute (seed_width) with the seed or panicle length attribute (seed_height), which was 0.92. The 

number of leaves (leaves) with a length is a weak correlation of a collection of seeds or panicles (seed_height) 

of 0.35. The preprocessing, modelling, and evaluation stages are carried out using the Python 3.7 programming 

language. Python using the skit-learn library and several main class packages for vector regression and cross-

validation. 

In the preprocessing stage, scalar normalization was carried out to convert the value proportionally in 

each attribute between 0 to 1. The preprocessed dataset is the input of the SVR algorithm with a vector 

regression package at the modelling stage. The output of the modelling process is validated, and the results are 

evaluated at the evaluation stage. The standard value of a suitable validation parameter in using the cross-

validation method specified to determine accuracy is ten times [25]. The SVR model will construct a 

hyperplane in high dimensional space in the nonlinear data shown in (1). 
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(𝑥i) = (w. 𝑥𝑖)  +  b  (1) 

 

Where:  

𝑓(𝑥) = predictive value 

𝑥 = data  

𝑤 = weight  

𝑏 = bias value, (also represented by𝜆)  

Estimation for the coefficients w and b through the risk function and with ‖w‖ as the normalization of 

the function to minimize it to produce a function close to flat, 𝐸𝜀 is an ε-insensitive loss function. The 

coefficient C value is defined by the user (trade-off) between the thin distance of the f function and the value 

above the upper limit deviation, which can still be tolerated as shown in (2) [26]. 

 

𝑅(𝑓(𝑥𝑖)) = 1

2
∥ 𝑤 ∥2+ 𝐶 ∑ 𝐸𝜀(𝑦𝑖 − 𝑓(𝑥𝑖))

𝑛

𝑖=1
 (2) 

 

𝑓(𝑥i) = ∑ (𝛼𝑖 − 𝛼𝑖
∗ )𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑖 ∈ 𝑅  (3) 

 

Smola and Schölkopf [27] from (2), determining the parameters w and b become an optimization 

problem using the Lagrangian. The final equation for determining predictions with SVR is shown in (3), where 

are the Lagrange multiplier and the selected kernel function. Several kernel functions to handle nonlinear data 

cases are often used in SVR models, such as linear kernel in (4), polynomial kernel in (5), and Gaussian or 

Gaussian radial basis function (RBF) kernel in (6). 
 

𝐾(𝑥𝑖 , 𝑥) = (𝑥, 𝑥′) (4) 
 

𝐾(𝑥𝑖 , 𝑥) = (𝛾 < 𝑥, 𝑥′ > +𝑟)𝑑 (5) 
 

Where d is the degree parameter and r is the coefficient. 
 

𝐾(𝑥𝑖 , 𝑥) = exp (−𝛾 ∥ 𝑥 − 𝑥′ ∥)2 (6) 
 

Where is the gamma parameter must be greater than 0. 

 

 

 
 

Figure 2. Dataset correlation 

 

 

The complete grid search process time is very long. Therefore, Hsu and Lin [18] recommends 

performing the grid search through the loose grid stage for selecting C and values, then proceeding with the 

finer grid stage to get a value around the C value that has been obtained with the lowest error value previously. 

The search for parameters C and epsilon on the SVR model in each kernel is done using GridSearch with a 

combination of parameter values tested, namely C = 0.01, 0.1, 1, 100, 1000 and epsilon parameters = 0.0001, 

0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 , 0.5, 1, 5, 10. 
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The modelling process with a linear kernel obtained the best parameters for C and epsilon through the 

GridSearch method were C=1 and epsilon=0.0005, resulting in predictive values compared to real or actual 

values, as the example shown in Table 3, and graphically visualization is shown in Figure 3. Then the modelling 

process with a polynomial kernel obtained the best parameters for C, degree, and epsilon through the 

GridSearch method were C=1, degree=2, and epsilon=0.001, which resulted in predictive values compared to 

real or actual values as the example shown in Table 4, and graphically visualization is shown in Figure 4. 

 

 

Table 3. Real data vs. linear predicted biomass 
Real/Actual Linear predicted 

0.6251 0.5577 

0.2691 0.3145 

0.2912 0.4388 
… … 

0.4714 0.4446 

 

 

 
 

Figure 3. Graph of real data vs. linear predicted biomass 

 

 

Table 4. Real data vs. polynomial predicted biomass 
Real/Actual Polynomial Predicted 

0,6251 0,5725 

0,2691 0,2869 

0,2912 0,4175 
… … 

0,4714 0,4734 

 

 

Furthermore, the modelling process with the RBF kernel obtained the best parameters for C, epsilon, 

and gamma through the GridSearch method were C=100, epsilon=0.01, and gamma=0.1, which resulted in 

prediction values compared to real or actual values as the example shown in Table 5 and graphically 

visualization is shown in Figure 5. 

 

 

Table 5. Real data vs. linear Gaussian RBF biomass 
Real/Actual RBF Predicted 

0,6251 0,5813 

0,2691 0,2846 

0,2912 0,3591 
… … 

0,4714 0,4767 
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Figure 4. Graph of real data vs. polynomial predicted biomass 

 

 

 
 

Figure 5. Graph real data vs Gaussian RBF predicted biomass 

 

 

Measurement of accuracy and measurement of the error value between the predicted value and the 

real or actual value at the evaluation stage for each model result for each kernel uses the R-squared accuracy 

measurement method in (7) [28]. 

 

R2 = 1 −
𝑆𝑆𝐸𝑅

𝑆𝑆𝐸𝑀
 (7) 

 

Meanwhile, for measuring the error value between the predicted value and the real or actual value at the 

evaluation stage for each model result, each kernel uses the MAE error measurement method [29] in (8), MAPE 

in (9), and RMSE in n (10) [28]. 

 

MAE =  
1

𝑛
∑ (𝑦^ − 𝑦)𝑛

1   (8) 

 

MAPE =
1

𝑛
∑ (𝑦^ − 𝑦)𝑛

1 𝑥100 (9) 

 

RMSE=√
1

𝑛
∑ (𝑦^ − 𝑦)2𝑛

1  (10) 
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The predicted value and the real or actual value of the modelling results from each kernel are entered into the 

MAE, MAPE, and RMSE measurement equations to produce error measurement values, shown in Table 6. 

 

 

Table 6. Metric comparison result 
  Linear Kernel Polynomial Kernel Gaussian RBF Kernel 

R-squared 0.6861 0.7841 0.7751 

MAE 0.0836 0.0681 0.0715 
RMSE 0.1173 0.1006 0.1055 

MAPE 55.1891 46.641 48.7648 

 

 

SVR with Polynomial Kernel has the smallest MAE, MAPE, and RMSE error measurements 

compared to the linear kernel and the Gaussian RBF kernel. Likewise, with the R-squared value of the 

polynomial kernel compared to the linear kernel and Gaussian kernel, the polynomial kernel has the largest R-

squared value, so based on the research that has been done that the Polynomial Kernel is a good Kernel on the 

SVR method for estimating the production of forage sorghum (sorghum bicolor) cv. Samurai-2. 

 

 

4. CONCLUSION 

In this study, to obtain an SVR model for estimating the biomass of animal feed sorghum, we tried 

the SVR model with a combination of linear kernel, polynomial kernel, and gaussian RBF kernel. Each of our 

kernels looks for the best parameters using the GridSearch method function. The result is that the SVR model 

using the Polynomial Kernel kernel function with parameters C=1, degree=2, and epsilon=0.001 has the lowest 

error value and the highest coefficient of determination. Thus, SVR with a polynomial kernel function can be 

recommended to estimate the biomass of sorghum bicolor cv Samurai-2. The prospect of developing research 

results and implementing further research in the future can use other kernels such as Splines, B-Splines, and 

others. 
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