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Abstract 

We report that the signal-to-noise ratio (SNR) can be improved by the stochastic resonance 
(SR) in a tristable system. The system is driven by Gaussian white noise and a sinusoidal signal, and 
studied by using the second-order Runge-Kutta method. We find that the SNR gain exhibits the 
stochastic resonance behavior, and greatly exceeds unity on some occasions. This result is the latest 
development of the tristable stochastic resonance, and has potential applications in the signal detection, 
processing and communications. 
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1. Introduction 

The single-mode nonlinear optical system is a pretty complex nonlinear system. Y. M. 
Kang et al observed stochastic resonance with the spectral power amplification   in the single-
mode nonlinear optical system which is monostable, bistable and tristable, respectively [1]. 
Based on Reference [1], we further study the SNR gain of the tristable system, and find that 
the SNR gain exhibits characteristic signature of SR and greatly exceeds unity. 
 
 
2. Tristable SR in a Single-mode Nonlinear Optical System [1] 

The phenomenological dynamic equation of a single-mode optical system with six-
order potential function is [1]: 

 
5 3(1 )

( )
5 3

dx x C x
Cx y t

dt


      

      
(1) 

 
Where y is dimensionless incident field; x  is dimensionless emergent field; C 

issystem parameter; ( )t  is Gaussian white noise, and satisfies ( ) 0t   ,

( ) ( ) 2 ( )t t D      , where D  is noise intensity. Equation (1) is a more complex nonlinear 

optical system. It’s monostable, bistable and tristable, respectively, with tuning the parameter C 
and y . This paper focuses on the tristable system due to space limitations, the other two cases 

have 
been studied respectively in our other papers. According to Reference [1], when 0.1C  , 

0y  , the system is tristable, the corresponding potential ( )U x  is: 
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Equation (2) shows in Figure 1. 
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Figure 1. The Potential ( )U x  with 0.1C  , 0y  . 
 
 

Actually, Equation (1) can be regarded as an overdamped Langevin equation. A weak 
periodic signal cos(2 )A Ft is added to Equation (1) [1]. 

 

( ) cos(2 ) ( )
dx

U x A Ft t
dt

    
       

(3) 

 
After the transient processes in the system (3) have died out, the noise-averaged 

value of the system’s coordinate x performs driven oscillations around equilibrium [2], 

 
2( ) cos(2 ) ( )x xeq

x t x A Ft A      
    

(4) 

 

For small driving amplitudes, the higher-order terms 2( )A can be neglected. x is 
called linear-response susceptibility of x . To characterize SR, we use the spectral power 
amplification [3, 4]. 

 
2

= x 
         

(5) 

 
Reference [1] adopted the variational method to numerically calculate the relaxation 

rate min , and obtained the numerical result of   using the linear response theory. ( )D  

shows SR with a single hump in Figure 2. 
 
 

 
 

Figure 2.   vs. D  for the Stochastic Dynamics (3) ( F =0.016Hz) 

 
 

There are two potential barriers in the potential function (Equation (2)), the 
corresponding Equation (3) is a tristable system. The basic mechanism leading to SR is similar 
to that of the conventional bistable system possessing a barrier, namely, it is also that the 
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transition between wells results in SR since noise provides sufficient energy to surmount the 
barriers. 
 
 
3. SNR Gain 

There are a variety of definitions about the measure of stochastic resonance, for example, 
SNR gain, SNR, spectral power amplification and linear-response susceptibility. Among these 
definitions SNR gain is the most important, which is defined as follows:  

 
SNRout

SNRgain
SNRin


        

(6) 

 
Where SNRgain  is SNR gain, SNRout  is output SNR, SNRin  is input SNR.  

So far, there’s no uniform definition about the SNR of stochastic resonance systems 
[5-8]. Two definitions are mainly adopted, one is widely used in the field of SR: [3, 5, 9]. 

The stochastic resonance system is driven by the sinusoidal signal and noise, the 
output SNR. 

 
0

0

( )

N ( )

S F
SNR

F


         
(7) 

 
Where 0F  is the frequency of input sinusoidal signal, 0( )S F  is the power of 0F  frequency 

component in the output port, and 0N( )F  is the background noise spectrum at input frequency 

0F  in the output port.   
The other is widely used in the field of the signal detection and communication [5-8]:   
 

0

0

( )

P S( )

S F
SNR

F


         
(8) 

 
Where 0( )S F  is the power of 0F  frequency component; P  is total power, including the 

signal power and noise power, P  minus 0( )S F  equals to the noise power.  
The distinction between the two definitions is that the interpretations of the noise 

power are different. The former is the local noise power, and the latter is the whole noise 
power. Equation (8) is considered to be better and more comprehensive description of the 
comparison between the signal and noise power, and is more widely accepted especially in 
practical detection and communication [5-8]. Obviously the input SNR in SNR gain (6) should 
adopt the latter definition because the input signal and noise are not processed by stochastic 
resonance systems. As a result, we use the latter henceforth.  

The inputs of stochastic resonance system are 0cos(2 )A F t  and ( )t . The discrete 

sequence ( )z l  with the length L  is obtained when the noisy signal is sampled at sampling 

frequency SF . The output of SR system solved by the Runge-Kutta numerical method is a 
discrete sequence ( )x l  with the length L . Its frequency spectrum ( )X k  is calculated using 
FFT : 
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We assume that the signal 0( )X k  is the magnitude of the output at the input frequency 

0F , and 0
0

S

F
k L

F
 . According to Equation (8), the output SNR can be obtained.  
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Similarly, the input SNR can be calculated. 
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Where 0Z( )k  is the magnitude of the input at the frequency 0F . 

In the case of large L , SNR equation ((10) (11)) was proved by Reference [5]. SNR 
gain can be calculated by Equation (6). 

 
 

4. SR behavior of SNR Gain 
Reference [1] demonstrated SR behavior of the spectral power amplification  , but an 

important parameters such as the SNR gain was not considered. This section focuses on the 
SNR gain of the tristable system. So far no research results have been reported on the 
analytical solution and approximate solution about the tristable system. Therefore, the tristable 
system (12) is studied further using the second-order Runge-Kutta method in this paper.  

 
5 31.1

0.1 cos(2 ) ( )
5 3

dx x x
x A Ft t

dt
    

      
(12) 

 
In order to compare with the result of Reference [1], we will demonstrate SR behaviors 

of SNRgain  and   simultaneously. According to cos(2 )x xA Ft    in Equation (4), x  can 
be approximated to the ratio between theoutput-to-input amplitude at the frequency F , 

consequently  
2

0
2

0

( )

( )

X k

Z k
 can be calculated�  

In essence, the parameters ( SNR , SNRgain  and  ) are random variables in this 

paper, therefore, their final values are obtained by averaging over many numerical solutions [5, 
6]. 

Periodic input signal cos(2 )A Ft , A =0.05, F  equals 0.008Hz, 0.016Hz and 0.133Hz, 

respectively. ( )t  is the same as in Equation (1). Number of sampling points L =16384, 

sampling frequency =128SF F , the final values are obtained by averaging over 100 numerical 

solutions. The results are shown in Figure 3. 
 
 

 
Figure 3. The Results are Obtained by the Second-order Runge-Kutta Method. (a) SR 

behavior of  ; (b) SR behavior of   ( F =0.016Hz); (c) SR behavior of SNRgain  

 
 
In order to compare with the result obtained in Reference [1], we extract the curve ( F

=0.016Hz) from Figure 3(a) to put purposely in Figure 3(b). Comparing Figure 3(b) with Figure 
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2, we can easily find that the two curves are much the same, the result obtained by the Runge-
Kutta method is in good agreement with that obtained by the variational method. 

We can also observe the SR behavior of SNRgain  in Figure 3(c). Most importantly, it’s 

noted that the SNRgain  greatly exceeds unity on some occasions. When F  equals 0.008Hz 

and 0.016Hz respectively, the SNRgain  values greatly exceed unity and their maxima are 

reached at around 16 and 8, respectively; when F  equals 0.133Hz, the SNRgain  begins to 
exceed unity only when D� 0.5. 

The aforementioned result is the latest development of the tristable stochastic 
resonance.  

Similar to the conventional bistable SR, it can be observed in Figure 3 that the SR 
behavior occurs in the lower-frequency range.   and SNRgain  are inversely proportional to 

the input frequency F . The humps of   and SNRgain  decrease with the increase of F . 
Meanwhile, the hump of SNRgain  moves right.  

We set A =0.39, F =0.01Hz, D=0.1, L =16384, =128SF F . The tristable system 

processes the noisy signals when the input signal is sinusoidal and rectangular respectively. 
Figure 4 and Figure 5 below illustrate the results. 
 
 

 
 

 

  
 

Figure 4. The Input Consists of the Sinusoidal Signal and Gaussian white noise ((a) The input;  
(b) The power spectrum of the input; (c) The output of the tristable system; (d) The power 

spectrum of the output) 
 

 
The output of the tristable system (Fig. 4(c)) is significantly improved in comparison 

with the input (Fig. 4(a)). Noise, especially higher frequency noise is largelysuppressed. It can 
be observed in Fig. 5(a)-(c) that the tristable system can more significantly improve the noisy 
sequence of rectangular pulses.  
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Figure 5. The Input Consists of a Sequence of Rectangular Pulses and Gaussian White Noise 
((a) The input; (b) The power spectrum of the input; (c) The output of the tristable system; (d) 

The power spectrum of the output) 
 

 
Similar to the conventional bistable system, the output power spectrum of the tristable 

system also shows the distribution characteristic that spectral energy is concentrated in the low 
frequency region [10].Obviously, Figure 4(d) and Figure 5(d) exhibit this characteristic. 
 
 
5. Conclusion 

Using the second-order Runge-Kutta method, we study the SNR gain of a tristable SR 
system. Remarkably, we notice that the SNR gain exhibits the SR behavior. Most importantly, 
we find that the SNRgain  greatly exceeds unity on some occasions. This result is the latest 
development of the tristable SR system. Two above-mentioned examples (Figure 4 and Figure 
5) demonstrate that the system can effectively suppress noise. The frequency range of the 
input signal can be expanded by means of the twice sampling method [10, 11]. Consequently, 
the application range of the tristable SR system can be extended. This research result has 
potential applications in the signal detection, processing and communications. 
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