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Abstract 
In this paper, the existence, uniqueness and globally exponential stability of the equilibrium point 

of a dynamic neural network with distributed delays were studied without assumption of boundedness 
and differentiability of activation functions. Sufficient criteria for existence, uniqueness and global 
exponential stability of the equilibrium point of such neural networks were obtained based on the 
knowledge of M-matrix, topology and Lyapunov stability theory. A test matrix was constructed by the 
weight matrix and the conditions satisfying activation functions of the neural networks. A neural network 
has a unique equilibrium point and is globally exponential stable if the test matrix is an M-matrix. Since 
the criterion is independent of the delays and simplifies the calculation, it is easy to test the conditions of 
the criterion in practice. 
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1. Introduction 

There has recently been increasing interest in the potential applications of the dynamic 
cellular neural networks in the field of image processing, pattern recognition and associative 
memory because of its nonlinear transformation characteristics and the great ability of parallel 
computing. The existence, uniqueness and globally exponential stability of the equilibrium point 
of neural networks have a direct impact on the performance of its hardware circuit. But in the 
realization of circuit in neural network, the time delay factor is inevitable which may cause the 
system performance is often not stable. So, it has an important theoretical and practical 
significance in researching the existence, uniqueness and globally exponential stability of the 
equilibrium point of a dynamic neural network with distributed delays. 

Some research results on stability have been derived for the dynamic neural network 
with distributed delays. Reference [1-3], [9] studied on the Global exponential stability of the 
static neural network. Reference [4, 5] studied on the stability of the neural network without 
time delays. Reference [6-8], [10-12] studied on the stability of the neural network with variable 
delays, but the unbounded delays were not involved. Reference [13-17] studied on the stability 
of the neural network with distributed delays and Reference [14] investigated the stability of the 
neural network under the assumption that the activation function is monotonically non-
decreasing, and obtained the asymptotic stability criterion.   

Although many results were derived for testing the stability solutions of the dynamic 
cellular neural networks with distributed or unbounded delays, to the best of our knowledge, 
the globally exponential stability of dynamic cellular neural networks with distributed delays are 
seldom considered. In this paper, we study the globally exponential stability of dynamic cellular 
neural networks with distributed delays. By constructing test matrix based on the weight matrix 
and the conditions satisfying activation functions of the neural networks, applying M-matrix 
theory and Lyapunov stability theory, we obtain the sufficient conditions for globally exponential 
stability of the equilibrium points of dynamic cellular neural networks with distributed delays. 
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2. Preliminaries 
The dynamic cellular neural networks with distributed delays can be described by the 

following nonlinear differential equations: 
 

*( ) ( ( )) ( ) ( ( )) ,
1

t

i ij s i

n
u t a d u t c k t s g u s d Ji i i iij jj 

    
      1,2, ,i n                            (1) 

 

Where i  and j  are the neuron number; iu  is the state of neuron and  ( )i id u  is 

damping function; ia  is damping coefficient and 0ia  ; ijc is connection weights; ( )i ig u is the 

activation function of the i th neuron; iJ  is an input constant, and ( )ijk t s  is the kernel 

function; The initial state of system (1) is ( ) ( ), 0, ( )i i iu s s s s   is bounded and continuous in 

( ,0] . 

For system (1), we assume the functions of jg , jd  and ijk meet the following 

conditions. 
Assumption 1. {1,2, , }j n   , the activation function :jg R R is the globally 

Lipschitz function, i.e. | ( ) ( ) | | |j j j j j j jg x g y L x y    for all jx , jy , where jL  is a Lipschitz constant 

and 0jL . 

Assumption 2. Suppose id  are differentiable in R  and *inf{ ( )} 0i i ib d u  , 
*sup{ ( )}i id u   , 1,2, ,i n  . 

Assumption 3. : [0, ) [0, )ijk     are piecewise continuous on ),0[   and satisfy 

)(d)(e
0


ijij

s pssk 


, , 1, 2, ,i j n  , where )(ijp  are continuous functions in ),0[  , 0 , 

and 1)0( ijp , , 1,2, ,i j n  . 

In the following, we let: 
 

1 2[ ]nA diag a a a  , 1 2[ ]nB diag b b b  ,  1 2[ ], ( )n ij n nL diag L L L C b    , 

1 1 2 2 1 2( ) [ ( ) ( ) ( )] , [ ] ,T T
n n ng u g u g u g u J J J J   1 1 2 2( ) [ ( ) ( ) ( )]T

n nd u d u d u d u  . 

 
In order to obtain our results, we give the following definitions and lemmas. 

Definition 1. The equilibrium point *u  of system (1) is said to be globally exponentially 

stable, if there exist constant 0   and 0M  such that   * *|| || || || t
iu t u M u e      for all

0t , where 1 2[ ] ,T
ndiag     * *

1 ( ,0]
|| || max{ sup | ( ) |}i i

i n s
u s u 

   
   . 

Lemma 1. Let ( )ij n nA a   be a matrix with non-positive off-diagonal elements. Then 

the following statements are equivalent: 
(1) A is an M-matrix; 
(2) The real parts of all eigenvalues of A are positive; 

(3) There exists a vector 0 , such that 0 A ; 

(4) A  is an nonsingular and all the elements of the TA are nonnegative; 
(5) There exists a positive definite diagonal matrix , such that TA A   is a positive 

definite matrix; 
Lemma 2. If 0( )H u C  is a continuous function ( 0C  is a continuous function space) 

and satisfies the following conditions: 
(1) ( )H u  is an injective function on nR ; 

(2) lim ( )
u

H u


 , then the function ( )H u  is a homeomorphism mapping on nR . 
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3. Existence and Uniqueness of the Equilibrium Point 

In Reference [14], the activation function must satisfy 20 ( ( ) ( ))( ) ( )j j j j j j j j jg x g y x y K x y     . 

It is not difficult to see that the constraint conditions on the activation function are loose in the 
Assumption 1. Under the condition satisfying the requirements of Assumption 1, the 
nonlinear mapping associated with the system (1) can be described by the following equations: 

 
( ) ( ) ( )H u Ad u Cg u J                                                                                         (2) 

 
Where 1 1 2 2( ) [ ( ) ( ) ( )]T

n nH u H u H u H u  . The solution of ( ) 0H u   is the equilibrium 

point of the system. If ( )H u  is an homeomorphism mapping on nR , then there exists only one 

point *u  which satisfying the equation *( ) 0H u  , i.e. the system (1) has the unique equilibrium 

point *u . 
Theorem 1. If system (1) satisfies the requirements of Assumption 1~3 and 

AB C L is an M-matrix, then the system (1) has the unique equilibrium point. 

Proof. To prove the system (1) has the unique equilibrium point *u , only need to prove 

( )H u  is a homeomorphism mapping on nR .  

Step 1. Prove ( )H u  is an injective function on nR .  

Here we use reduction to absurdity. Suppose there exists , nx y R , x y  and 

( ) ( )H x H y . From Assumption 1 and Assumption 2, we can get:  

 

       0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )H x H y A d x d y C g x g y A d x d y C g x g y                                                        

( )AB x y C L x y AB C L x y                                                                     (3) 

 
Since AB C L  is an M-matrix, from Lemma 1, we can get that AB C L  is a 

nonsingular matrix and all of its inverse elements are nonnegative. From formula (3) we can 
deduce that 0x y  , so 0x y  , i.e. x y . It is contradiction with the assumption which is 

x y , so ( )H u  is an injective function on nR . 

Step 2. Prove lim ( )
u

H u


 . 

Define ( ) ( ) (0)H u H u H


   , then to prove ( )H u  is a homeomorphism on nR , only need 

to prove ( )H u


 is a homeomorphism on nR .  

Due to AB C L  is an M-matrix, from the Lemma 1, we get that there exists a positive 

definite diagonal matrix T , such that ( )
T

T AB C L AB C L T       is a positive definite matrix, 

so there exists a sufficiently small positive number   , satisfy:   

 1
( )

2

T
T AB C L AB C L T E         , where E  is an identity matrix. 

From Assumption 1 and Assumption 2, we can get: 
  

       ( ) ( ( ) (0)) ( ) (0) ( ( ) (0)
T T T

Tu H u Tu H u H Tu d u d C g u g


        

  21
( ) ( )

2

TT T
u T AB C L u u T AB C L AB C L T u                            (4) 

 

From formula (4), we get that 
2

( )u T u H u


 , as a result ( )
u

H u
T



 , therefore 

when u   ,  ( )H u


  , so we can deduce that ( )H u   . 
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According to the above proof and Lemma 2, we can obtain the conclusion that  ( )H u  

is a homeomorphism on nR  for arbitrary input u , the proof is completed. 
 
 
4. Global Exponential Stability 

Theorem 2. If system (1) satisfies the requirements of Assumption 1~3 and 
AB C L is an M-matrix, then the system (1) has the unique and globally exponential stability 

of the equilibrium point. 
Proof. Due to  AB C L  is an M-matrix, from Theorem 2, system (1) has a unique 

equilibrium point *u . Let *( ) ( )x t u t u  , then system (1) can be expressed as following: 

 
*( ) ( ( )) ( ) ( ( ))

1

t

i ij s

n
x t a d x t c k t s g x s dii i iij jj




   

                                                         (5) 

 
Where ni ,2,1 , ( ) ( ) ( )j j j j j j jG x g x u g u    are still satisfy the Assumption 1 and 

* *( ) ( ) ( )i i i i i i id x d x u d u


    are still satisfy the Assumption 2.  

According to the initial conditions of system (1), we can reduce the initial conditions of 
Equation (5) expressed as following: 

*( ) ( ) ,s s u    where 0s   .  

Since system (1) has a unique equilibrium point *u , so Equation (5) has a unique 
solution 0x   

Due to AB C L  is an M-matrix, from the Lemma 1, we that there exist positive 

constant numbers  i , 1,2, ,i n  , satisfy:  

 

1
| | 0, 1, 2,...,

n

jiji i i j
j

a b i nc L 


    . 

 
Because ( )ijp    are continuous functions on ),0[   and (0) 1ijp  , so there exists a 

constant 0   such that: 
 

1
( ) | | ( ) 0

n

jiji i i j ij
j

a b pc L   


                                                                                  (6) 

 
Define the Lyapunov functions as following: 
 

 1 2( ) | ( ) |, , , ,
Tt

i i nv t e x t v v v v   . 

 
According to the Assumption 1 and Assumption 2, we can get the upper right of 

( )iv t . 

 

( ))
1

)
1

( ( )) sgn ( ( )) ( ) ( ( )

( ) ( ) ( ) (

tt t
ii i i i ij s i

tt
i i i ij ij s

n
x diij jj

n
x dijj

D v t e x a d x t c k t s g s e x t

e a b x t L c k t s s

 




















      
 

      
 





           

( ) )
1

( ) ( ) ( ) ( , 1, 2, , .
t t s

i i i ij ij j s

n
djj

a b v t L c k t s e v s i n 





                          (7) 

 
Define  ( ) : , 0, 1, 2, , ,i iz l z l l i n        ( ) : 0 , .O z w w z z      
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Let   max min 11
max{ }, min{ },i ii ni n

   
  

   0 min(1 ) || || /l     , where 0  is a 

constant, then 
0( ) ( ( )), ( ) ,v s O z l v s    i.e. 

 

0( ) ( )s
i i iv s e s l      ,                                                                                         (8) 

 

Where 0, 1,2, ,s i n    . In the following we prove: 

  

0( ) , 0, 1,2, , .i iv t l t i n                                                                                    (9) 

 
If (9) is not true, then from (8), there exist 01 t and some i such that: 

 

01)( ltV ii  , 0))(( 1  tVD i , 0)( ltV jj  ,                                                           (10) 

 

Where 1, 2, ,j n  , 1( , ]t t  . 

According to (6), (7), we can get: 
 

 1 0
1

{ ( )) ( ) | | ( ) 0 . 
n

i i i i j ij ij i
j

D v t a b L c p l   


    

 
 
However in (10), 1( ( )) 0iD v t  , this is a contradiction. So  0( )i iv t l  for all 0t . 

Furthermore, we can obtain max
0

min

| ( ) | (1 ) || || || || ,t t t
i ix t l e e M e  

   


       where 1,2, ,i n  . 

So * *| ( ) | || || t
i iu t u M u e     , where max

min

(1 )M





  .  

From the Definition 1, system (1) is globally exponential stable at the equilibrium 
point. The proof is completed. 
 
 
5. An Illustrative Example 

The dynamic cellular neural networks with distributed delays can be described by the 
following differential equations: 

 
*
1 1 1 1 1 1 2 2 2 1

*
2 2 2 1 1 1 2 2 2 2

( ) 0.8 ( ( )) 0.15 ( ) ( ( )) 0.3 ( ) ( ( ))

( ) ( ( )) 0.1 ( ) ( ( )) 0.1 ( ) ( ( ))

t t

t t

u t d u t k t s g u s ds k t s g u s ds J

u t d u t k t s g u s ds k t s g u s ds J

 

 

      

      

 
 

                         (11) 

 

Where  
1 1 2 2

1 1 2 21 1 1 2 2 2 1 1 2 2 1 2 3

2
( ( )) 0.5 ; ( ( )) 0.3 1; ( ( )) ; ( ( )) ; ( ) ; ( )

1

u u u u
t t

u u u u

e e e e
d u t u d u t u g u t g u t k t e k t e

te e e e

 
 

 

 
      

 
. 

It is easy to verify that 1 1( )g u  and 2 2( )g u  are satisfy the Assumption 1 with and

121  LL ; 1 1( )d u  and 2 2( )d u  are satisfy the Assumption 2 with and 1 20.5, 0.3b b  ; )(1 tk and

)(2 tk  satisfy the Assumption 3. Thus we get: 

0 8 0 0 0 5 0 0 0.15 0.30 0.25 0.30
, , ,

0 0 1 0 0 0 1 3 0.10 0.10 0.10 0.20
A B C L

       
                  

. 

 

So we obtain 
0.25 0.30

0.10 0.20
AB C L

 
    

 is an M-matrix. From Theorem 2, we can 

determine that (11) has equilibrium points and (11) is globally exponential stable on these 
points. 
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6. Conclusion 
Based on the knowledge of M-matrix, topology and Lyapunov stability theory, by 

constructing proper vector Lyapunov functions, the existence and uniqueness of the 
equilibrium point and its global exponential stability are investigated for a class of neural 
networks with distributed delays. Without assuming the boundedness and differentiability of the 
activation functions, several new sufficient criterions ascertaining the existence, uniqueness 
and global exponential stability of the equilibrium point of such neural networks are obtained.  
Since the criterions is independent of the delays and simplifies the calculation, it is easy to test 
the conditions of the criterion in practice. Furthermore, the research method of this paper can 
be applied to study the stability for other types of neural network. 
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