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 Optimization problems occur in most disciplines like engineering, physics, 

mathematics, economics, administration, commerce, social sciences, and 

even politics. The conjugate coefficient is the cornerstone of conjugate 

gradient algorithms with the desired conjugate property. In this study, we 

discovered fresh second order information for the Hessian from the target 

function, which might lead to a new search direction. Based on a unique 

search direction, we proposed the update formula and nonlinear conjugate 

gradient technique. Under Wolfe line search and moderate objective function 

assumptions, the strategy has acceptable descent property and is always 

globally convergent. According to numerical results, the technique is 

successful and competitive in recovering the original picture from an image 

corrupted by impulsive noise. 
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1. INTRODUCTION  

This paper presents an iterative technique for solving optimization problems using an edge-

preserving regularization (EPR) objective function. In general, two equations explain impulse noise. The first 

equation uses an adaptive median filter (AMF) [1] to detect pixels that may be contaminated. Let 𝑋 be the 

true picture and 𝛢 = {1,2,3, . . . . . 𝑀} × {1,2,3, . . . . . 𝑁} be its index set. Let 𝛮 ⊂ 𝛢 be the indices of the first 

phase noise pixels. Let jiP ,  be the set of four closest neighbors of the pixel at (𝑖, 𝑗) ∈ 𝛢, 𝑦𝑖,𝑗 be the observed 

pixel value at (𝑖, 𝑗), and 𝑢𝑖,𝑗 = [𝑢𝑖,𝑗]
(𝑖,𝑗)∈𝛮

 be a lexicographically ordered column vector of length 𝑐. 𝛮 has c 

components. This is done by reducing the following functional:  
 

𝑓𝛼(𝑢) = ∑ [|𝑢𝑖,𝑗 − 𝑦𝑖,𝑗| +
𝛽

2
(2 × 𝑆𝑖,𝑗

1 + 𝑆𝑖,𝑗
2 ](𝑖,𝑗)∈𝛮 . (1) 

 

where 𝛽 is the regularization parameter, and 𝑆𝑖,𝑗
1 = 2 ∑ 𝜙𝛼(𝑢𝑖,𝑗 − 𝑦𝑚,𝑛(𝑚,𝑛)∈𝛲𝑖,𝑗∩𝛮𝑐 ), 𝑆𝑖,𝑗

2 =

∑ 𝜙𝛼(𝑢𝑖,𝑗 − 𝑦𝑚,𝑛(𝑚,𝑛)∈𝛲𝑖,𝑗∩𝛮 ). The 𝜙𝛼 = √𝛼 + 𝑥2, 𝛼 > 0 is an example of an edge-preserving potential. In 

reality, the non-smooth data-fitting term is unnecessary in the second phase, when only noisy pixels are 

restored, Yu et al. [2]. Thus, several optimization techniques may be extended to minimize the smooth edge-

preserving regularization (EPR) functional: 
 

𝑓𝛼(𝑢) = ∑ [2 × 𝑆𝑖,𝑗
1 + 𝑆𝑖,𝑗

2 ](𝑖,𝑗)∈𝛮  (2) 
 

https://creativecommons.org/licenses/by-sa/4.0/
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Image restoration uses conjugate gradients, image restoration problems are expressed as: 

 

 “𝑀𝑖𝑛𝑓(𝑢)  ,  u ∈ 𝑅𝑛 (3) 
 

where 𝑓: 𝑅𝑛 → 𝑅 is smooth function, Gilbert and Nocedal [3]. A general conjugate gradient algorithm 

generates a sequence of iterates by the rule: 
 

 “
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (4) 

 

where the step size 𝛼𝑘 is positive and the directions 𝑑𝑘 are computed using the updating formula: 
 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘  (5) 
 

which 𝛽𝑘 is a scalar known as the conjugate gradient parameter. Different choices of 𝛽𝑘 lead to various 

conjugate gradient methods, Andrei [4]. In this paper, we focus our attention on well-known method such as 

Fletcher and Reeves, [5] given by: 
 

𝛽𝑘
𝐹𝑅 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

 (6) 

 

it is well known that the FR possess nice convergence properties. In the past decades, a variety of conjugate 

gradient methods are developed. There are some well known conjugate gradient methods, such as [6]-[10]. 

Other nonlinear conjugate gradient methods and their global convergence can be found in [11]. We can get 

the step-size 𝛼𝑘 using the exact line research: 
 

𝛼𝑘 =
−𝑔𝑘

𝑇𝑑𝑘

𝑑𝑘
𝑇𝑄𝑑𝑘

, (7) 

 

see, [12]. Usually, in (2), the steplength 𝛼𝑘 is computed using the Wolfe line search conditions: 
 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 (8) 

 

𝑑𝑘
𝑇𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≥ 𝜎 𝑑𝑘

𝑇𝑔𝑘 (9) 
 

where 0 < 𝛿 < 𝜎 < 1, Wolfe [13], [14]. During the last decade, much effort has been devoted to develop 

new conjugate gradient methods which not only possess strong convergence properties but are also 

computationally superior to the classical methods. The most typical feature of conjugate gradient methods is 

conjugacy, namely, the search directions generated by (3) should possess the following conjugacy condition: 
 

𝑑𝑘+1
𝑇 𝑄𝑑𝑘 = 0 (10) 

 

researchers focus their attention on conjugacy condition. One of the remarkable results is obtained in 

conjugate gradient methods. For a good reference for studies describing the latest CG coefficients with 

important result and various modifications from 𝛽𝑘, Xue et al. [1]. For further references on the optimization 

methods, please refer to [15]-[18]. 

Using the conjugacy condition , we are now ready to give some new formulas of nonlinear 

conjugate gradient methods. Global convergence of these formulas have been established. Finally, some of 

the numerical results have been reported, which show the effectiveness of the new formula. 

 

 

2. NEW CONJUGATE GRADIENT COEFFICIENT  

In our paper, By adopting some idea that in the literature [19]. We first consider the second order 

Taylor series of f (x) as (11). 
 

𝑓(𝑢) = 𝑓(𝑢𝑘+1) + 𝑔𝑘+1
𝑇 (𝑢 − 𝑢𝑘+1) +

1

2
(𝑢 − 𝑢𝑘+1)𝑇𝑄(𝑢𝑘)(𝑢 − 𝑢𝑘+1) (11) 

 

Finding the derivative yields: 
 

𝑔𝑘+1 = 𝑔𝑘 + 𝑄(𝑢𝑘)𝑠𝑘 (12) 
 

The parameter, 𝛽𝑘, in the linear conjugate gradient method is given by: 
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𝛽𝑘 =
𝑔𝑘+1

𝑇 𝑄𝑠𝑘

𝑑𝑘
𝑇𝑄𝑠𝑘

 (13) 

 

where 𝑄 is Hessian matrix and where 𝛽𝑘 is satisfies the conjugacy condition, Hassan and Sulaiman [19]. 

Now, we shall consider another expression of the denominator 𝑑𝑘
𝑇𝑄𝑠𝑘. Using (11) and (7) in (11), we obtain: 

 

𝑠𝑘
𝑇𝑄(𝑢𝑘)𝑠𝑘 = 2/3𝑠𝑘

𝑇𝑦𝑘 + 2/3(𝑓𝑘 − 𝑓𝑘+1) (14) 
 

which implies that: 
 

𝑑𝑘
𝑇𝑄(𝑢𝑘)𝑠𝑘 = 2/3𝑑𝑘

𝑇𝑦𝑘 + 2/3(𝑓𝑘 − 𝑓𝑘+1)/𝛼𝑘 (15) 
 

from this we advance formula, 
 

𝛽𝑘 =
𝑔𝑘+1

𝑇 𝑦𝑘

2/3𝑑𝑘
𝑇𝑦𝑘+2/3(𝑓𝑘−𝑓𝑘+1)/𝛼𝑘

 (16) 

 

since 𝑓  is quadratic model by using exact line search, then (16) reduces to: 
 

𝛽𝑘 =
‖𝑔𝑘+1‖2

2/3𝑑𝑘
𝑇𝑦𝑘+2/3(𝑓𝑘−𝑓𝑘+1)/𝛼𝑘

 (17) 

 

and 
 

𝛽𝑘 =
‖𝑔𝑘+1‖2

−2/3𝑑𝑘
𝑇𝑔𝑘+2/3(𝑓𝑘−𝑓𝑘+1)/𝛼𝑘

 (18) 

 

and 
 

𝛽𝑘 =
‖𝑔𝑘+1‖2

2/3𝑔𝑘
𝑇𝑔𝑘+2/3(𝑓𝑘−𝑓𝑘+1)/𝛼𝑘

 (19) 

 

our formula, so-called BA1, BA2 and BA3. They show that the new method globally convergent for general 

functions under some proper conditions. Below we present the BA algorithms: 

- Stage 1 : Set 𝑘 = 1, then𝑑1 = −𝑔1 and select 𝑢1. 

- Stage 2 : Test for Continuation of Iterations. 

- Stage 3 : Calculate the step length by using Wolfe line search (5) and (6).  

- Stage 4 : Compute 𝑑𝑘+1using (5). 

- Stage 5 : Compute 𝑢𝑘+1using (4). 

- Stage 6 : Set k=k+1, and go to Step 1. 

Theorem (2.2) 

The search direction defined by (3) with (17)-(19) satisfy: 
 

𝑑𝑘+1
𝑇 𝑔𝑘+1 < 0 and 𝑑𝑘+1

𝑇 𝑔𝑘+1 = 𝛽𝑘𝑑𝑘
𝑇𝑔𝑘 (20) 

 

Proof : 

Clearly by (3), if 𝑘 = 0 then 𝑔0
𝑇𝑑0 = −‖𝑔0‖2 holds, let 𝑑𝑘

𝑇𝑔𝑘 < 0 for all 𝑘. Multiplying both sides 

of (3) with 𝑔𝑘+1
𝑇 , we get:  

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −𝑔𝑘+1

𝑇 𝑔𝑘+1 + 𝛽𝑘𝑑𝑘
𝑇𝑔𝑘+1  

= −𝛽𝑘(2/3𝑑𝑘
𝑇𝑦𝑘 + 2/3(𝑓𝑘 − 𝑓𝑘+1)/𝛼𝑘) + 𝛽𝑘𝑑𝑘

𝑇𝑔𝑘+1 (21) 
 

From (21), we obtain: 
 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = 𝛽𝑘[𝑑𝑘

𝑇𝑔𝑘+1 − (2/3𝑑𝑘
𝑇𝑦𝑘 + 2/3(𝑓𝑘 − 𝑓𝑘+1)/𝛼𝑘)] (22) 

 

also, by using (17) and (21) we get: 
 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = 𝛽𝑘𝑑𝑘

𝑇𝑔𝑘 (23) 
 

by the 𝑑𝑘
𝑇𝑔𝑘 < 0and (23), we can write: 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 < 0 (24) 
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hence 𝑑𝑘+1
𝑇 𝑔𝑘+1 < 0 and 𝑑𝑘+1

𝑇 𝑔𝑘+1 = 𝛽𝑘𝑑𝑘
𝑇𝑔𝑘 holds, which completes the proof. Similarly, other methods 

can be proved. 

 

 

3. CONVERGENCE ANALYSIS 

In the above section, we have proved that the new methods has decsent property property that is 

independent of the line search and the function. convexity. In this section, we will make use of this property 

to establish the global convergence for the new methods using a variety of line searches. Suppose that the 

objective function satisfies the following assumption.  

Assumptions: 

I) The level set 𝛺 = {𝑢 ∈ 𝑅𝑛/𝑓(𝑢) ≤ 𝑓(𝑢1)}, is bounded. 

II) Gradient is Lipschitz continuous, that is, for 0L : 
 

‖𝑔(𝛲) − 𝑔(𝛰)‖ ≤ 𝐿 ‖𝛲 − 𝛰‖, ∀𝛲, 𝛰 ∈ 𝛬 (25) 
 

for more details see [20]-[22].  

By having these assumptions, Zoutendjik [23] has proven the following Lemma. 

Lemma (3.1):  

Suppose Assumption are satisfied. In any iteration method if 𝛼𝑘 is satisfied Wolfe line search, then:  
 

∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
∞
𝑘=1 < ∞ (26) 

 

Proof : For see Sulaiman and Hassan [24] and Zhang and Xu [25]. 

Theorem (3.2): 

Suppose that Assumption and Lemma 1 holds. Then, 

 

 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0  (27) 

 

Proof : 

By induction, let that (27) is not true. Suppose that there exists 𝑐1 > 0 such that ‖𝑔𝑘‖ ≥ 𝑐1 for all 

nk . Squaring both sides of (8), we get: 

 

‖𝑑𝑘+1‖2 + ‖𝑔𝑘+1‖2 + 2𝑑𝑘+1
𝑇 𝑔𝑘+1 = (𝛽𝑘)2‖𝑑𝑘‖2 (28) 

 

using (23), yields: 

 

‖𝑑𝑘+1‖2 =
(𝑑𝑘+1

𝑇 𝑔𝑘+1)2

(𝑑𝑘
𝑇𝑔𝑘)2

‖𝑑𝑘‖2 − 2𝑑𝑘+1
𝑇 𝑔𝑘+1 − ‖𝑔𝑘+1‖2 (29) 

 

divide by (29) by (𝑑𝑘+1
𝑇 𝑔𝑘+1)2, we get: 

 
‖𝑑𝑘+1‖2

(𝑑𝑘+1
𝑇 𝑔𝑘+1)2 =

‖𝑑𝑘‖2

(𝑑𝑘
𝑇𝑔𝑘)2 −

‖𝑔𝑘+1‖2

(𝑑𝑘+1
𝑇 𝑔𝑘+1)2 −

2

𝑑𝑘+1
𝑇 𝑔𝑘+1

 (30) 

 

using (3), (17), and (30), we obtain: 

 
‖𝑑𝑘+1‖2

(𝑑𝑘+1
𝑇 𝑔𝑘+1)2 ≤

‖𝑑𝑘‖2

(𝑑𝑘
𝑇𝑔𝑘)2 − (

‖𝑔𝑘+1‖

(𝑑𝑘+1
𝑇 𝑔𝑘+1)

+
1

‖𝑔𝑘+1‖2) +
1

‖𝑔𝑘+1‖2 ≤
‖𝑑𝑘‖2

(𝑑𝑘
𝑇𝑔𝑘)2 +

1

‖𝑔𝑘+1‖2 (31) 

 

hence, 
 

‖𝑑𝑘+1‖2

(𝑑𝑘+1
𝑇 𝑔𝑘+1)2 ≤ ∑

1

‖𝑔𝑖‖2
𝑘+1
𝑖=1  (32) 

 

therefore,  
 

‖𝑑𝑘+1‖2

(𝑑𝑘+1
𝑇 𝑔𝑘+1)2 <

𝑘+1

𝑐1
2  (33) 
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from (33), we obtain: 

 

∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
∞
𝑘=1 = ∞ (34) 

 

based on Lemma 1, we get  𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0  holds. 

 

 

4. NUMERICAL RESULTS  

The numerical findings in this section indicate the effectiveness of New in the reduction of salt-and-

pepper impulse noise. New and FR methods are tested in our trials. MATLAB r2017a is used to write and 

execute all of the programs. The following are the stopping criteria for both methods (35). 
 

|𝑓(𝑢𝑘)−𝑓(𝑢𝑘−1)|

|𝑓(𝑢𝑘)|
≤ 10−4 and ‖𝑓(𝑢𝑘)‖ ≤ 10−4(1 + |𝑓(𝑢𝑘)|) (35) 

 

Lena, House, Cameraman, and Elaine make up the test photos. PSNR (peak signal-to-noise ratio) is 
a quantitative metric that may be used to evaluate the quality of the restoration process: 
 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
2552

1

𝑀𝑁
∑ (𝑢𝑖,𝑗

𝑟 −𝑢𝑖,𝑗
∗ )2

𝑖,𝑗
 (36) 

 

in this case, 𝑢𝑖,𝑗
𝑟  and 𝑢𝑖,𝑗

∗  represent the restored and original image's pixel values, respectively. 

The number of iterations (NI) and the number of function evaluations (NF) needed for the whole 

denoising process, as well as the PSNR of the recovered picture, are reported in this paper. We can observe 

from Table 1 that the New technique is much quicker than the FR method for the vast majority of the test 

photographs. Furthermore, we see that the PSNR values obtained by the New and FR methods are fairly 

close. Conclusion. Table 1 shows that the suggested methods outperform the FR approach in terms of number 

of iterations, function evaluations, and peak signal to noise ratio when it comes to eliminating impulse noise 

from photos. 

Figures 1-4 show the obtained results by denoised images. Figures (a1), (a2), (a3) and (a4) are the 

images corrupted with 70% salt-and-pepper noise; Figures (b1), (b2), (b3) and (b4) are results of FR method; 

Figures (c1), (c2), (c3) and (c4) are results of the BA1 method; Figures (d1), (d2), (d3) and (d4) are results of 

the BA2 method; and Figures (e1), (e2), (e3) and (e4) are results of the BA3 method. 

 

 

     
a1 b2 c1 d1 e1 

 

Figure 1. Demonstrates the results of algorithms: (a1) denoised images with 70% salt-and-pepper noise, (b1) 

FR method, (c1) BA1 method, (d1) BA2 method and (e1) BA3 method of 256 * 256 Lena images 

 

 

     
a2 b2 c2 d2 e2 

 

Figure 2. Demonstrates the results of algorithms: (a2) denoised images with 70% salt-and-pepper noise, (b2) 

FR method, (c2) BA1 method, (d2) BA2 method and (e2) BA3 method of 256 * 256 House image 
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a3 b3 c3 d3 e3 

 

Figure 3. Demonstrates the results of algorithms: (a3) denoised images with 70% salt-and-pepper noise, (b3) 

FR method, (c3) BA1 method, (d3) BA2 method and (e3) BA3 method of 256 * 256 Elaine image 

 

 

     
a4 b4 c4 d4 e4 

 

Figure 4. Demonstrates the results of algorithms: (a4) denoised images with 70% salt-and-pepper noise, (b4) 

FR method, (c4) BA1 method, (d4) BA2 method and (e4) BA3 method of 256 * 256 Cameraman image 

 

 

Table1. Numerical results of FR, BA1, BA2 and BA3 algorithms 
Image Noise level r 

(%) 

FR-Method BA1-Method BA2-Method BA3-Method 

NI NF PSNR 

(dB) 

NI NF PSNR 

(dB) 

NI NF PSNR 

(dB) 

NI NF PSNR 

(dB) 

Le 50 

70 

90 

82 

81 

108 

153 

155 

211 

30.5529 

27.4824 

22.8583 

42 

45 

54 

89 

94 

109 

30.7873 

27.391 

23.0297 

42 

40 

84 

91 

80 

167 

30.4787 

27.3022 

22.6043 

44 

41 

49 

93 

81 

94 

30.6782 

27.3242 

23.0253 

Ho 50 

70 

90 

52 

63 

111 

53 

116 

214 

30.6845 

31.2564 

25.287 

28 

37 

48 

57 

71 

99 

34.8651 

30.9231 

25.1515 

32 

37 

69 

67 

73 

137 

34.7529 

31.2538 

24.9917 

33 

32 

47 

68 

63 

95 

34.7004 

31.1076 

25.1155 

El 50 

70 

90 

35 

38 

65 

36 

39 

114 

33.9129 

31.864 

28.2019 

23 

300 

38 

43 

56 

72 

33.895 

31.8106 

28.1511 

21 
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5. CONCLUSIONS 

In this research, we offer novel CG approaches for minimizing the smooth regularization functional 

for impulse noise reduction, which we call smooth regularization functions. The parameters of the new 

technique are generated from a quadratic model, which is described in this paper. The numerical findings 

demonstrate that the novel technique has a low computing cost and is effective at solving signal processing 

difficulties. 

 

 

REFERENCES 
[1] W. Xue, J. Ren, X. Zheng, Z. Liu, and Y. Liang, “A new DY conjugate gradient method and applications to image denoising,” 

IEICE Transactions on Information and Systems, vol. E101D, no. 12, pp. 2984–2990, Dec. 2018, doi: 

10.1587/transinf.2018EDP7210. 

[2] G. Yu, J. Huang, and Y. Zhou, “A descent spectral conjugate gradient method for impulse noise removal,” Applied Mathematics 

Letters, vol. 23, no. 5, pp. 555–560, May 2010, doi: 10.1016/j.aml.2010.01.010. 

[3] J. C. Gilbert and J. Nocedal, “Global convergence properties of conjugate gradient methods for optimization,” SIAM Journal on 

Optimization, vol. 2, no. 1, pp. 21–42, Feb. 1992, doi: 10.1137/0802003. 

[4] N. Andrei, “Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization,” Bulletin of the Malaysian 

Mathematical Sciences Society, vol. 34, no. 2, pp. 319–330, 2011. 

[5] R. Fletcher, “Function minimization by conjugate gradients,” The Computer Journal, vol. 7, no. 2, pp. 149–154, Feb. 1964, doi: 

10.1093/comjnl/7.2.149. 

[6] Y. H. Dai and Y. Yuan, “A nonlinear conjugate gradient method with a strong global convergence property,” SIAM Journal on 

Optimization, vol. 10, no. 1, pp. 177–182, Jan. 1999, doi: 10.1137/S1052623497318992. 

[7] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” Journal of Research of the National 

Bureau of Standards, vol. 49, no. 6, p. 409, Dec. 1952, doi: 10.6028/jres.049.044. 

Salt-and-pepper noise

r= 70%

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

FR

28.2019 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

BA1

31.8106 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

BA2

31.9086 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

BA3

31.8757 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Salt-and-pepper noise

r= 70%

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

FR

30.6259 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

BA1

30.6036 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

BA2

30.6724 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

BA3

30.7193 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improvement of conjugate gradient methods for removing impulse noise images (Basim A. Hassan) 

251 

[8] Y. Liu and C. Storey, “Efficient generalized conjugate gradient algorithms, part 1: Theory,” Journal of Optimization Theory and 

Applications, vol. 69, no. 1, pp. 129–137, Apr. 1991, doi: 10.1007/BF00940464. 

[9] E. Polak and G. Ribiere, “Note sur la convergence de méthodes de directions conjuguées,” Revue française d’informatique et de 

recherche opérationnelle. Série rouge, vol. 3, no. 16, pp. 35–43, May 1969, doi: 10.1051/m2an/196903R100351. 

[10] B. T. Polyak, “The conjugate gradient method in extremal problems,” USSR Computational Mathematics and Mathematical 

Physics, vol. 9, no. 4, pp. 94–112, Jan. 1969, doi: 10.1016/0041-5553(69)90035-4. 

[11] W. W. Hager and H. Zhang, “A survey of nonlinear conjugate gradient methods,” Pacific journal of Optimization, vol. 2, no. 1, 

pp. 35–58, 2006, [Online]. Available: http://www.ybook.co.jp/online2/oppjo/vol2/p35.html. 

[12] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. Springer New York, 2006. 

[13] P. Wolfe, “Convergence conditions for ascent methods,” SIAM Review, vol. 11, no. 2, pp. 226–235, Apr. 1969, doi: 

10.1137/1011036. 

[14] P. Wolfe, “Convergence conditions for ascent methods. II: some corrections,” SIAM Review, vol. 13, no. 2, pp. 185–188, Apr. 

1971, doi: 10.1137/1013035. 

[15] I. M. Sulaiman, N. A. Bakar, M. Mamat, B. A. Hassan, M. Malik, and A. M. Ahmed, “A new hybrid conjugate gradient algorithm 

for optimization models and its application to regression analysis,” Indonesian Journal of Electrical Engineering and Computer 

Science, vol. 23, no. 2, pp. 1100–1109, Aug. 2021, doi: 10.11591/ijeecs.v23.i2.pp1100-1109. 

[16] J. Zhang and C. Xu, “Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations,” 

Journal of Computational and Applied Mathematics, vol. 137, no. 2, pp. 269–278, Dec. 2001, doi: 10.1016/S0377-

0427(00)00713-5. 

[17] B. A. Hassan and A. R. Ayoob, “An adaptive quasi-newton equation for unconstrained optimization,” in Proceedings of 2021 2nd 

Information Technology to Enhance E-Learning and other Application Conference, IT-ELA 2021, Dec. 2021, pp. 1–5, doi: 

10.1109/IT-ELA52201.2021.9773580. 

[18] M. Malik, M. Mamat, S. S. Abas, I. M. Sulaiman, and S. Sukono, “Performance analysis of new spectral and hybrid conjugate 

gradient methods for solving unconstrained optimization problems,” IAENG International Journal of Computer Science, vol. 48, 

no. 1, 2021. 

[19] B. A. Hassan and R. M. Sulaiman, “A new class of self-scaling for quasi-newton method based on the quadratic model,” 

Indonesian Journal of Electrical Engineering and Computer Science, vol. 21, no. 3, pp. 1830–1836, Mar. 2021, doi: 

10.11591/ijeecs.v21.i3.pp1830-1836. 

[20] H. Iiduka and Y. Narushima, “Conjugate gradient methods using value of objective function for unconstrained optimization,” 

Optimization Letters, vol. 6, no. 5, pp. 941–955, Jun. 2012, doi: 10.1007/s11590-011-0324-0. 

[21] Y. Dai, J. Han, G. Liu, D. Sun, H. Yin, and Y. X. Yuan, “Convergence properties of nonlinear conjugate gradient methods,” SIAM 

Journal on Optimization, vol. 10, no. 2, pp. 345–358, Jan. 1999, doi: 10.1137/s1052623494268443. 

[22] B. A. Hassan, K. Muangchoo, F. Alfarag, A. H. Ibrahim, and A. B. Abubakar, “An improved quasi-Newton equation on the quasi-

Newton methods for unconstrained optimizations,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 22, 

no. 2, p. 997, May 2021, doi: 10.11591/ijeecs.v22.i2.pp997-1005. 

[23] G. Zoutendijk, “Nonlinear programming, computational methods,” Integer and Nonlinear Programming, pp. 37–86, 1970. 

[24] R. M. Sulaiman and B. A. Hassan, “Using a new coefficient conjugate gradient method for solving unconstrained optimization 

problems,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 27, no. 3, pp. 1635–1641, 2022, doi: 

10.11591/ijeecs.v27.i3.pp1642-1648. 

[25] P. Stanimirovic and M. Miladinovic, “Accelerated gradient descent methods with line search,” Numer. Algorithms, vol. 54, pp. 

503–520, Aug. 2010, doi: 10.1007/s11075-009-9350-8. 

 

 

BIOGRAPHIES OF AUTHORS  

 

 

Basim A. Hassan     is currently a Professor in Department of Mathematics, 

College of Computer Science and Mathematics, University of Mosul. He obtained his M.Sc 

and Ph.D degrees in Mathematics from the University of Mosul, in 2000 and 2010, 

respectively with specialization in optimization. To date, he has published more than 80 

research paper in various international journals and conferences. He currently works on 

iterative methods. His research interest in applied mathematics, with a field of concentration 

of optimization include conjugate gradient, steepest descent methods, Broyden’s family and 

quasi-Newton methods with application in signal recovery and image restoration. He can be 

contacted at email: basimah@uomosul.edu.iq. 

  

 

Ali Ahmed A. Abdullah     received the bachelor's (B.Sc) and master's (M.Sc) 

degrees in mathematics from University of Mosul-college of Computer Science And 

Mathematics-Department Of Mathematics in 2008 and 2020 respectively. He currently works 

as a Teacher in the ministry education of Iraq-Nineveh directorate of education-Abo-Tamam 

high school. His Master’s Degree was in pure mathematics and he has several researches in 

the field of projective geometry. His most recent research and interest are the iterative 

methods for unconstrained optimization with Application. He can be contacted at email: 

ali2005aha@gmail.com. 

 

https://orcid.org/0000-0003-3510-9818
https://orcid.org/0000-0002-6547-8916

