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Abstract 
Due to correlation coefficient matrix of initialized samples are not always positive definite, this 

paper presents the improved Latin Hypercube Sampling (LHS) methods with Evolutionary Algorithm (EA) 
to control correlation and handle power system probability analysis problem. To deal with the non-positive 
definite correlation matrix, an improved median Latin hypercube sampling with evolutionary algorithm (EA) 
called MLHS-EA into Monte Carlo simulationis proposed and investigatedusing IEEE 118-bus system with 
wind farms. This paper also discusses the misunderstandings about the non-positive definite correlation 
matrix and application of LHS in power system probabilistic analysis. With the proposed method in this 
paper, the correlation can be controlledmore effectively than previous LHS methods. The accuracy of 
LHSfor the static security assessment can also be improved further for solving the probabilistic analysis 
problem in power system. The effectiveness of the method is validated with the Matlabsimulation results. 
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1. Introduction 

To evaluate theimpact of the load forecasting uncertainty on power systems’ security, 
probabilistic analysis of the static security risk has attracted a large amount of interest from 
1990s to recent years [1]-[3]. The probabilistic load flow (PLF) proposed by Borkowska in 1974 
in[4] can be adopted to calculate the risk indices of line overload and bus over-voltage to 
evaluate the potential static security risk and weak points in power system.Monte Carlo 
simulation (MCS) [1]-[3], [5] is the most accurate, flexible and robust method when samples are 
enough. The theory of MCSwith variance reduction technique is introduced in [3], [6],[7], better 
than MCS with simple random sampling (SRS).  

For a deterministic function Yf(X), where YR and XR
K and f(·) is expensive to 

compute which may use a more complicated sampling scheme, McKay et al. described Latin 
hypercube sampling (LHS) first in 1979 [8]. LHS is a stratified sampling with a great merit in 
solving this problem with high efficiency. LHS has two steps: sampling and correlation control. 
The Median LHS (MLHS)to select the midpoint of each interval is the dominant approach. 
Correlation controlto reduce undesired random correlation and to introduce prescribed 
correlation is important [9], because the correlation between the input variables has a profound 
impact on the uncertainty of the outputs.  

Combined with correlation control methods, the LHS methodshave many variants:LHS 
with Rank Gram-Schmidt(RGS) [9], LHS with random permutation (LHSRP) [10], LHS 
withCholesky decomposition [11], [12], optimal LHS [13], LHS with Genetic Algorithm (GA) or 
columnwise-pairwise (CP) [14], LHS with simulated annealing [15] and single-switch-optimized 
sample ordering scheme (SSO) [16]. The performance in [14] indicates that CP methods are 
most efficient for small and medium size Latin hypercube, while an adopted GA performs better 
for large Latin hypercube. Crossover operator is important in GA. However, to a specified 
problem like PLF, it’s difficult to use crossover operator. Based on the research on the quasi-
Monte Carlosimulation, Latin hypercube Hammersley sequence sampling (LHHS)was 
developed [17]. LHHS generates the sample values with LHS and pairs these values with 
Hammersley sequence sampling (HSS) [17], [18]. LHHS needs enough prime numbers for 
different random variables. This fact limits its application when a problem has the high-
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dimensional random variables. Theoretically, the consistency and unbiasedness about LHS with 
dependence are proved in [19]. The input distribution type for LHS methods is summarized [20].  

The Cholesky decomposition needs that the correlation coefficient matrix is a positive 
definite matrix. However, in real applications, of input random variables can be non-positive 
definitewhen obtained by the samples in the first step. 

In this paper, to improve the correlation control of LHS effectively when the correlation 
matrix is a non-positive definite matrix, correlation controlled bythe Evolutionary Algorithm (EA) 
is presented. Many previous literatures in [21] rarely take into account the generator’s reactive 
output constraint when calculating PLF. This paper considers the reactive power limit of the 
generators and the independence in different nodes when evaluating the steady-state security 
risk. 

The remainder of the paper is organized as follows. Section II introduces the related 
background of LHS, presents the improved methods and analyzes the correlation matrix 
aftersampling in the first step. Section III describes the simulation in the static risk assessment. 
Section IV appliesthe methods inIEEE30- and 118-bus system. Section V concludes the paper. 
 
 
2. The Proposed Method 
2.1. Related Background of Latin Hypercube Sampling 

The main idea of MLHS is described as follows. Let Yk is the cumulative distribution 
function of Xk, namely YkFk(Xk), Xk{X1,…,XK}. Then the domain of each variable is divided 
into equal probable separated intervals, and one sample value of Xk is selected from each 
interval directly from Yk, namelyXk=Fk

1(Yk).In MLHS method, due to adopting the midpoint value 
from each interval, the nth sample of Xk is chosen according to xk,n=Fk

1((n-0.5)/N).Assume that 
the cumulative distribution curves of two random variables following normal distribution 
N(10MW,(4MW)2) are divided into N equal sections, respectively, and N=6. The cumulative 
distribution function (CDF) and probabilistic distribution function (PDF)of the random variable 
are shown in Figure1(a)-(b), respectively. 

 
 

 
(a) CDF 

 
 

(b) PDF 
 

Figure 1. Sampling of MLHS, LHSRP method 
 
 

In Figure 1(a), x1,kn and x2,kn represent the random pointusing MLHSand LHSRP, 
respectively. Forthree LHS methods, the random point in each interval is determined as follows. 

 

MLHS [12]:   1
1, 0.5kn kx F n N 

 
 (1) 

 

LHSRP [22]:   1
2, , ( 1)kn k k nx F r N n N  

 
(2) 

 

LHHS [18]:  1
H, , ( 1)kn k k nx h N n NF   

 
(3) 

The roles of parameter rk,n and hk,n are the random number generators in [0, 1]. The 
value of rk,n is a pseudo-random number. The value of parameter hk,n is from the Hammersley 
points. The details on the process to generate the Hammersley points can be found in [18]. For 
all LHS methods, the CDF of the input variable must be strictly increasing continuous function to 
ensure that the inverse function exists. 
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2.2. Description of EA for Correlation Control 
The correlation control can be achieved by the permutation method. The main process 

of the EA is that random permutation for enough times and taking the best one when 
theobjective correlation reaches an acceptable value. Inspired by the asexual propagation, the 
optimization permutation is called as “EA”. The size of chromosomes represents the number of 
random variables. Each chromosome has the same size of genes, namely the sample size N. 
The fitness function evaluation is a minimization optimization problem of objective correlation 
function.The gene has a mutation behavior. In the context of the EA paradigm, mutation is seen 
as a change with a random element [23]. Thus, the update or change of the arrangement by a 
random permutation of N sampled values of Xkis called as “mutation”.“Selection” means that the 
specific generation with a smaller objective value than all previous generations is selected as 
the best generation to survive, andthe previous generations are eliminated. 

Let X1,…,XKbe a group of random variables and construct a K-dimensional random 
vector X=[X1,…,XK]T. Each random variable has Nsampling values, and constructs a K×N 
sampling matrixM.The covariance of random variables Xi and Xjis defined as: 

 

([ ( )][ ( )])ij i i j jc E X E X X E X  
 

(4) 

 
The correlation coefficient ij between Xi and Xj are defined by Pearson product-moment 

correlation coefficient: 
 

ij
ij

ii jj

c

c c
 


  (5) 

 
The correlation matrix with elements ijis symmetric. Before correlation control, two 

situations need to be distinguished. Situation 1:  of the independent variables can be denoted 
by an identity matrix. Situation 2: an objective correlation matrix *has most of elementsij(i≠j) in 
the interval (0, 1) or (-1, 0). Situation 1 is possible to happen in power system. The pre-
determined objective correlation matrix * in Situation 2 in a bulk system is unrealistic. The 
reason for this is that it’s very difficult to accurately give all realistic or approximately realistic 
non-diagonal elements in advance for a K×Kmatrix * and ensure * a positive definite matrix 
when K value is high. For example, in the IEEE 118-bus system, there are 99 active loads. If 
Situation 2 is considered, the matrix * has 99×99 elements. To accurately give more than 9000 
non-diagonal elements in the interval (0, 1) and ensure the positive definite matrix is unrealistic. 
Thus, the Situation 2 is unrealistic.  

In a bulk system, the forecasting uncertainties of some load nodes are considered as 
approximate independent. The loads with a correlation coefficientequaling one can be denoted 
by linear correlation. The correlation matrix  is an identity matrix.  

The optimization problem in the correlation control has afitness function. To solve the 
situation 1, because completely independent variables strictly satisfying the correlation 
coefficient element ij=0(i≠j) are not easy to achieve, but approximate to zero. updating the 
sample permutation to get a minimum value of correlation objective function, Thus, the root 
mean square correlation among X1,…,XKis adopted as the objective function, that is, 

 
1

2
s

2 1

/ [ ]min 2 ( 1)
jK

ij
j i

K K 


 

    (6) 

 
The objective function s represents the root mean square value of off-diagonal lower 

triangular or upper triangular elements of . If s is close to zero, the correlation between 
variables is small. The direction of mutation is to get a new arrangement with a minimum 
objective value s. The objective function s is calculated using the updated sampling matrix M.  
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2.3. Steps of LHS Method with EA 
The above three LHS methods with EA can be denoted by MLHS-EA, LHSRP-EA and 

LHHS-EA. Assume there are K random variables. For the above-mentioned Situation 1, the 
steps of LHS with EA are as follows.  

Step 1: Generate an initialized K×N sampling matrix M0 for one of three LHS methods 
according to the Eq. (1)-(3). It can be deduced that the elements of M0 are sorted in an 
ascending order from the Eq. (1). Take MLHS-EA for example: 

 

1,11 1,12 1,1

1,21 1,22 1,2
0

1, 1 1, 2 1,

N

N

K K KN K N

x x x

x x x

x x x


 
 
 
 
 
 





   



M =   (7) 

 
Step 2: Calculate the initialized correlation matrix  of the matrix M0. For example, using 

MLHS-EA, IEEE 14-, 30-, 57- and 118-bus systems are tested after the first step. Thematrix  is 
found to be a non-positive definite matrix with all elements equalling one, namely: 

 

1 1 1

1 1 1

1 1 1
K K





 
 
 
 
 
 





   



  (8) 

 
If using LHSRP-EA, IEEE 14-, 30-, 57- and 118-bus systems are found that the off-

diagonal elements of  are all in the interval (0.9, 1.0), and very close to one.  
Step 3: Control correlation using EA. Set the maximum generation is G, and initialize the 

objective function value smin=1. The matrix Mg in the gth generation (1≤g≤G) can be seen as a 
cell. Each row of the cell is a chromosome with N genes. Thus, the cell Mg has K chromosomes 
and total K×Ngenes. After each evolution, the sequence of genes in each chromosome will be 
sorted randomly again. For example, the Mg evolves to be the following form after gth iterations.  

 

1,1 1,11 1,13 1,12

1,22 1,21 1,2 1,23

1, 1, 2 1, 3 1, 1

N

N
g

KN K K K K N

x x x x

x x x x

x x x x


 
 
 
 
 
 





    



M =   (9) 

 
Then calculate the s in the gth generation. If s≤smin, set smin=s.  

Step 4: Continue iterations when g<G and stop when g=G. The matrix MG is the final 
sampling matrix approximately satisfying the independence between the random variables. 
 
 
3. Research Method in the Static Security Risk Assessment 

Risk, defined by J. D. McCalley and V. Vittalet al. in [1], is the mean impact of an event. 
In this paper, we adopt two risk indices and two severity indices, a little different from the “risk” 
defined in [1], because the risk indices based on the full probability events may cover the 
detailed risk information of a single event. The risk assessment in this paper aims at evaluating 
risk and the most severity degree considering load and wind forecast uncertainties. 
 
3.1. Static Security Risk Assessment Based on PLF 

To solve some unavoidable risk problem even though the power system operation 
mode has been optimized, the risk assessment on overload and voltage beyond limit is 
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necessary, because it is possible that some small contingencies may result in a catastrophic 
outcome: cascading overload, voltage instability and so on. The uncertainty of the input 
controlled variable is modeled as aspecific distribution. After load flow calculation, the output 
variables are random variables following different distribution characteristics: 

 

G min G G max

( , )

( , )

s.t.

g

h

Q Q Q


 
  

G U

H U


   (10) 

 
Gis formed by active power injection Pand reactive power injection Qgenerated by 

the generators and load demands at all buses, namely G[P, Q]. Besides, the output vector 
H contains active load flow vector PR and reactive load flow vector QR, namely H[PR,QR]. 
 
3.2. Risk Indices of Static Security Assessment 

When the cost-consequences are difficult to measure, a severity measurement can be 
used instead. Based on the solutions by PLF calculation, two risk indices for evaluating the risk 
of over-voltage and overload of transmission lines, and two severity indices are defined as: 

1) Risk of over-voltage (RiskU) 
It is defined as the over-voltage probability when the security region is [Umin, Umax]: 

 

min max1 Pr{ }URisk U U U      (11) 

 
2) Risk of overload (RiskPF) 
It is defined as the overload probability in lines when the security region is [Pfmin, Pfmax]. 

 

fmin f fmax1 Pr{ }LFRisk P P P   
 

(12) 

 
If RiskU≤0.1and RiskLF ≤0.1, the system maintains static security. Otherwise, the system 

has potential crisis. 
3) Most severity metric of over-voltage (SevU) 
It denotes the most severity degree of each node’s voltage magnitude deviating from 

the safety range [Umin, Umax] in all N samples. 
 

max min

max min

( ) / 2
max{ }, 1, 2,...,

( ) / 2
i

U

U U U
Sev i N

U U

 
 

  

(13) 

 
4) Most severity metric of overload (SevLF) 
This index denotes the most severity degree of the active load flow in each line i-j 

deviating from the safety range [Pfmin, Pfmax] in all N samples. 
 

min max

max min

( ) / 2
max{ }

( ) / 2
ij ij ij

LF
ij ij

P P P
Sev

P P

 



  (14) 

 
3.3. Process of PLF 

The process of solving PLF problems is as follows. 
Step 1: Initialize the value of N, K, the mean value and standard deviation of 

probability distribution of input random variables, including active power, reactive power of load 
and wind power.  

Step 2: Generate K×N sampling matrix M0 according to the Eq. (1)-(3). Control 
correlation using EA and get the matrix MG. 

Step 3: Based on the sampling matrix MG, Newton-Raphson load flow program runs for 
N times. Finally, the statistic values of and of solutions are obtained. 

To evaluate the performance, the relative error [12] is used.  
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base

base

| | 100%
s s

s z z
z s

z

X X

X



    (15) 

 

The reference value Xs
zbase is obtained by enough samples using SRS. To evaluate 

whole system, the average relative errors of the expected valueof the output random variables 
are calculated.The relative change rate of s, namely (%), is used to evaluate the 
performance of controlling correlation.  

 

s1 s2

s2

100%
 





    (16) 

 

Where, s1 and s2 are equal to s obtained by algorithm with EA and without EA, 
respectively.The sampling size of SRS needs to be no less than the value satisfying the 
stopping criteria. Two common stopping criteria are adopted. Criterion A: The average 
percentage changing rate of the results under two continuous sampling sizes is less than 
0.01%. The results, when the sampling sizes are N-1 and N (N>1, positive integer), are yN-1 and 
yN, respectively, the percentage changing rate r is calculated as Eq. (17). Criterion B: Each 
output random variable’ sample variance is within 0.01% of the expected value in above 90% 
probability. 

 

 1 1100%N N Nr y y y   
 

(17) 

 
Referring to the previous articles [12], [16], for IEEE 118-bus system, 30000 times of 

MCS with SRS for the PLF is enough. 
 
 
4. Results and Discussion 

The validity of the proposed method in the static risk assessment is demonstrated on 
IEEE 118-bus system. The program is developed with MATPOWER 4.0 on Dual Core 2.71GHz 
PC with 1.75G of RAM. The wind power and the load are seen as independentrandom 
variables. The forecasted wind power values from different wind farms are independent.The 
wind power uncertainty is modelled as Beta distribution [24], the mean value of which equals the 
average forecasted power and the standard deviation is estimated as 30% of the mean value. 
The nodal active and reactive power distributions of loads follow normal distribution.The mean 
value is the same as the original data provided byMATPOWER 4.0. And the standard deviation 
of loadis equal to10% ofthe mean value, namely =10%. 

 
4.1. IEEE 30-bus System 

For testing the efficiency of controlling correlation, take IEEE 30-bus system for 
example. The numerical data are from MATPOWER 4.0.The curves of s and η of the four 
methods are shown in Figure 2 (a)-(b).When N=50, the results are acceptable. The computation 
time for LHSRP, LHHS, MLHS-EA and LHIS-EA when N=50 is 2.37s, 2.31s, 1.94s, 1.97s, 
respectively.From Figure 2, the correlation can be controlled with EA better than without EA. 

 
 

 
(a)s obtained by four methods with and without EA 

 
(b) Comparison of ofs by four methods with and without 

EA
 

Figure 2. Comparison of effectiveness of correlation control by EA 
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4.2. Modified IEEE 118-bus System with Wind Farms 
IEEE 118-bus system has 186 lines, shown in Figure 3. There are 189 independent 

input random variables including 99 active loads and 90 reactive loads. The test system has 
been modified to include three wind farms having all Doubly Fed Induction Generators in nodes 
10, 65 and 89, respectively. Wind power replaces part of the conventional generation in the 
three nodes, e.g., 120 MW wind power in node 10, 180 MW wind power in node 65, and 162 
MW wind power in node 89. After wind power integrated into 118-bus system, the capacities of 
the thermal units in the nodes 10, 65 and 89 are 330MW, 211MW and 445MW, respectively. 
[Umin, Umax]=[0.95pu, 1.05pu], and [Pfmin,Pfmax]=[-500MW, 500MW]. 

We assume that the total rated power of each wind farm is 300MW. The parameters of 
Beta distribution for each wind farm calculated according to [24] are given in Table 1. The Beta 
distributions are shown in Figure4. In EA, G=1000. In MLHS, the sample size N is 300. 

The error of the expected value of voltage magnitude in each node is shown in Figure 5. 
The indices RiskU and SevU of the first three nodes in a descending order are given in Table 
2.The indices RiskLF and SevLF of the first three lines in a descending order are given in Table 3. 
To analyze the influence of load and wind power uncertainties on the load flow, the situation of 
=10% is compared with =1%. The indices RiskU and SevU of the first three nodes in a 
descending order are given in Table 4. The CDF curves of voltage magnitude in node 53 and 
node 118 are shown in Figure 6. 

 
 

Table 1. The Statistical Parameters for Wind Farms in the Node 10, 65 and 89 
 Node 10 Node 65 Node 89 

Mean (p.u.) 0.4 0.6 0.54 
Std. (p.u.) 0.12 0.18 0.162 

Beta distribution β(6.27, 9.40) β(3.84, 2.56) β(4.57, 3.89) 
Rated power (MW) 300 300 300 

 
 

Table 2. Sorting table of RiskUand SevU when loads satisfy =10% 
No. Node RiskU No. Node SevU 
1 53 0.9933 1 53 1.1848 
2 118 0.7100 2 118 1.0716 
3 2 0 3 21 0.9660 

 
 

Table 3. Sorting table of RiskLFand SevLF when loads satisfy =10% 
No. Line RiskLF No. Line SevLF 
1 9-10 0.0667 1 9-10 1.0966 
2 8-9 0.0500 2 8-9 1.0827 
3 1-2 0 3 8-5 0.7516 

 
 

Table 4. Sorting table of RiskUand SevU when loads satisfy =1% 
No. Node RiskU No. Node SevU 
1 53 1 1 53 1.0907 
2 118 1 2 118 1.0193 
3 2 0 3 9 0.9215 
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Figure 3. Wind farms in node 89, 65 and 10 in IEEE 118-bus system 
 
 

 
 

Figure 4. Beta distribution 

 
 

Figure 5. Error of μof voltage magnitudein 118 
nodes 

 
 

 
 

Figure 6. CDF of voltage magnitudes of node 53 and 118 in wind integrated power system 
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4.3. Results Analysis 
The computation time using MLHS-EA is 8.4 seconds. The expected values of voltage 

magnitude and active power flow obtained by MLHS-EA for the PLF have error about 0.067% 
and 2.027%, respectively. The reason for only giving the indices of the first three nodes in Table 
2 and Table 3 is that the RiskU of other nodes after the first three nodes are all zero. From Table 
2 and Table 3, the nodes 53 and 118 have very high possibilities of over-voltage and severity 
degree. The lines 9-10 and 8-9 have small possibilities of overload but high severity degree. In 
Figure 5, the maximum error of the expected values of voltage magnitudes in all 118 nodes is 
less than 1%. As shown in Figure 6, Table 2 and Table4, the nodes 53 and 118 have high crisis. 
If the fault events are considered, the system has great crisis. Thus, a prevention control to 
keep voltage security is necessary. The results show that LHS with EA is effective to solve the 
PLF problem when the correlation matrix obtained after the sampling initialization is non-positive 
definite. For a large-scale power system with most independent random variables, the improved 
methods are effective. 
 
4.4. Discussion 

This section aims at discussing the misunderstandings about the application of LHS in 
power system probabilistic analysis. These misunderstandings and questions are as follows: 

(1) Why the correlation matrix  is non-positive definite? Why not generate a positive 
definite matrix  that could be done by the Cholesky decomposition? 

The answer is that the matrix  is the correlation matrix of the matrix M0 formed by the 
sampling rule (i.e. Eq. (1), (2) and (3)) in the first step of LHS. The sample points are all 
naturally sorted in an increasing form. The correlation matrix is obtained by calculation, not 
given in advance. The calculated matrix after the first step using MLHS is a non-positive matrix 
that can’t be done by Cholesky decomposition.  

The random variables are completely correlated in the first step. Because the 
precondition of the PLF problem is that the random variables are independent, it needs to 
control correlation to make the sample matrix M satisfy the precondition. That is the reason why 
use EA, not Cholesky decomposition to control correlation in the second step.  

(2) There exist rare nodes with high errors of expected values of voltage magnitudes, or 
rare lines with high errors of expected values of active power flow when other nodes or lines 
have all statistical results with very small errors. Does this show no benefit of using LHS-EA? 

The answer is that rare nodes or lines with high errors are realistic, especially for a 
random variable with a very low actual value. For example, if the actual statistical result ±of 
the voltage magnitude in a node is 0.9871±0.0005pu, and the result obtained using LHS is 
0.9881±0.0004pu, it can be found thatusing Eq. (15), the relative error of  is 0.1%, and the 
relative error of is 20% (i.e. |0.0004-0.0005|/0.0005). Because the relative error rate (i.e. /)is 
quite small, i.e. /=5×10-4, the relative error of  has no influence on judging the performance 
of LHS-EA. IEEE 30-, 57-bus system are also tested and found that the phenomena is very 
common. Thus, it should pay great attention to the authenticity of the results. The phenomena 
with high error for rare nodes or lines can’t deny the validity of LHS with EA. 

 
 

5. Conclusion 
This paper presents the improved LHS methods with Evolutionary Algorithm to control 

correlation and handle power system static security risk assessment problem. To deal with the 
non-positive definite correlation matrix, an improved median Latin hypercube sampling with EA 
called MLHS-EA into Monte Carlo simulation is proposed and investigatedusing modified IEEE 
118-bus systemwith wind farms in this paper. With the method proposed in this paper, the 
correlation is effectively controlled and the accuracy of the LHSfor the static security 
assessment can be improved further than previous LHS methods. The methods can be usedfor 
solving the probabilistic analysis problem in power system. 
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