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Abstract 
The Li-ion battery study is based on its equivalent circuit PNGV model. The parameters of this 

model are identified by HPPC test. The discrete state space equation is established based on the model. 
The basic theory of extended Kalman filter algorithm is applied and then the filtering algorithm is set up 
under the noisy environments. Finally, one kind of electric car is used for testing under the UDDS driving 
condition. The difference between the theoretical value and the simulation value using extended Kalman 
filter under the noisy environment is compared.The result indicated that the extended Kalman filter keeps 
an excellent precision in state of charge estimation ofLi-ion battery and performs well when disturbance 
happens. 
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1. Introduction 

Li-ion batteryis the most widespread adoption power source of electric car with the 
advantages of high voltage, large specific energy, no memory, long cycle life and so forth. Not 
being overcharged or over-discharged is one of the major concerns of Li-ion battery. So, 
accurate estimation of state of charge (SOC) is the main task on battery management system 
(BMS). Not only does it provide the strategy for vehicle control such that damage to the battery 
can be avoided, but also can it help using the battery energy more reasonably, so that the 
electric vehicles (EV) can control and predict the driving range more effectively and achieve 
the ultimate goal of energy saving, environmental protection, and to extend the life of the 
batterypack [1]. 

SOC is a state value that can’t be measured directly. It should be estimated by certain 
algorithm using some physical quantities such as voltage, current etc. gathering by EV’s BMS 
in the process of driving. However, due to the interference of environmental factors such as 
electromagnetic radiation as well as the accuracy of measuring element, the voltage and 
current value acquired by BMS has large noise which will impact the SOC estimation. 

The main method of battery SOC estimation includes Ah counting method, open circuit 
voltage (OCV) method,  the linear model method, neural network method and Kalman filter 
(KF) method [2]. Ah counting method can’t estimate SOC of battery itself. And the algorithm 
also has some shortcomings such as the variable of Coulombic efficiency is difficult to be 
accurately measured, the accumulated sampling error etc. It is not suitable for the occasions 
where the voltage and current change dramatic. The most significant drawback of OCV 
method is battery needs to stand for a long time to eliminate the battery polarization effects to 
gain the accurate voltage value before every each measurement. So it doesn’t apply to the 
battery online SOC estimation. The most effective use of OCV method is in initial SOC 
estimation of EV after long time standing and often used in combination with Ah counting 
method. The linear model method is suitable for the low-current situation, applies only to the 
lead-acid battery. The neural network method is a highly nonlinear system, applicable to SOC 
estimation of all kinds of battery. But, it needs a large number of experiment data for training 
[11]. Using KF method for optimal estimation to the state value disturbed by environmental 
noise takes advantage of the temporal transfer relationship of the system to estimate the state 
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of system with a set of recursive formula. It is applied to the linear, time-varying, multi-input 
and multi-output system. After linearization, KF method is also used to recursive calculation in 
nonlinear systems. This method is also known as the extended Kalman filter (EKF) [2]. It is 
suitable for noise filter in the harsh environment like EV driving process.  

In this paper, PNGV is adapted as equivalence circuit model of Li-ion battery. The 
state space equation is established after the model parameters are identified by Hybrid Pulse 
Power Characterization (HPPC) test.Then, after examine the basic theory of EKF, the EKF 
model of battery in noisy environments is proposed for SOC estimated. Finally, the proposed 
method is tested in UDDS cycles and then the simulation result is compared with the actual 
value. 

 
 

2. Battery Model 
According to related research, PNGV equivalent circuit model can better describe the 

external characteristics of the li-ion battery; also it is simple to use. As shown in Figure 1, it 
consists of two capacitors (C0, C1) and three resistors (R0, R1). The ohm resistance R0 

describes the internal resistance of the battery, the capacitor C0 characterize the changes in 
the electromotive force.The resistive and capacitive link R1, C1 represents the polarization of 
Battery [2]. 

 
 

 
 

Figure 1. PNGV Model 
 
 

To identify the model parameters, a HPPC test procedure is conducted on Li-ion 
battery. The test profile is shown in Figure 2. Through the pulse discharging, model parameters 
can be identified base on voltage response data using least squares method. First, the time 
constant of RC circuit can be identified from the zero-input response segment. And then, the 
parameters C1, R1 are to be gained through zero state response segment. Parameter R1 is 
determined by the voltage rise segment at the end of the current pulse. Parameter C0is 
determined by the voltage difference before and after discharge [1, 3]. 

 
 

 
 

Figure 2. HPPC Test Profile 
 
 

3. Model Validation 
To validate the model and model parameters obtained with the procedure described 

above, charging and discharging tests are proposed. The profiles of this test is shown in Figure 
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3. The initial charge session (positive current) is based on step of 5A every 30 seconds, up to 
25A. then, a subsequent discharge session includes 5A steps every 15 seconds, starting from 
-25A. A resting time of one minute between two sessions was introduced. At the beginning of 
the test, the battery is fully charged [4].  

 
 

 
 

Figure 3.  Profile of Charging and Discharging Test 
 
 

Experiment and simulation proceeds as steps describe above. Figure 4 shows the 
result of experiment value(solid line) and simulated voltage response (dash line). As we can 
see in this figure, there is some deviation between voltage response and the actual voltage at 
the time of late current pulse and after the evacuation of current pulse. The reason is that it is 
difficult for a single resistance and capacitance link to describe the polarization of the battery. 
This also shows the highly nonlinear nature of the battery system. However, the maximum 
deviation is still under 0.7V, therefore, the PNGV model can refects the actual characteristics 
of this kinds of Li-ion battery.   

 
 

 
Figure 4. Comparision of Voltage Response in Simulation and Experimentation 

 
 
4. State-Space Equations Establishment  

The state-space description is more than a description of the system on input and 
output.As the syetem state is not necessarily the value that can be physically measured or 
observed, the most important functionality of state-space description is for the consideration of 
the system state, that is, the input causes the change of state, and the state determines the 
output. If the battery system is described by state-space, the problem that SOC can’t be 
measured can be solved. Specifically, setting SOC as one of the state vector of system, state-
space equation can be established according to the differential equations wrrited by physical 
law or other aspects of mechanism. So the system state can be deduced by the measurable 
quantity and observable quantity. That is SOC.  

For the convenience of computing, the equivalent circuit model of battery can be 
expressed as discrete state space equation. State vectors areset as: 
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 1( ) ( )
T

CX SOC k U k                                                                       (1) 

 
Where ( )SOC k  is the battery SOC at k times. 

1( )cU k  is the voltage of capacitor C1 at k 

times, it reflects the polarization of battery. 
According the definition of SOC, it can be expressed as Equation (2) using Ah 

counting method: 
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Where i(t) is the battery current, η is the efficiency of charge or discharge, C0 is the 

battery rated capacity. 
The RC circuit of the equivalent circuit model describes the polarization effect of the Li-

ion battery. Using Kirchoff’s current law and the definition of ideal capacitor, the differential 
equation to RC circuit is: 
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Discrete state space equation established [2]. 
 

  0
1 11 1

1 1 1

1 0( 1) ( )
( )

0 exp / ( )( 1) ( )
(1 exp( / ( ))c c

T
SOC k SOC k

C I k w
T RCU k U k

R T RC

                            

(4) 

 
Where, T is the sampling time, I(k)is the current at ktime, w is the input noise. 

Output equation is: 
 

1 0( ) ( )ocv CU t U U I t R           
(5) 

 
Where T is sampling time, v is the measurement noise. 

By battery discharge test, the relationship between OCV (open-circuit voltage) and 
SOC could be identified. The test begins with fully (SOC=100%) charged to 100% DOD (depth 
of discharge). It is made up of 10 segments. The battery continues discharging at constant 
current C1/1 rate for 6 minutes ateach segment, and followed by a 1 hour rest to allow the 
battery to return to an electrochemical and thermal equilibrium condition. The voltage value at 
end of each segments are recorded. Then the relationship between SOC and OCV of battery is 
established [4]. As shown in Figure 6. 

 
 

 
 

Figure 5. The Relationship between SOC and OCV After Fitting 
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5. EKF Algorithm Establishment 
Using the concept of the state space, Kalman filter (KF) changed the general 

description of filtering problem. That is, the signal is only the output of a linear system which 
disturbed by white noise but not the second-order characteristics or spectral density function of 
signal process which should be known. And this input-output relationship can be described by 
a state equation. In addition, usinga linear recursive filtering method, KF can calculate on the 
basis of a limited time data and requires less statistics data. So it needn’t store the past 
observational data. When new data is observed, new estimated value can be calculated using 
a set of recursive formula, which uses the state transition equation by means of process itself 
according to the new estimated value and the former time estimated value. The calculation 
process is used iteration method, so it is simple and direct, especially suitable for the online 
estimation of the computer [7]. 

The li-ion battery is a complex system. Its’ observed value and SOC value to be the 
estimated have nonlinear relationship.So it can not apply Kalman filter formula directly. But, if 
the observation equation is to be linearization, that is, the observation equation is carried on 
the Taylor series expansion and then the quadratic term is omitted. The linearized equation 
can be use to recursive calculation with KF formula. This method is also known as the 
extended Kalman filter (EKF) [5]. 

The observation equation after linearization is shown as below: 
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The final coefficient matrix of discrete state space equation is: 
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The EKF algorithm based on state space equation is established as follow [5-6]: 
State estimate time update: 
 

1 1k k k k kX A X B u


            (8) 

 
Error covariance time update: 
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Kalman gain matrix: 
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State estimate measurement update: 
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Error covariance measurement update: 
 

1( )k k k k kP I K C P            (12) 
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Where, 1k kX


  is the predict value of state variable at k-1 step to k step, 
1k kP 
is the 

predict value of error covariance at k-1 step to k step. 
1kP 
 is the error covariance. 

kK  is the 

gain. 
kR  is the noise covariance matrix.

kX
  is the estimate value at k step. ( )U k  is the 

measurement value. kU


 is estimate value of measurement. 
As we can see from the filtering formula, the optimal linear filter of KF algorithm is 

formed by constant “feedback and calibration” [7]. As shown in Figure 6. It shows the 
properties of “feedback and calibration” of EKF and its information channel. 

 
 

 
 

Figure 6.The EKF “feedback and calibration” Chart 
 
 

6. Test and Simulation Analysis 
The automotive profile test is necessary to verify whether or not the proposed PNGV 

model and EKF algorithm is valid in battery SOC estimation. The batteries used for 
experiments are 100 strings 6 AhLi-ion battery. Before the start of the test, the battery is fully 
charged (SOC=100%). Taking the experiment at UDDS conditions for example to illustrate the 
application of the filtering algorithm. UDDS stands for Urban Dynamometer Driving Schedule, 
and refers to United States Environmental Protection Agency (EPA) mandated dynamometer 
test on fuel economy that represents city driving conditions which is used for light duty vehicle 
testing.Each cycle time is 1369 seconds, 7.45 miles, average speed of 19.59mph. Conditions 
cycle is shown as below: 

 

 
Figure 7. EPA Urban Dynamometer Driving Schedule (UDDS) 

 
In this paper, one period of UDDS is employed to verify the SOC estimation approach. 

The voltage and current profiles sampled during UDDS cycles are shown in Figure 8 and 
Figure 9. 

 

 
Figure 8. Current Profile Sampled during UDDS Cycles 
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Figure 9. Voltage Profile Sampled during UDDS Cycles 
 
 

From above figure we can see that the batteryis in a rapidly changing dynamic process 
under the UDDS cycle. The current and voltage change very intensely, which is bound to 
produce noise in the data collection process and ultimately affect the SOC estimated. 
Simulation under this working cycle can test the algorithm estimation ability well. 

Figure 10 shows the comparison of the SOC curves with EKF estimations and 
experiment. The black curve is the SOC with experiment in UDDS cycles. The red curve is the 
SOC with EKF estimation in UDDS cycles under the noise environment. Figure 11 shows the 
SOC errors between the EKF estimation and experiment. As can be seen, after the initial 300 
seconds fluctuation, the SOC estimationcan quickly converges to the actual value. After about 
400 seconds, the error can be maintained in the range of 5%, which will meet the needs of 
actual use. This shows that SOC estimation with EKF is helpful in eliminating the environment 
noise and measurement noise. So it has better accuracy in battery SOC estimation. 

 
 

 
 

Figure 10. SOC Curves with EKF Estimation 
and Experiment 

Figure 11. SOC Estimation Error Curves with 
EKF Algorithm 

 
 
7. Conclusion 

Battery SOC estimation is one of the most important tasks in the EV’s BMS. It is not 
only the basic parameter which decided the vehicle control strategy, but also helping drivers to 
use battery power more reasonably to control and predict the driving rang. In this paper, the 
equivalent circuit model of Li-ion battery is studied and a discrete state space equation is set 
up. On this basis, the SOC estimation method with EKF algorithm is proposed. The results of 
the proposed method are compared with the experiment value. The comparisons show that the 
EKF algorithm can restrain the noise, has sufficient accuracy under the noise environment. So 
this method has good practical value in SOC estimation of Li-ion in EV’s BMS. 
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